
Mathematical

Foundations of

Deep Learning Models

and Algorithms

Konstantinos Spiliopoulos

Richard B. Sowers

Justin Sirignano

GRADUATE STUDIES

IN MATHEMATICS 252

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

10.1090/gsm/252

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Mathematical

Foundations of

Deep Learning Models

and Algorithms

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Mathematical

Foundations of

Deep Learning Models

and Algorithms

Konstantinos Spiliopoulos

Richard B. Sowers

Justin Sirignano

GRADUATE STUDIES

IN MATHEMATICS 252

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

EDITORIAL COMMITTEE

Matthew Baker
Marco Gualtieri (Chair)

Sean T. Paul
Natasa Pavlovic
Lexing Ying

2020 Mathematics Subject Classification. Primary 62-01, 65-01, 68-01, 68T07.

Library of Congress Cataloging-in-Publication Data

Names: Spiliopoulos, Konstantinos, 1980– author | Sowers, R. B. (Richard Bucher), 1965– author
| Sirignano, Justin (Justin Anthony), 1988– author

Title: Mathematical foundations of deep learning models and algorithms / Konstantinos Spiliopou-
los, Richard Sowers, Justin Sirignano.

Description: Providence, Rhode Island : American Mathematical Society, [2025] | Series: Gradu-
ate studies in mathematics, 1065-7339 ; volume 252 | Includes bibliographical references and
index.

Identifiers: LCCN 2025030859 | ISBN 9781470481087 hardcover | ISBN 9781470483999 paperback
| ISBN 9781470483982 ebook

Subjects: LCSH: Deep learning (Machine learning)–Mathematical models | Neural networks (Com-
puter science)–Mathematical models | Regression analysis | Convergence | Kernel functions
| AMS: Statistics – Instructional exposition (textbooks, tutorial papers, etc.) | Numerical
analysis – Instructional exposition (textbooks, tutorial papers, etc.) | Computer science –
Instructional exposition (textbooks, tutorial papers, etc.)

Classification: LCC Q325.73 .S65 2025
LC record available at https://lccn.loc.gov/2025030859

Graduate Studies in Mathematics ISSN: 1065-7339 (print); 2376-9203 (online)

DOI: https://doi.org/10.1090/gsm/252

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting
for them, are permitted to make fair use of the material, such as to copy select pages for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for permission
to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For
more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

c© 2025 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at https://www.ams.org/

10 9 8 7 6 5 4 3 2 1 30 29 28 27 26 25

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Contents

Preface xiii

Notation xvii

Chapter 1. Introduction 1
§1.1. Preliminaries 1
§1.2. Brief Historical Review of Deep Learning 3
§1.3. Overview and Notation 4
§1.4. On the General Task of Machine Learning 6
§1.5. Quick Overview of Supervised Learning 8
§1.6. Bias-Variance Tradeoff and Double Descent 13
§1.7. Some Existing Related Books 17
§1.8. Organization of this Book 17

Part 1. Mathematical Introduction to Deep Learning

Chapter 2. Linear Regression 27
§2.1. Introduction 27
§2.2. Loss Function 29
§2.3. Minimization 30
§2.4. Metric 34
§2.5. Computational Realization 35
§2.6. Brief Concluding Remarks 36
§2.7. Exercises 37

v

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

vi Contents

Chapter 3. Logistic Regression 39
§3.1. Introduction 39
§3.2. Formalization of the Problem 41
§3.3. Metric 46
§3.4. Transitions and Scaling 46
§3.5. Normalization 48
§3.6. Perfect Data and Penalization 51
§3.7. Multiclass prediction 53
§3.8. Brief Concluding Remarks 58
§3.9. Exercises 58

Chapter 4. From the Perceptron Model to Kernels to Neural Networks 59
§4.1. Introduction 59
§4.2. Perceptron Model and Stochastic Gradient Descent 60
§4.3. Perceptron Through the Lens of a Kernel 61
§4.4. Linear Regression and Kernels 64
§4.5. From Kernels to Neural Networks 66
§4.6. Brief Concluding Remarks 67

Chapter 5. Feed Forward Neural Networks 69
§5.1. Introduction 69
§5.2. Truth Tables 72
§5.3. Numerical Exploration 84
§5.4. Activation Functions 87
§5.5. Brief Concluding Remarks 90
§5.6. Exercises 91

Chapter 6. Backpropagation 93
§6.1. Introduction 93
§6.2. Introductory Example 94
§6.3. Backpropagation in a More General Case 96
§6.4. Backpropagation for Multilayer Feed Forward Neural Networks 98
§6.5. Backpropagation Applied to a Deep Learning Example 99
§6.6. Vanishing Gradient Problem 102
§6.7. Brief Concluding Remarks 103
§6.8. Exercises 104

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Contents vii

Chapter 7. Basics of Stochastic Gradient Descent 105
§7.1. Introduction 105
§7.2. The basic setup 106
§7.3. Stochastic gradient descent algorithm 107
§7.4. Applications to Shallow Neural Networks 114
§7.5. Implementation Examples 120
§7.6. Brief Concluding Remarks 127
§7.7. Exercises 127

Chapter 8. Stochastic Gradient Descent for Multi-layer Networks 129
§8.1. Introduction 129
§8.2. Multi-layer Neural Networks 129
§8.3. Computational Cost 132
§8.4. Vanishing Gradient Problem 133
§8.5. Implementation Example 134
§8.6. Brief Concluding Remarks 135
§8.7. Exercises 136

Chapter 9. Regularization and Dropout 137
§9.1. Introduction 137
§9.2. Regularization by Penalty Terms 137
§9.3. Dropout and its Relation to Regularization 141
§9.4. A Neural Network Example with Dropout Implemented 143
§9.5. Dropout on General Multi-layer Neural Networks 147
§9.6. Brief Concluding Remarks 149
§9.7. Exercises 149

Chapter 10. Batch Normalization 151
§10.1. Introduction 151
§10.2. Batch Normalization Through an Example 152
§10.3. Batch Normalization and Minibatches 157
§10.4. Brief Concluding Remarks 157

Chapter 11. Training, Validation, and Testing 159
§11.1. Introduction 159
§11.2. Polynomials 160
§11.3. Training 160
§11.4. Validation 161

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

viii Contents

§11.5. Cross-Validation 164
§11.6. Brief Concluding Remarks 167

Chapter 12. Feature Importance 169
§12.1. Introduction 169
§12.2. Feature Permutation 171
§12.3. Shapley Value 173
§12.4. Feature Permutation versus Shapley Value 176
§12.5. Brief Concluding Remarks 177
§12.6. Exercises 177

Chapter 13. Recurrent Neural Networks for Sequential Data 181
§13.1. Introduction 181
§13.2. The Plant-Observer Paradigm 182
§13.3. Jordan Networks 183
§13.4. Elman Networks 184
§13.5. Training and Backpropagation for Recurrent Neural Networks 189
§13.6. Stability 193
§13.7. Advanced Architectures 194
§13.8. Implementation Aspects for Recurrent Neural Networks 198
§13.9. Attention Mechanism and Transformers 202
§13.10. Brief Concluding Remarks 211
§13.11. Exercises 211

Chapter 14. Convolution Neural Networks 213
§14.1. Introduction 213
§14.2. Detection of Known Signal 214
§14.3. Detection of Unknown Signal 220
§14.4. Auxiliary Thoughts 223
§14.5. SGD for Convolution Neural Networks with a Single Channel 226
§14.6. On Convolution Neural Networks with Multiple Channels 228
§14.7. Brief Concluding Remarks 231
§14.8. Exercises 231

Chapter 15. Variational Inference and Generative Models 233
§15.1. Introduction 233
§15.2. Estimating Densities and the Evidence Lower Bound 234
§15.3. Generative Adversarial Networks 239

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Contents ix

§15.4. Optimization in GANs 243
§15.5. Wasserstein GANs 246
§15.6. Brief Concluding Remarks 248
§15.7. Exercises 248

Part 2. Advanced Topics and Convergence Results in Deep
Learning

Transitioning from Part 1 to Part 2 253
1. Motivating Learning: Part 1. 253
2. Neural Networks and Universal Approximation: Part 1⟶ Part 2. 254
3. Training of Neural Networks: Part 1⟶ Part 2. 255
4. Optimize Training of Neural Networks: Part 1⟶ Part 2. 255
5. Optimization in the Feature Learning Regime: Part 2. 256
6. Selected Topics: Part 1⟶ Part 2. 256

Chapter 16. Universal Approximation Theorems 259
§16.1. Introduction 259
§16.2. Basic Universal Approximation Theorems 259
§16.3. Universal Approximation Results Using 𝖱𝖾𝖫𝖴 Activation

Functions 266
§16.4. Brief Concluding Remarks 271
§16.5. Exercises 272

Chapter 17. Convergence Analysis of Gradient Descent 273
§17.1. Introduction 273
§17.2. Convergence Properties under Convexity Assumptions 274
§17.3. Convergence in the Absence of Convexity Assumptions 281
§17.4. Accelerated Gradient Descent Methods 286
§17.5. Brief Concluding Remarks 290
§17.6. Exercises 290

Chapter 18. Convergence Analysis of Stochastic Gradient Descent 293
§18.1. Introduction 293
§18.2. Preliminary calculations 294
§18.3. Convergence Results for SGD 297
§18.4. Comparing SGD with GD 306
§18.5. Variants of Stochastic Gradient Descent 310

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

x Contents

§18.6. Brief Concluding Remarks 318
§18.7. Exercises 318

Chapter 19. The Neural Tangent Kernel Regime 321
§19.1. Introduction 321
§19.2. Weight Initialization 322
§19.3. The Linear Asymptotic Regime: Neural Tangent Kernel 326
§19.4. The Linear Asymptotic Regime in the Discrete Time Case 330
§19.5. Preliminary Bounds and Existence of a Limit 335
§19.6. Alternative Representation of the Prelimit Process 345
§19.7. Proof of Main Convergence Results 348
§19.8. Brief Concluding Remarks 351
§19.9. Exercises 351

Chapter 20. Optimization in the Feature Learning Regime: Mean Field
Scaling 355

§20.1. Introduction 355
§20.2. Preliminary Thoughts 356
§20.3. Mean Field Limit for Shallow Neural Networks 358
§20.4. Central Limit Theorem Behavior for Shallow Neural Networks 374
§20.5. Deep Neural Networks in Mean Field Scaling 376
§20.6. In Between the Linear and the Nonlinear Regime 381
§20.7. Elements of Generalization Performance 387
§20.8. Brief Concluding Remarks 390
§20.9. Exercises 391

Chapter 21. Reinforcement Learning 393
§21.1. Introduction 393
§21.2. Motivating Reinforcement Learning Through an Example 393
§21.3. Deep Reinforcement Learning 406
§21.4. 𝑄-learning 408
§21.5. Convergence Properties of the 𝑄-learning Algorithm 411
§21.6. Brief Concluding Remarks 422
§21.7. Exercises 423

Chapter 22. Neural Differential Equations 427
§22.1. Introduction 427

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Contents xi

§22.2. Ordinary Differential Equations with Neural Network
Dynamics 427

§22.3. Backpropagation Formula from the Euler Discretization 430
§22.4. Training Neural ODEs with Minibatch Datasets 432
§22.5. Neural Stochastic Differential Equations 433
§22.6. Examples in PyTorch 436
§22.7. Brief Concluding Remarks 441

Chapter 23. Distributed Training 443
§23.1. Introduction 443
§23.2. Synchronous Gradient Descent 445
§23.3. Asynchronous Gradient Descent 446
§23.4. Parallel Efficiency 448
§23.5. MPI Communication 449
§23.6. Point-to-point MPI Communication 453
§23.7. PythonMPI Communication 453
§23.8. Brief Concluding Remarks 459
§23.9. Exercises 459

Chapter 24. Automatic Differentiation 461
§24.1. Introduction 461
§24.2. Reverse-mode versus Forward-mode Differentiation 462
§24.3. Introduction to PyTorch Automatic Differentiation 464
§24.4. Brief Concluding Remarks 470

Part 3. Appendixes

Appendix A. Background Material in Probability 473
§A.1. Basic Notions in Probability 473
§A.2. Basics on Stochastic Processes 475
§A.3. Notions of Convergence and Tightness 477
§A.4. Convergence in the Skorokhod Space 𝐷𝐸([0, 𝑇]) 479
§A.5. Some Limiting Results and Concentration Bounds 481
§A.6. Itô Stochastic Integral 483
§A.7. Very Basics of Itô Stochastic Calculus 484

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

xii Contents

Appendix B. Background Material in Analysis 487
§B.1. Basic Inequalities Used in the Book 487
§B.2. Basic Background in Analysis 488

Bibliography 491

Index 503

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Preface

This book is an outgrowth of a belief that the mathematics and, in general, the
scientific community might be well served by an introduction to deep learn-
ing and neural networks in the language of mathematics. To borrow from
Churchill, Shaw, and Wilde, mathematics and computer science are two dis-
ciplines separated by common notation. We believe that this book might help
students, researchers, and practitioners more easily see and explore connec-
tions to this increasingly important collection of computational tools and ideas.
Over several years of research and teaching in neural networks, the authors
have come to the conclusion that

• There are many interesting and open mathematical research ques-
tions in the field of deep learning.• Mathematical maturity gives students and researchers an advantage
in thinking about machine learning.

Mathematical thinking innately has unique strengths in generalizing and
abstracting ideas and also providing rigorous bounds on complex phenomena.
We believe that a greater mathematical presence in the field of deep learning
and neural networks can in turn contribute to the larger scientific community.

This book is aimed at advanced undergraduate students and graduate stu-
dents as well as researchers and practitioners who want to understand the
mathematics behind the different deep learning algorithms. The book is com-
posed of two parts. Part 1 contains a mathematical introduction, while Part
2 discusses more advanced mathematical and computational topics, hinting
at further research directions. This represents something of a “separation of

xiii

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

xiv Preface

scales” in our effort: the basics of deep learning are “microscopic”, while large-
scale structural analysis is more “macroscopic”. Our hope is that the combina-
tion of both points of view will offer a better comprehension of the topic.

The first part of the book (Part 1) assumes knowledge of basic linear alge-
bra, multivariate calculus, and some statistics and calculus-based probability.
This part of the book should be accessible to an advanced mathematics, sta-
tistics, computer science, data science, or engineering undergraduate student.
Part 1 starts with some classical topics in statistical learning theory (such as
linear regression, logistic regression, and kernels), then gradually progresses to
deep learning related topics (such as feed forward neural networks, backpro-
gagation, stochastic gradient descent, dropout, batch normalization), and con-
cludes with a broad spectrum of deep learning architectures and models (such
as recurrent neural networks, transformers, convolution neural networks, vari-
ational inference, and generative models). We have also included sections and
chapters on classical statistical topics as regularization, training, validation and
testing, and feature importance. The purpose of the earlier chapters in Part 1 is
to introduce the reader to the subject of deep learning in a gradual way through
classical topics in statistics and machine learning. These early chapters al-
low us to illustrate known issues that come up in deep learning architectures
through easier-to-present concrete settings that often allow explicit computa-
tions, the latter being rarely the case for general deep learning architectures.

The second part of the book (Part 2) contains material that is more ad-
vanced than Part 1, either mathematically, conceptually, or computationally.
This part of the book should be accessible to advanced undergraduate students
and graduate students aiming to go deeper in certain topics of deep learning.
Certain aspects of the second part of the book (e.g., uniform approximation the-
orems, convergence theory for gradient and stochastic gradient descent, linear
regime and the neural tangent kernel, feature learning regime and mean field
field scaling, neural differential equations) would be easier to read given a basic
understanding of real analysis and stochastic process. A self-contained appen-
dix with more advanced required background material has been included to
aid the reader. Other aspects of the second part of the book, e.g., distributed
training and automatic differentiation, require less mathematical background
but are more advanced either conceptually or computationally.

Part 1, potentially together with selected topics from Part 2, could serve as
standalone material for an advanced undergraduate course or for a first year
graduate introduction to the mathematics of deep learning (we have done so
in related course offerings in our respective universities).

The topic of deep learning is already huge and is constantly growing. While
we have attempted to provide a fairly broad overview, we do not claim to have
covered all possible angles. Our aim has been to cover topics that we viewed

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Preface xv

as important, foundational, and reasonably well-developed at the time of writ-
ing. We have tried to establish a unified and consistentmathematical language,
connecting those topics in a comprehensiveway and keeping inmind that deep
learning is both mathematically interesting and a tool in applied data analysis.

Our efforts have concentrated around the idea of presenting essential ideas
as clearly as possible. As such, we may not have always presented the sharpest
possible versions of the results, but we have pointed to research articles and
other monographs where the interested reader can find more refined results.
No attempt has been made to provide comprehensive historical attribution of
ideas. We do however give appropriate references whichwill hopefully provide
entry points into the literature.

The book is focused on developing amathematical language for deep learn-
ing and unifying the presentation of concepts and ideas but also maintaining
rigorous mathematical results. The goal is not only to understand the math-
ematical principles behind deep learning algorithms, but also to offer tools to
quantify uncertainty in deep learning. Two of the questions that this book is
trying to answer are

Why do things work the way they work?

and
How can we guarantee significance and robustness of our conclusions?

Website
Beyond reading the mathematical literature, the readers of this book will

hopefully have the opportunity to experiment with the algorithms presented.
Deep learning is a tool in data analysis. For the reader’s convenience we have
included Python code which will hopefully give the reader some appreciation
for how deep learning might actually be used in practice. The datasets and
Python codes referenced in various chapters of the book can be found and
downloaded at the dedicated website for the book

https://mathdl.github.io/.
In addition, corrections and errata to the book will be updated there.

In many of the chapters of the book, exercises have been included to aid
the reader in better comprehension of the material. Upon request, a solutions
manual is available to the instructor of a class using this book.

We hope that this book will help open a door through which the mathe-
matics and research community can pass in order to contribute even more to
the ever-growing field of research and applications of deep learning. Whatever
goals have motivated us to write these chapters, we admit to partial success
only.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathdl.github.io/

xvi Preface

Acknowledgments
The authors of the book would like to thank family and friends who con-

tributed in their own unique ways to the completion of the book.• Konstantinos Spiliopoulos would like to thank first and foremost
Anastasia for her constant support and patience, and his children
Stavros and Evangelia for being a continuous driving force and source
of inspiration!• Richard Sowers would like to thank his students, who helped
him learn deep learning. In particular, Rachneet Kaur, through a
series of papers [HBK+20,KCM+20,KKHS20,KLM+23,KMZ+19,
KMSH22, KST+20, KSZ+19, SKZ+19], helped him bridge the gap
from mathematical thinking to applications. Richard Sowers would
also like to thank his wife Svetlana, and daughters Rebeka and
Veronika. G. B. Shaw once opined that “A happy family is but an ear-
lier heaven.”

Finally, we would like to thank our friends, colleagues and students who
looked at earlier versions of themanuscript andmademany useful suggestions.
In particular, we would like to thank in alphabetical order Nikos Georgoudios,
Paul Glasserman, Samuel Isaacson, Markos Katsoulakis, Fotios Kokkotos, Eric
Kolaczyk, Scott Robertson, Giorgos Zervas, Benjamin Zhang, and Zhuo Zhao.
All of the remaining mistakes and imperfections are our own responsibility.

While working on this book, the authors were supported by the National
Science Foundation (NSF) in the USA and the Engineering and Physical Sci-
ences Research Council (EPSRC) in the UK (grant NSF-DMS 2311500).

Konstantinos Spiliopoulos
Boston, MA, USA
Richard Sowers

Urbana-Champaign, IL, USA
Justin Sirignano

Oxford, UK
May 2025

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Notation

In this section we provide a reference list of the notation that is consistently
used throughout the book. Most of the mathematical objects defined here are
described in Chapter 1, Introduction.

Parameters• 𝜃: learnable parameter to be estimated from data• 𝜂: learning rate in (stochastic) gradient descent methods• 𝑀: number of datapoints in a given dataset• 𝑁: number of hidden units in a given neural network layer
Data• (𝑥𝑚)𝑀𝑚=1: feature data• (𝑦𝑚)𝑀𝑚=1: label data• 𝒟 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1: available dataset• 𝒟train: train dataset• 𝒟test: test dataset

Spaces• ℝ𝐷: the Euclidean space of 𝐷-dimensional tuples of real numbers
(typically arranged as column vectors)• ℝ𝐷1×𝐷2 : the collection of 𝐷1 × 𝐷2 matrices of real numbers

xvii

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

xviii Notation

• 𝒳: the space of features• 𝒴: the space of labels• Θ: the parameter space• 𝐿𝑞(ℝ𝐷) with 1 ≤ 𝑞 < ∞: the space of functions 𝑓 on ℝ𝐷 such that

‖𝑓‖𝑞 = (∫ℝ𝐷 |𝑓(𝑥)|𝑞𝑑𝑥)1/𝑞 < ∞
• 𝐿∞(ℝ𝐷): the space of functions 𝑓 on ℝ𝐷 such that‖𝑓‖∞ = sup𝑥∈ℝ𝐷 |𝑓(𝑥)| < ∞

Norms• ‖𝑓‖𝑞 = (∫ℝ𝐷 |𝑓(𝑥)|𝑞𝑑𝑥)1/𝑞: the 𝐿𝑞(ℝ𝐷) norm of a function 𝑓 taking
values in ℝ𝐷 for 1 ≤ 𝑞 < ∞• ‖𝑓‖∞ = sup𝑥∈ℝ𝐷 |𝑓(𝑥)|: the 𝐿∞(ℝ𝐷) norm of a function 𝑓 taking val-
ues in ℝ𝐷

• ‖𝑥‖𝑞 = (∑𝐷𝑖=1 𝑥𝑞𝑖)1/𝑞 for 𝑞 > 0 and 𝑥 ∈ ℝ𝐷
• ‖𝑥‖ = ‖𝑥‖2 for 𝑥 ∈ ℝ𝐷• ‖𝑥‖∞ = max𝑖=1,. . .,𝐷 |𝑥𝑖| for 𝑥 ∈ ℝ𝐷

Functions• 𝜎(𝑥): activation function• 𝑆(𝑥): logistic function• 𝑆softmax(𝑥): softmax function• 𝖱𝖾𝖫𝖴(𝑥): rectified linear unit function• 𝔪̄(𝑥): function we want to estimate/learn• 𝔪(𝑥; 𝜃): parametric model for 𝔪̄(𝑥) with 𝜃 ∈ Θ being the learnable
parameter• {ℓ𝑦}𝑦∈𝒴 : collection of error functions• 𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦(𝔪(𝑥; 𝜃)): per datapoint loss function• Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃): average (empirical) loss function• Λpop(𝜃): population loss function

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Notation xix

• 𝟏𝐴(𝑧) def= {1 if 𝑧 ∈ 𝐴0 else
: indicator function, where 𝑧 is taken to be in

some set 𝑆 and 𝐴 is a subset of 𝑆
Probabilities and Expectations• ℙ: probability measure• 𝔼: expectation operator associated with a given probability measure• 𝑃𝒟: empirical probability measure• 𝐸𝒟: associated expectation operator

Special operations• (𝑥 ⊙ 𝑦)𝑑 = 𝑥𝑑𝑦𝑑 for all 1 ≤ 𝑑 ≤ 𝐷: Hadamard multiplication for𝑥 and 𝑦 in ℝ𝐷

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 1

Introduction

1.1. Preliminaries

Deep Learning is a collection of ideas, algorithms, and computational imple-
mentations concerned with constructing functions, roughly, of the form

(Nonlinear function) ∘ (linear transformation) ∘ (Nonlinear function)∘∘ (linear transformation) ∘ ⋯ ;(1.1)

i.e., the composition of layers of linear transformations and nonlinear func-
tions. The nonlinear functions in (1.1) are usually fairly simple, e.g., a vec-
torized logistic function or hyperbolic tangent. The internal layersmay in fact
be very high-dimensional, and there may be many layers. The iterative and
large-scale combination of these simple operations yields a very powerful and
flexible model for input-output relations.

Neural networks are not new; they have been used as far back as the 1980s.
However, the real impact of deep learning started becoming apparent only in
the late 2000s. Since then, deep learning has come to dominate some of the
most important areas of machine learning, such as image, text, and speech
recognition, and it is poised to have a significant impact on many other appli-
cations across science, engineering, medicine, and finance.

What precipitated the rapid rise of deep learning? It can be attributed to
the fortuitous combination of several things:

• It turns out that the functional framework of (1.1) is broad enough
(see Chapter 16, Universal Approximation Theorems) that it can ap-
proximate any “reasonable” function.

1

10.1090/gsm/252/01

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2 1. Introduction

• The parameters in the linear transformations need to be tuned, usually
by minimizing an appropriate error function on ground-truth data.
More mathematically, formulas for sensitivities (derivatives) with re-
spect to the parameters determining the linear transformation of (1.1)
are used in gradient descent algorithms. Notwithstanding the num-
ber of parameters in large-scale modern networks (large networks of
the form (1.1) with many internal layers may have millions to billions
of parameters), these calculations can bewritten in a scalable and par-
allelizable way (Chapters 6, 7, 8, 23, and 24).• High-dimensional neural networks and large training datasets require
significant computational resources; modernwidely available compu-
tational tools (viz., GPUs) can meet these needs.

Neural networks that are specifically of type (1.1) are called feed forward,
and are the starting point for understanding deep learning (Chapter 5). More
complicated networks, e.g., recurrent neural networks for sequential data,
transformers (Chapter 13) and convolution neural networks (Chapter 14), take
advantage of some unique structure in the problem. Although a given neural
network is often too complex for rigorous statistical analysis, it typically is the
combination of smaller classical parts (which on their own can be rigorously
studied).

Deep learning is a departure from traditional statistics, which emphasizes
hypothesis tests, confidence intervals, and other statistical properties. Despite
the lack of such statistical guarantees, deep learning has had remarkable suc-
cess. Although there are ad hoc aspects of deep learning, many of its advances
are the result of careful and thoughtful design of network architectures and
training methods. Examples include convolution networks for image recogni-
tion, long short-term memory (LSTM) networks for text recognition and time
series data, transformers for machine translation and large language models,
and more.

This book aims to cover the fundamental concepts underpinning deep
learning and provide the computational methods to implement deep learning
models. It focuses on mathematical principles but at the same time it aims to
understand the practical components of training neural networks successfully
as well as the possible factors that can cause the failure of training.

The focus of this book is mainly on the following topics of deep learning:

• Approximation: What types of functions and problems can be approx-
imated and solved by neural networks?• Optimization and training: How do we decide what types of architec-
tures to use for a given problem? How do we train such models?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.2. Brief Historical Review of Deep Learning 3

• Generalization: Assume that a finite dataset was used to obtain a good
model approximating the unknown function of interest. Will this
model perform well on data that have not been observed?

Deep learning has been very successful in many applications, but there are
no guarantees that it will easily work in any given situation. Mathematical
theory helps to provide rigorous guidelines for design of algorithms and also
sheds light onto convergence properties of the algorithms.

1.2. Brief Historical Review of Deep Learning

Deep learning is part (a very significant part, in fact) of the much larger field
of machine learning. In order to appreciate the scientific developments, let us
briefly go over some of the history of deep learning.

It is largely accepted that the field of deep learning and the deployment of
neural network models to describe functional relationships find their roots in
neuroscience, starting with the work of McCulloch and Pitts in 1943 [MP43].
That work introduced the idea that simple components of our brain work to-
gether to perform complicated tasks. In such models, linear combinations of
neurons become inputs to a nonlinear function, forming the basis of what is
now called a neural network model.

The next big breakthrough was the work of Rosenblatt in 1958 on the per-
ceptronmodel [Ros58]. In its basic form, the perceptronmodel is a single neu-
ron for binary classification𝔪(𝑥;𝑤) = sign(𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷 + 𝑏)

= {−1 if 𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷 + 𝑏 < 0,1 if 𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷 + 𝑏 ≥ 0,
where the weights 𝑤 and the bias 𝑏 are trainable parameters, and the 𝑥𝑑’s are
input signals. In this model the neuron fires if the output of the addition oper-
ation 𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷 + 𝑏 is larger than a threshold (taken to be zero here).
The perceptronmodel is a true milestone in deep learning, and we will study it
in Chapter 4. In today’s language the perceptron model is a single layer neural
network.

When initially conceived, the perceptron model was very influential espe-
cially due to its ability to learn from data in a way similar to the human brain.
However, soon it was realized that the perceptron model has limitations due
to being a single-layer neural network with a single hidden unit, leading to dif-
ficulties when asked to distinguish between complicated data. In particular,
the properties of perceptrons were analyzed in the book of Minsky and Rapert
in 1969 [MP17] and their limitations were explored and pointed out. These

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4 1. Introduction

limitations partially dampened interest in perceptrons and related models of
artificial intelligence.

A second challenge with neural networks was in training; there was no
effective and scalable way to find the weights and biases. The paper by Rumel-
hart, Hornik, andWilliams in 1986 [RHW86] on backpropagation (seeChapter
6) resolved this impasse, iteratively using the chain rule of elementary calcu-
lus to obtain the gradient of the loss functionwith respect tomodel parameters.
This led to a resurgence of interest in the field. Again, however, development
slowed when applications to real problems increasingly required ad hoc pro-
cessing and fine-tuning.

The story then again changed in the early 2000s with advances in com-
putational power and growing amounts of available data. Graphical process-
ing units (GPUs), initially developed for handling linear algebraic calculations
needed for visualizations and video games in particular, turned out to be ideal-
ly suited to the calculations of training deep neural networks. Perhaps the
first breakthrough was the work of Krizhevsky, Sutskever, and Hinton in
2012 [KSH12], where a convolutional neural network (CNN) was successfully
trained to classify images from a large image dataset. At that point in time deep
neural networks caught the attention of many people. Another breakthrough
in 2017 was the paper [VSP+17] where the authors proposed combining an
attention mechanism and a feed forward neural network into what is now
known as transformer architecture; this is the backbone of many very success-
ful large language models.

Currently, very large models are trained on thousands of GPUs and can
perform very complicated tasks. Deep learning is used in many practical ap-
plications ranging from machine translations to strategy games to image clas-
sification to solution of complex equations (such as high dimensional partial
differential equations, optimization equations, etc.) to robotics, chemistry, bi-
ology, finance, and the list goes on and on. Typical applications have data that
may be very high-dimensional but many have low-dimensional structure.

1.3. Overview and Notation

Mathematically, we are interested inmaps from some space𝒳 to another space𝒴. These maps are parametrized by elements of some other space Θ. We shall
generically denote such a structure as 𝔪 ∶ 𝒳 × Θ → 𝒴. We want to find a
parameter 𝜃∗ ∈ Θ such that the map 𝑥 ↦ 𝔪(𝑥; 𝜃∗) achieves some desired goal.
We will often write 𝔪(𝑥; 𝜃) instead of 𝔪(𝑥, 𝜃) to emphasize the difference in
the roles of 𝑥 and 𝜃; 𝑥 refers to a point in the feature space, while 𝜃 refers to a
tunable parameter.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.3. Overview and Notation 5

In the case of supervised learning,𝒳 is usually the space of features and𝒴 is
the space of labels; we want to use𝔪(⋅; 𝜃∗) to predict the label for future (out-
of-sample) points in feature space. We want to find 𝜃∗ based on a collection
of ground-truth feature-label pairs. These ground-truth points can typically
be enumerated as a sequence (𝑥𝑚)𝑀𝑚=1 of points in 𝒳 and a corresponding se-
quence (𝑦𝑚)𝑀𝑚=1 of points in 𝒴. When we are proving performance bounds, the
pairs (𝑥𝑚, 𝑦𝑚) for𝑚 = 1, . . . ,𝑀 are typically random samples originating from
some ground-truth distribution on 𝒳 × 𝒴. Since• a pair (𝑥𝑚, 𝑦𝑚)may be repeated (e.g., two cars with the same mileage

(feature) may need the same repair (label)), and• the ordering of the (𝑥𝑚, 𝑦𝑚)’s is unimportant,
we can also think of the (𝑥𝑚, 𝑦𝑚)’s as a multiset (an unordered collection al-
lowing multiplicities)𝒟 of points in feature-label space𝒳×𝒴. Visualizing the
ground-truth data as points in 𝒳 × 𝒴 emphasizes that supervised learning is
essentially a question of drawing a graph near an existing collection of existing
points.

In the case of supervised learning, we want𝔪(𝑥; 𝜃) to approximate 𝑦 for as
many ground-truth datapoints (𝑥, 𝑦) ∈ 𝒟 as possible. To quantify this, we will
usually use a collection {ℓ𝑦}𝑦∈𝒴 of error functions. For each 𝑦 ∈ 𝒴, ℓ𝑦 ∶ 𝒴 →[0,∞) (preferably in some smooth way), with ℓ𝑦(𝑦′) = 0 if and only if 𝑦 = 𝑦′.
For each ground-truth datapoint (𝑥, 𝑦) ∈ 𝒟 and 𝜃 ∈ Θ, the per datapoint loss
function 𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦(𝔪(𝑥; 𝜃))
then quantifies how well𝔪(𝑥; 𝜃)matches up with 𝑦.

The per datapoint loss functions are then aggregated into the average loss
function

Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃) = 1𝑀 𝑀∑𝑚=1 𝜆(𝑥𝑚,𝑦𝑚)(𝜃)
for each 𝜃 ∈ Θ. Sometimes, Λ(𝜃) as defined in the formula above, is also re-
ferred to as the empirical loss function. The parameter space Θ is usually Eu-
clidean, so we can then try find the best parameter 𝜃∗ by some type of gradient
descent on Λ.

Some of our notation and organization of thoughts differs from that of stan-
dard computer science literature; e.g., multisets, per datapoint, and average
loss functions. We regularly force the ground-truth data into subscripts (e.g.,ℓ𝑦 and 𝜆(𝑥,𝑦)) to emphasize that we shouldn’t differentiate with respect to 𝑥
and 𝑦. Our notation reflects the privilege of trying to holistically present a de-
veloping field to a new audience. We believe that, once the ideas have been
understood, any translation of notation should be fairly natural.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6 1. Introduction

Much of our mathematical notation is standard. We use ℝ𝐷 to denote the
Euclidean space of 𝐷-dimensional tuples of real numbers (typically arranged
as column vectors) and ℝ𝐷1×𝐷2 to denote the collection of 𝐷1 × 𝐷2 matrices of
real numbers. We use ⊙ to denote Hadamard multiplication; for 𝑥 and 𝑦 inℝ𝐷, (𝑥 ⊙ 𝑦)𝑑 = 𝑥𝑑𝑦𝑑 for all 1 ≤ 𝑑 ≤ 𝐷 (and similarly for matrices as needed).
We also use 𝟏𝐴(𝑧) def= {1 if 𝑧 ∈ 𝐴0 else
to denote the indicator function, where 𝑧 is taken to be in some set 𝑆 and 𝐴 is
a subset of 𝑆.

For 1 ≤ 𝑞 < ∞, we say that a function 𝑓 ∈ 𝐿𝑞(ℝ𝐷), if 𝑓 is such that‖𝑓‖𝑞 = (∫ℝ𝐷 |𝑓(𝑥)|𝑞𝑑𝑥)1/𝑞 < ∞. If 𝑞 = ∞, then ‖𝑓‖∞ = sup𝑥∈ℝ𝐷 |𝑓(𝑥)|.
If 𝑥 ∈ ℝ𝐷, then we define ‖𝑥‖𝑞 = (∑𝐷𝑖=1 𝑥𝑞𝑖)1/𝑞 for 𝑞 > 0. When 𝑞 = 2,‖𝑥‖ = ‖𝑥‖2 is the standard Euclidean norm. In addition, we shall write ‖𝑥‖∞ =max𝑖=1,. . .,𝐷 |𝑥𝑖|.
Various algorithms rely on randomization, and a number of our advanced

(rigorous) results are probabilistic. Generically, we can think of this random-
ness as coming from some call to numpy.rand on a computer.

For a given dataset 𝒟 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1, an element (𝑥𝑚, 𝑦𝑚) ∈ 𝒟 is typi-
cally considered to be coming from a given ground-truth distribution. We will
use ℙ to denote the background probability measure of this randomness and
use 𝔼 to denote the associated expectation operator. Very often, we will want
to think of the empirical measure generated by the ground-truth data. We will
use 𝑃𝒟 and 𝐸𝒟 to denote the associated empirical probability measure and the
associated expectation operator, respectively. We use the distinct notation ofℙ vs. 𝑃𝒟 to reinforce the fact that applications of deep learning in practice are
governed by a fixed dataset. This dataset may have been collected at great cost
and, consequently, may be of limited size. Gold standard ground-truth datasets
from academia are typically also collected under carefully thought-out proto-
cols.

1.4. On the General Task of Machine Learning

Let us be a bit more explicit. Assume that we have observations {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1
of ground-truth points in 𝒳 × 𝒴 and we want to model how the 𝑦𝑚’s depend
on the 𝑥𝑚’s. We would like to do so by considering a collection {𝔪(⋅; 𝜃)}𝜃∈Θ of
maps from 𝒳 to 𝒴 and then learning the best parameter 𝜃.

Supervised learning addresses the case where both input data (the 𝑥𝑚’s)
and output data (the 𝑦𝑚’s) are available. Supervised learning is the main focus
of this book and we briefly review the general structure in Section 1.5.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.4. On the General Task of Machine Learning 7

Unsupervised learning is concerned with the case where only the input
data (the 𝑥𝑚’s) are available, namely no labels are given to the learning. In
contrast to supervised learning, unsupervised learning tries to find patterns in
data (i.e., there are no designations as feature or label). Generative Adversarial
Networks (GANs) in Chapter 15 are something of an exception; part of the GAN
problem relies on algorithmically finding patterns in data.

Different machine learning algorithms make different choices for the
model𝔪(𝑥; 𝜃). They may also use different methods to estimate 𝜃.

An important factor in the success of a particular choice of model for𝔪(𝑥; 𝜃) depends on the suitability of the chosen class of models with respect to
complexity of the data that we are dealing with and on the amount of data 𝑀
that is available. For example, if 𝑥 ↦ 𝔪(𝑥; 𝜃) is a linear model, i.e.,
(1.2) 𝔪(𝑥; 𝜃) = 𝜃⊤𝑥
and the data suggest quadratic behavior, there is little hope that 𝔪(⋅; 𝜃) will
work. Complex, nonlinear relationships require general models𝔪(𝑥; 𝜃)which
are able to capture a rich enough collection of nonlinearities. Even if we do
choose a correct general model, for example 𝔪(𝑥; 𝜃) = 𝑥⊤𝜃𝑥, in the case of
quadratically related data, it may be challenging to accurately estimate 𝜃 if the
number of data samples𝑀 is very small. For example, suppose that the feature
space 𝒳 is 𝑑-dimensional. Even in this simple setting, the model has 𝑑 × 𝑑
degrees of freedom (𝜃 is a 𝑑 × 𝑑matrix) and a large number of data samples𝑀
is required to accurately estimate 𝜃. If the number of data samples𝑀 ≪ 𝑑, the
model 𝔪(𝑥; 𝜃) will be inaccurate. Inaccuracy due to the dataset being much
smaller than the model’s degrees of freedom can oftentimes lead to overfitting;
see Subsection 1.5.3.

The art in deep learning is trying to find the right collection of models.
While computational methods and capacity are increasingly large, they are fi-
nite, as is the available amount of training data. In addition, in real-world ap-
plications, not only the exact functional form of the underlying relationship
suggested by the data is unknown, but also the feature space𝒳 is typically very
high-dimensional. It is impractical to consider all maps from feature space to
label space. If the amount of training data is too small compared to the num-
ber of model parameters, we may overfit, potentially finding parameters which
work well for the training data, but don’t work for statistically similar new data
(this is related to questions ofhyperparameter selection, covered inChapter 11).

There are broad epistemological propertieswhich can guide inmodel selec-
tion. Translation-invariance is often appropriate for image classification; one
wants to detect an object in an image regardless of its location in the image.
Many systems are naturally causal; future events can’t influence past or present

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

8 1. Introduction

events. Convolutional neural networks (Chapter 14) reflect translation invari-
ance, while recurrent neural networks (Chapter 13) reflect causality. Trans-
formers (Chapter 13) can also learn causality in data. In all of these cases, these
architectures can be appropriately high-dimensional, but they aremuch lower-
dimensional than the collection of allmaps on, for example, raw pixel space or
raw historical data or text in, say for instance, the English language.

Many widely used models can be iterated and can have many internal di-
mensions. One generally wants to consider model architectures that can cap-
ture intricate patterns in the data with correspondingmodel dimensions which
are large enough to describe all reasonable maps from feature to labels but that
at the same time fit the computational constraints.

Deep learning not only uses models that have a large number of degrees of
freedom (multi-layer neural networks), but it has also been able to embed prop-
erties such as translation-invariance or causality into its model architectures.
In addition, carefully designed optimization and statistical methods have been
developed to control issues like overfitting. The combination of these aspects
has been an important factor in the success of deep learning.

1.5. Quick Overview of Supervised Learning

Let us expand a bit on the task of supervised learning. Consider the problem
of finding a model𝔪(𝑥; 𝜃) for given data {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1. At a high level, we are
searching for a parameter 𝜃 ∈ Θ such that, on average across the data sam-
ples, 𝔪(𝑥𝑚; 𝜃) is close to 𝑦𝑚. Otherwise said, we want the graph of 𝔪(⋅; 𝜃) to
optimally pass through the ground-truth data. That is,

𝜃 = argmin𝜃′∈Θ
1𝑀 𝑀∑𝑚=1 ℓ𝑦𝑚(𝔪(𝑥𝑚; 𝜃′)),

where ℓ𝑦(𝑦′) is a measure of how close the prediction 𝑦′ is to 𝑦 or, stated other-
wise, the error beingmadewhen 𝑦′ is used to predict 𝑦 (wewill often normalize
loss functions by the number of datapoints being considered; this gives scale
invariance in the size of data). Recall that for a generically given function 𝑔
with domain 𝒵, argmin𝑧∈𝒵 𝑔(𝑧) is the minimizer of 𝑔:

argmin𝑧∈𝒵 𝑔(𝑧) def= {𝑧 ∈ 𝒵 ∶ 𝑔(𝑧) ≤ 𝑔(𝑧′) for all 𝑧′ ∈ 𝒵} .
Setting up this problem correctly involves severalmathematical challenges.

For example, for a given problem at hand:• What is an appropriate loss function 𝜆(𝑥,𝑦)(𝜃) = ℓ𝑦(𝔪(𝑥; 𝜃)) to use?• What is an appropriate class of models𝔪(𝑥; 𝜃) to use?
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.5. Quick Overview of Supervised Learning 9

• How should we solve theminimization problem to obtain the optimal
value for the parameter 𝜃?• What if the dimension of the parameter space Θ and/or the number
of datapoints𝑀 are very large? What if the number of available data-
points𝑀 is not large enough?• How do we know whether our constructed model works well in new,
unseen data from the same or a somewhat different class of problems?

The choices that the user makes for the error function, for the model and
for the minimization algorithm to use can have a profound effect not only on
how well the model works on in-sample or out-of-sample data, but also on the
computational complexity of the resulting algorithm. In short, these choices
(choices that the user needs to make) are of paramount importance as they
impact the ability of themodel to produce accurate predictions. Oftentimes this
set of choices (or assumptions) that the algorithm uses to produce predictions
goes by the name inductive bias.

In this book, we attempt to provide insights to these questions through a
rigorous mathematical formulation. As a warm-up example let us briefly visit,
in the next two subsections, two classical settings: the regression problem and
the classification problem.

1.5.1. The regressionproblem. The choice of ℓ𝑦(𝑦′)depends upon the appli-
cation. For example, suppose that 𝒳 = ℝ𝑑 and 𝒴 = ℝ, and𝔪(𝑥; 𝜃) ∶ ℝ𝑑 → ℝ.
Then, a suitable choice for ℓ𝑦(𝑦′)would be the squared error (𝑦−𝑦′)2 and 𝜃 ∈ Θ
is the estimator from the familiar least-squares problem

(1.3) 𝜃 = argmin𝜃′∈Θ
1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪(𝑥𝑚; 𝜃′))2 .

Defining a loss function

(1.4) Λ(𝜃) = 1𝑀 𝑀∑𝑚=1 ℓ𝑦 (𝔪(𝑥𝑚; 𝜃)) ,
the problem (1.3) leads to the more general problem of calibrating a model by
minimizing a function. See Chapter 2 for a more comprehensive treatment of
linear regression.

A shallow neural network adds a nonlinearity and is defined as follows:

(1.5) 𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛),
where • 𝜎 (typically nonlinear) is called the activation function.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

10 1. Introduction

• 𝑁 is the number of hidden units.• 𝜃 = (𝑐𝑛, 𝑤𝑛, 𝑏𝑛)𝑛=1,. . .,𝑁 is the vector of parameters that need to be
estimated from data.

If 𝜎 is the identity map, this reduces to a linear model 𝔪(𝑥; 𝜃) = 𝑤 ⋅ 𝑥 + 𝑏.
We can again try to minimize (1.4), leading to parameter selection as in (1.3).
Typically, we use gradient descent to iteratively reduce (1.4); we consider the
recursion

(1.6) 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘),
where 𝜂 > 0 is called the learning rate. We run this algorithm until we are
convinced that we have converged.

Tracing through (1.4), differentiating Λwith respect to 𝜃 involves differen-
tiating 𝜃 ↦ (𝑦𝑚 − 𝔪(𝑥𝑚; 𝜃))2 for each 𝑚. In more complicated (i.e., deeper)
neural networks, each such computation may be computationally expensive
(Chapter 6). Stochastic gradient descent (Chapters 7, 8, and 18) provides a the-
oretically justified way to randomly break this into batches, each one of which
is more computationally viable.

1.5.2. The classification problem. Another common class of applications
are classification problems where 𝒴 is a categorical (i.e., discrete-valued) vari-
able. Suppose, for example, we are trying to decide if an image contains a car
or not. Let’s assign label 1 if the image contains a car, and label 0 if not, so that
our label space is 𝒴 = {0, 1}.

At a high level, we would like to calibrate a parametrized mapping from𝒳
to 𝒴. This is a bit problematic, however, now that the label space is discrete.
The iterative calibration procedure (1.6) depended on the parametrizedmodels
being differentiable in the modeling parameter; this is impossible if the label
space is discrete (a small change in the model can’t change the label by only a
small amount). For binary logistic regression, we instead take the label space to
be (0, 1), which we interpret as the probability of label 1. This is indeed better
as (0, 1) is a continuum. Informally, we would like to calibrate a parametrized
probability𝔪(𝑥; 𝜃) ∈ (0, 1) for the probability that the label is 1 if the feature
value is x; more formally, we want• 𝔪(𝑥; 𝜃) is the probability that the label is 1 if the feature is 𝑥.• 1 −𝔪(𝑥; 𝜃) is the probability that the label is 0 if the feature is 𝑥.

Classical detection theory [MV19] then suggestsmodel calibration bymax-
imum likelihood; what is the parameter which gives observed data the highest
probability? Namely, given ground-truth data {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1 of a collection of

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.5. Quick Overview of Supervised Learning 11

points in 𝒳 × 𝒴 = ℝ × {0, 1}, let’s try to find
(1.7) argmax𝜃∈Θ 𝑀∏𝑚=1𝔪𝑦𝑚(𝑥𝑚; 𝜃)(1 − 𝔪(𝑥𝑚; 𝜃))1−𝑦𝑚 .

This formula uses the convenience that

𝔪𝑦(𝑥; 𝜃) (1 − 𝔪(𝑥; 𝜃))1−𝑦 = {𝔪(𝑥; 𝜃) if 𝑦 = 11 −𝔪(𝑥; 𝜃) if 𝑦 = 0;
i.e., the left-hand side is the modeled probability that the label is 𝑦 if the fea-
ture is 𝑥. In (1.7) we are then maximizing the probability that the sequence of
labels is (𝑦1, 𝑦2⋯𝑦𝑀) if the sequence of features is (𝑥1, 𝑥2⋯𝑥𝑀) (implicit here
is also an assumption that, conditioned on the feature sequence, the labels are
independent).

With a few transformations we can rewrite (1.7) to look like the structure
of Subsection 1.5.1. We can take logarithms (which preserve ordering) to get
an additive structure like (1.4); (1.7) is equivalent to

argmax𝜃∈Θ 𝑀∑𝑚=1 {𝑦𝑚 ln𝔪(𝑥𝑚; 𝜃) + (1 − 𝑦𝑚) ln(1 − 𝔪(𝑥𝑚; 𝜃))} .
We can switch also signs and normalize to get a minimization problem,

(1.8) argmin𝜃∈Θ
1𝑀 𝑀∑𝑚=1 {−𝑦𝑚 ln𝔪(𝑥𝑚; 𝜃) − (1 − 𝑦𝑚) ln(1 − 𝔪(𝑥𝑚; 𝜃)} .

Writing

(1.9) ℓ𝑦(𝑦′) def= −𝑦 ln 𝑦′ − (1 − 𝑦) ln(1 − 𝑦′),
we can now rewrite (1.8) in terms of the loss function (negative log-likelihood)

Λ(𝜃) def= 1𝑀 𝑀∑𝑚=1 ℓ𝑦(𝔪(𝑥; 𝜃)),
which is the same structure as (1.4). The error function (1.9) is in fact the
binary cross entropy and more generally reflects a way to compare probability
measures.

In standard logistic regression, the model𝔪(𝑥; 𝜃) is given as a composition
of a linear map and a logistic function; see Chapter 3.

As a final step, once we have found an optimal parameter value 𝜃∗, we can
decide upon a label in 𝒴 by voting; our final map from 𝒳 to 𝒴 is• Decide label 1 if𝔪(𝑥; 𝜃∗) > 1 −𝔪(𝑥; 𝜃∗). Equivalently, decide label 1

if𝔪(𝑥; 𝜃∗) > 1/2.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12 1. Introduction

• Decide label 0 if𝔪(𝑥; 𝜃∗) ≤ 1 −𝔪(𝑥; 𝜃∗). Equivalently, decide label 0
if𝔪(𝑥; 𝜃∗) ≤ 1/2.

In the example we just discussed, there were only two possible labels: an
image could contain a car or not contain a car. One can easily imagine asking
the same kind of question for a multiclass prediction problem. For instance,
suppose one is trying to classify whether an image contains a car, an airplane,
or neither; in this case we have three labels. We will study such questions in
Section 3.7 through the lens of logistic regression. Then, in Chapters 7 and 8
we will study the problem for multiclass prediction problems when the model𝔪(𝑥; 𝜃) is a softmax function of a neural network.

We remark here that in deep learning, in either the problem of regression
or classification that we just described, twomain issues would always come up:
overfitting and generalization. We briefly introduce these notions in Subsec-
tions 1.5.3 and 1.5.4, respectively.

1.5.3. Overfitting. Overfitting occurs when a model is trained to closely
match an observed dataset yet is inaccurate on new datapoints not in the train-
ing dataset. This is the result of a model with many more degrees of freedom 𝑑
than the number of data samples𝑀 in the dataset.

In the regime where 𝑑 ≫ 𝑀, there are typically many different models
which exactly fit the data samples. Thesemodels can vary considerably on new
datapoints. For example, consider the model 𝔪(𝑥; 𝜃) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where𝜃 = (𝑎, 𝑏, 𝑐) and a dataset that is composed of a single datapoint (𝑥0, 𝑦0). Then,
there are an infinite number of models𝔪(𝑥; 𝜃) which exactly fit the datapoint(𝑥0, 𝑦0), i.e., choose 𝑐 = 𝑦0, 𝑏 = −𝑎𝑥0, and let 𝑎 be any real number. The vast
majority of these models will be inaccurate on new datapoints.

Complex models with large numbers of parameters, such as neural net-
works, are particularly susceptible to overfitting. The best way to reduce over-
fitting is to have a larger dataset, which will help fully resolve the degrees of
freedom of the model. The deep learning field has also developed a number
of techniques to control and reduce overfitting (dropout, data normalization,
penalties, etc.), which will be discussed in later chapters; e.g., Chapters 9 and
10.

1.5.4. Generalization. Nature gives us data 𝒳 and targets 𝒴, 𝒳 ↦ 𝒴. How-
ever, nature does not necessarily tell us that a specific 𝑥 ∈ 𝒳 corresponds to a
specific prediction 𝑦 ∈ 𝒴.

Let’s say that ℙ is the probability distribution over our dataset𝒟. Assume
that the training set is𝒟train = {(𝑥𝑖, 𝑦𝑖) ∼ ℙ}𝑘𝑖=1. The goal of machine learning
is to learn predictors that workwell outside the training set𝒟train. The training

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.6. Bias-Variance Tradeoff and Double Descent 13

set 𝒟train is only a source of information that nature gives us to find such a
predictor.

Assume 𝒟test = {(𝑥𝑖, 𝑦𝑖) ∼ ℙ}𝑚𝑖=1 is a new collection of datapoints coming
from the same distribution ℙ. Our model has not been constructed knowing𝒟test but needs to performwell on𝒟test. To accomplish this, we need to search
within a class of functions that is neither too big nor too small and that fits well
both training and test data.

The error that our model makes on the training set𝒟train is called training
error, whereas the error that it makes on the 𝒟test set is called test error. We
train the models on 𝒟train, but we want them to generalize well, i.e., to work
well on 𝒟test. We discuss aspects of train error versus test error, that are of
particular relevance to deep learning, in Section 1.6, and in further depth in
Chapter 11.

1.6. Bias-Variance Tradeoff and Double Descent

Now that we have seen a bit, at a high-level, of the supervised learning para-
digm, let us discuss the issues of under-parametrization, over-parametrization,
and generalization for both classical statistics and deep learning.

Consider a feature-label dataset 𝒟 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1, and suppose we fit a
parametric model𝔪(⋅; 𝜃) to the data. We would of course like the best𝔪(⋅; 𝜃∗)
to both capture the feature-label structure of the training data, and also gener-
alize well to unseen data. Let’s understand bias-variance tradeoffs in trying to
do so.

Assume that the data𝒟 comes from sampling an underlying distributionℙ
on feature-label random variables (𝑋, 𝑌), with associated expectation operator𝔼. In the standard regression setting, we choose the parameter by minimizing
the average square error between the true label and the predicted label; in terms
of ℙ, this means we want to minimize
(1.10) 𝔼 [(𝑌 −𝔪(𝑋; 𝜃))2] .

Theoretically, the conditional expectation 𝔪opt(𝑋) def= 𝔼[𝑌|𝑋] is the true
minimum mean square error estimator of the label random variable given the
feature random variable, the minimum being taken over all measurable maps
from feature to label space. Our search over parametrized maps is thus an at-
tempt to approximate the conditional expectation; generically, our parametric
models {𝔪(⋅; 𝜃)}𝜃∈Θ are a proper subset of the collection of all suchmeasurable
maps.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14 1. Introduction

Let 𝜃∗ be the parameter vector which minimizes (1.10), we can compare𝔪(𝑥; 𝜃∗) to𝔪opt(𝑥) = 𝔼[𝑌|𝑋 = 𝑥] by writing
𝔼 [(𝑌 −𝔪(𝑋; 𝜃∗))2] = 𝔼 [{(𝑌 −𝔪opt(𝑋)) + (𝔪opt(𝑋) − 𝔪(𝑋; 𝜃∗))}2]= 𝔼 [(𝑌 −𝔪opt(𝑋))2] + 𝔼 [(𝔪opt(𝑋) − 𝔪(𝑋; 𝜃∗))2]+ 2𝔼 [(𝑌 −𝔪opt(𝑋)) (𝔪opt(𝑋) − 𝔪(𝑋; 𝜃∗))]= 𝔼 [(𝑌 −𝔪opt(𝑋))2]⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

Bayes error

+𝔼 [(𝔪opt(𝑋) − 𝔪(𝑋; 𝜃∗))2]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
bias2+variance

.
The cross term disappears due to the projection property [Bil95] of condi-

tional expectation, 𝔼 [{𝑌 − 𝔼[𝑌|𝑋]} 𝐺(𝑋)] = 0
for all boundedmeasurable functions𝐺; see [Bil95]. The first term is the Bayes
error, which tells us how far 𝔼[𝑌|𝑋] is from the true label (sometimes referred
to as the Nature’s model). However, it is important to note that the true model
is not𝔪opt(𝑥).

Let us now investigate the second term. The second term represents bias
and variance, which tells us how far the best parametrized model is from the
true minimum mean square error model. It is important to realize that the
model 𝔪(⋅; 𝜃∗) has been constructed using a training dataset 𝒟. This means
that the model 𝔪(⋅; 𝜃∗) depends on the randomness of the dataset 𝒟, which
contains points (𝑥, 𝑦) sampled from the true distribution ℙ.

At this point, we recall the definition of 𝐸𝒟 denoting the expectation oper-
ator with respect to the dataset𝒟. For a given point 𝑥 in the feature space, we
add and subtract 𝐸𝒟𝔪(𝑥; 𝜃∗) within the expectation of the second term, and
we get

(𝔪opt(𝑥) − 𝔪(𝑥; 𝜃∗))2 = (𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗) + 𝐸𝒟𝔪(𝑥; 𝜃∗) − 𝔪(𝑥; 𝜃∗))2= (𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗))2 + (𝔪(𝑥; 𝜃∗) − 𝐸𝒟𝔪(𝑥; 𝜃∗))2− 2 (𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗)) (𝔪(𝑥; 𝜃∗) − 𝐸𝒟𝔪(𝑥; 𝜃∗)) .
Taking now the expectation over𝒟, the cross term will vanish, i.e.,

𝐸𝒟 [(𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗)) (𝔪(𝑥; 𝜃∗) − 𝐸𝒟𝔪(𝑥; 𝜃∗))]= (𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗)) 𝐸𝒟 [(𝔪(𝑥; 𝜃∗) − 𝐸𝒟𝔪(𝑥; 𝜃∗))]= 0,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.6. Bias-Variance Tradeoff and Double Descent 15

which then gives

𝐸𝒟 (𝔪opt(𝑥) − 𝔪(𝑥; 𝜃∗))2 = (𝔪opt(𝑥) − 𝐸𝒟𝔪(𝑥; 𝜃∗))2⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
bias2+ 𝐸𝒟 (𝔪(𝑥; 𝜃∗) − 𝐸𝒟𝔪(𝑥; 𝜃∗))2⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

variance

.
In the expression above, the first term, i.e., the square of the bias, measures

the difference of the optimal model𝔪opt(⋅) and our constructed model𝔪(⋅; 𝜃∗)
across different experiments each one with a potentially different dataset 𝒟.
The second term (the variance) measures the sensitivity of our constructed
model𝔪(⋅; 𝜃∗) with respect to the dataset𝒟.

Hence, all in all, we can write

(1.11) 𝔼 [(𝑌 −𝔪(𝑋))2] = Bayes error + 𝔼 [bias2 + variance] .
The formula (1.11) we derived is very insightful. In practice, we minimize

the empirical loss function, creating a model using the available data𝒟. Even
though not much can be done about the Bayes error component, the bias and
variance components indicate that:• If the dataset is too small and the model 𝔪(𝑥; 𝜃) is not trained on a

sufficient number of datapoints, and then the model will have a large
variance.• If the model 𝔪(𝑥; 𝜃) is large or complex (e.g., many parameters)
and training is done correctly, then the distance between the optimal
model and the fitted model (on the dataset the model is calibrated to)
will be small. In other words, largemodels typically lead to small bias.• If themodel is large (complex), then one typically needs a large dataset
to properly calibrate themodel. So, if one does not have a large enough
dataset but has a large (complex) model, then this leads to small bias
and large variance.

We can visualize this relationship with the graph in Figure 1.1.
Figure 1.1 shows the famous U-shaped curve for the squared-bias and vari-

ance terms. It shows that for a given dataset one should choose a model that
minimizes both the squared-bias and the variance. We will revisit this topic in
Chapter 11, where a proper decomposition of the dataset can be employed to
to help address these issues.

However, in (very) deep learning Figure 1.1 does not always describe the
full picture. As a matter of fact, it has been observed empirically in many in-
stances that the loss keeps decreasing even as we fit larger and larger models
in the same dataset. The typical picture is the so-called double-descent curve

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16 1. Introduction

Figure 1.1. Bias-variance tradeoff.

Figure 1.2. Double-descent curve in deep learning and the contrast to clas-
sical statistical wisdom.

of Figure 1.2. The papers [HZRS16,BHMM19,NKB+20] contain ample em-
pirical evidence of this phenomenon.

Figure 1.2 shows that after a certain threshold of model complexity,
the loss function associated to deep neural networks keeps decreasing even
if the dataset is not getting larger as the model gets larger. As discussed in
[BHMM19], the transition from the classical regime to the modern deep neu-
ral network regime occurs when the model is large enough that it perfectly fits

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.8. Organization of this Book 17

the training data. In conclusion, it is observed empirically that very large mod-
els trained with stochastic gradient descent lead to good generalization proper-
ties. As we shall see in Chapters 19 and 20, properly defined architectures also
have an impact on generalization performance.

In the chapters that follow, we define, link, and understand the questions
of approximation, optimization, training, and performance for different prob-
lems and for different neural network architectures. Section 1.8 presents the
organization of the book.

1.7. Some Existing Related Books

This book aims to present deep learning from a mathematical lens, unifying
the presentation of a number of concepts and ideas. We tried to do so always
having in mind that deep learning is a tool in data analysis. The hope is that
this book helps open a door through which the mathematical, broader scien-
tific community, and practitioners can enter to better explore connections and
advance our understanding and the state of the art in this increasingly impor-
tant collection of computational tools and ideas.

There aremany excellent books that have beenwritten on the general topic
of machine and statistical learning and a few that are more specialized for
deep learning. Some of the existing books are more introductory than others,
while others are more advanced mathematically. The books [Bis06,HTF10,
Mur22,Bac24] cover various aspects ofmachine and statistical learning, while
[GBC16,Cal20,Pri23,BB24] focus more on deep learning.

1.8. Organization of this Book

The big-picture idea of presenting deep learning that we have implemented in
this book can be summarized in Figure 1.3.

Some of the elements of Figure 1.3 (evenwithin each of its blocks) aremore
introductory whereas others are more advanced (either mathematically, com-
putationally or conceptually). Therefore, we have organized this book in two
parts. In Part 1 our goal is to introduce the different aspects of deep learning
using an appropriate mathematical language. This part of the book should be
accessible to an advanced mathematics, statistics, computer science, data sci-
ence, or engineering undergraduate student. As we mentioned in the Preface,
Part 1 together with select topics fromPart 2 could serve as standalone teaching
material for a course on a mathematical introduction to deep learning. Part 1
covers most of the aspects of Figure 1.3 with the exception of the optimization
in the feature learning regime and some of the selected topics that requiremore
advanced tools (both of which are covered in Part 2).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18 1. Introduction

Figure 1.3. Conceptual organization of the book.

In Part 2 we go over deeper mathematical results regarding deep learn-
ing where we present the universal approximation theory, as well as conver-
gence proofs for gradient descent, stochastic gradient descent, and different
deep learning algorithms. In Part 2 we also discuss more involved computa-
tional aspects of deep learning including distributed training, message passing
interface (MPI) and automatic differentiation. Part 2 should be accessible to
graduate students and researchers aiming to go deeper into certain topics of
deep learning, and it covers aspects of Figure 1.3 that were not covered in Part
1.

Certain chapters in Part 2 will require some prior exposure to analysis,
probability theory, and stochastic processes. Some chapters of Part 2 are not
necessarily more advanced mathematically than those in Part 1, but they are

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.8. Organization of this Book 19

included in Part 2 because the topics are more advanced conceptually or com-
putationally.

For the reader’s easy reference we have added Appendixes A and B, where
we have collected themainmathematical background in probability, stochastic
processes, and analysis that is used in various parts of the book.

The idea of combining in one book both Part 1 and Part 2 is to give a more
complete discussion of the topic and to offer to the reader, who wants to go
deeper in certain topics, the ability to do so by jumping into Part 2. Alterna-
tively, a reader may choose to go over the basic chapters of Part 1 and then
selectively read other chapters. Our hope is that the combination of Parts 1
and 2 gives a good overview of the flow diagram 1.3. Figure 1.4 summarizes
the prerequisites for each chapter and provides a useful guide for reading the
book.

1.8.1. Part 1: Mathematical introduction to deep learning. We start in
Chapters 2 and 3 with linear and logistic regression, respectively. These are
classical statistical topics that one can find in many textbooks. However, here
we introduce them in a way that is suitable for and motivates deep learning.
Training of deep neural networks heavily relies on notions that are present in
the simpler-to-present cases of linear and logistic regression. In Chapter 4 we
motivate neural networks through the perceptron (one of the earliest neural
network models) and its relation to kernels (another classical machine learn-
ing topic). The perceptron model also allows us to introduce the concept of
gradient descent in an intuitive way. Then, Chapter 5 presents feed forward
neural networks, probably the simplest form of a neural network. We define
feed forward neural networks and connect them to truth tables. The fact that
feed forward neural networks are universal approximators is discussed in some
detail in Chapter 16 of Part 2 of the book.

The backbone of training of neural networks is backpropagation, which is
explained next in Chapter 6. Essentially backpropagation is a smart way to ap-
ply chain rule and thus allows us to efficiently differentiate the loss function of
complicated models and perform (stochastic) gradient descent. Stochastic gra-
dient descent in turn is presented in Chapter 7 (for shallow neural networks)
and in Chapter 8 (for deep neural networks). We also present some examples
of Python code and discuss GPUs versus CPUs to aid the reader with coding
aspects. We do emphasize however that the focus of the book is on the math-
ematical foundations of deep learning and not so much on its computational
aspects, but as discussed in the Preface, accompanying code can be found in
https://mathdl.github.io/. The well-known issue of vanishing gradient is also
discussed.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathdl.github.io/

20 1. Introduction

Then, we move on to discussing regularization techniques that are widely
used in deep learning in order to accelerate training and reduce overfitting. In
particular, in Chapter 9 we discuss adding penalty terms to the loss function
which is a well-developed method in statistics; see also classical texts in statis-
tical learning such as [HTF10]. In Chapter 9 we also discuss dropout in some
detail, which is a regularization method that is unique in deep learning and
is very popular in practical applications. Another popular technique is batch
normalization and is discussed in Chapter 10. The process of training, valida-
tion, and testing that is present in any application of deep learning is discussed
in Chapter 11 while feature importance, a central topic in deep learning, is dis-
cussed in Chapter 12.

Next, we present three very popular deep learning models. In Chapter 13
we discuss recurrent neural networks that are designed to model time series
and dependent data. In addition, we present and formulate mathematically
the attention mechanism and the transformer architecture that are also used
to model dependent data. We compare the attention mechanism to recurrent
neural networks. In Chapter 14 we discuss convolution neural networks that
have found great success in modeling imaging data.

In Chapter 15 we discuss variational inference and generative models. The
goal here is to learn appropriate distributions so that we can generate data from
them in order tomatch some empirical distribution. We achieve this via appro-
priately formulating a minimization problem with respect to an appropriate
metric in the space of probability distributions. Variational inference is based
on maximizing an appropriate lower bound stemming from a proper manip-
ulation of the Kullback-Leibler divergence, called the evidence lower bound.
Generative adversarial networks (GANs) are also discussed where we moti-
vate them by revisiting the basic logistic classification problem leading to the
discriminator-generator framework. Optimization in GANs and the Wasser-
stein GAN are also discussed.

Part 1 has few rigorous proofs; the goal is to help the reader understand
what the major deep neural networks are and how to work with them. All
chapters of Part 1 conclude with a “Brief Concluding Remarks” section sum-
marizing what was covered in the specific chapter, what follows next, and of-
tentimes giving pointers to the literature for the interested reader.

1.8.2. Part 2: Advanced topics andconvergence results indeep learning.
In Part 2 of the book we dive into more advanced topics and theoretical aspects
of deep learning. In Chapter 16 we present the main universal approximation
theory going back to classical results from the 1980s, but we also present very
recent theory developed for neural networks with 𝖱𝖾𝖫𝖴 nonlinearities. This
part uses, to some extent, functional analytic notions and theorems that are
reviewed in Appendix A.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.8. Organization of this Book 21

In Chapter 17 we study gradient descent from a more theoretical perspec-
tive, reviewing convergence results and associated choices of learning rate
schedules under both convexity and nonconvexity assumptions. We also dis-
cuss accelerated gradient descent methods, including second-order methods.
Then, in Chapter 18 we turn our attention to theoretical properties of stochas-
tic gradient descent. We study convergence rates and convergence properties
of stochastic gradient descent under both convexity and nonconvexity assump-
tions, and we compare gradient descent with stochastic gradient descent. We
also discuss accelerated methods as well as more advanced stochastic gradient
descent methods (like RMSProp, ADAM, AdaMax) and their convergence prop-
erties.

In Chapters 19 and 20 we turn our attention to the asymptotic behavior of
neural networks when trained with stochastic gradient descent. The question
wewant to answer is: will the algorithm recover the ground truth after training
neural networks with stochastic gradient descent?

We answer this question via an investigation of the limit behavior of the
neural network as the number of units per hidden layer and training steps
grows to infinity. In order to obtain meaningful limiting behavior, we need
to appropriately scale the neural network. The neural network limit training
dynamics can then be analyzed to establish guarantees of convergence to the
ground truth. An important practical byproduct of the mathematical analysis
is that it offers insights into how to choose the learning rate hyperparameter.
In particular, the learning rate hyperparameter needs to be chosen in specific
ways with respect to the scalings in order for convergence to the ground truth
to be possible. We discuss two of the main scalings: the neural tangent kernel
(sometimes called the linear regime) in Chapter 19, and the mean field scal-
ing (sometimes called the nonlinear regime) in Chapter 20. In Chapter 20 we
also compare these different scalings and we comment on generalization per-
formance.

In Chapter 21 we discuss reinforcement learning. Reinforcement learning
could be a book by itself (probably multiple books), and there are many excel-
lent textbooks on the topic. Our goal is to motivate deep reinforcement learn-
ing through a mathematical approach. We also present convergence results
for neural Q-learning, which is reinforcement learning with neural network
approximators.

In Chapter 22 we discuss neural ordinary differential equations (neural
ODEs) and neural stochastic differential equations (neural SDEs). In partic-
ular, we model ODEs and SDEs using neural networks and then the goal is
to learn the parameters of the neural network so that the resulting solution
matches some predetermined profile in an appropriate metric (e.g., mean

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22 1. Introduction

square sense). We show how adjoint equations can be used to efficiently opti-
mize neural ODEs.

In Chapter 23 we discuss computational problems that arise in training of
potentially very large deep learning models on potentially very large datasets.
Due to the large model size and large amount of memory-per-data-sample, it
may be challenging to evaluate and calculate the backpropagation step for a
largeminibatch on a GPU. Computational problems quickly arise due to issues
including limited memory, parallelization problems, and more. Distributing
training over multiple GPUs becomes advantageous. We discuss the topics of
synchronous versus asynchronous gradient descent, parallel efficiency, and as-
pects of MPI communication. Illustrative computational examples in PyTorch
MPI and PythonMPI are presented.

In Chapter 24 we discuss automatic differentiation. In deep learning, we
design and evaluate different model architectures that typically have a large
number of hyperparameters. Deep learning would have faced a large obstacle
if one had to derive from scratch the chain rule for implementing the backprop-
agation algorithm for each new model. Automatic differentiation addresses
this challenge by automatically calculating the chain rule (and gradients with
respect to the model parameters), facilitating model development and evalua-
tion.

The chapters of Part 2 concludewith a “Brief Concluding Remarks” section
summarizing what was covered in the specific chapter and giving pointers to
the literature for the interested reader.

1.8.3. Appendixes. Appendix A has some background material on probabil-
ity, stochastic processes and stochastic analysis. Appendix B has some back-
ground on basic inequalities used throughout the book and real and functional
analysis. Notions that are discussed in these appendixes appear throughout the
book and are particularly useful in Part 2 of the book.

1.8.4. Flow diagram of the book. Figure 1.4 shows a flow diagram of how
the book is organized. Arrows demonstrate the background material needed
to proceed to the next indicated chapter.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

1.8. Organization of this Book 23

Figure 1.4. Chapter flow diagram of the book. Yellow color refers to chap-
ters in Part 1, whereas light blue color refers to chapters in Part 2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Part 1

Mathematical
Introduction
to Deep Learning

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 2

Linear Regression

2.1. Introduction

Don’t skip this chapter! We begin our journey with the obligatory sojourn in
linear regression. This is a classical topic in statistics. Our goal is to set up a
framework and notation in a familiar setting; we want to test some new ideas
with an old friend.

Let’s start with some sample ground-truth data (see the github repository),
the first lines of which are in Table 2.1. The ground-truth data is a collection
of (feature, label) pairs. Both feature and label are ℝ-values; i.e., they are both
numerical.

Let’s try to predict the label based on the feature. A scatter plot of this data
is in Figure 2.1, and its data sort of clusters around a line. For (𝑤, 𝑏) ∈ ℝ × ℝ,
define a linearmodel

(2.1) 𝔪(𝑥; 𝜃) def= 𝑤𝑥 + 𝑏 𝑥 ∈ ℝ,
Table 2.1. Sample data

x y
5.8 19.0
1.5 3.5
2.7 10.4
9.4 19.2
6.5 6.6

27

10.1090/gsm/252/02

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

28 2. Linear Regression

Figure 2.1. Scatter plot of ground-truth data for linear regression

where

(2.2) 𝜃 def= (𝑤𝑏)
are the parameters of the model. We want to find the best parameter value 𝜃∗
in the parameter space Θ def= ℝ2 such that the graph of 𝑥 ↦ 𝔪(𝑥; 𝜃∗) in some
sense optimally passes through the ground-truth data. Namely, our predictor
will be the map 𝑥 ↦ 𝔪(𝑥; 𝜃∗).

We have already introduced several important notions.• The features lie in some Euclidean space ℝ𝐹 (here 𝐹 = 1).• The labels lie in some Euclidean space ℝ𝐿 (here 𝐿 = 1).• The parameters take value in some Euclidean space Θ (hereΘ = ℝ2).• We have selected a parametrized model 𝔪(𝑥; 𝜃) to predict the label
based on the features.

This structure will underlie all of our efforts.
Wewant to learn (i.e., calibrate) ourmodel to the ground-truth data of Table

3.1. so that the graph of𝔪(𝑥; 𝜃) in some optimal way passes through a scatter
plot of the ground-truth data. In Figure 2.2, we see two such possible graphs
of𝔪(𝑥; 𝜃). As we shall see later on in Figures 2.3 and 2.4, one can find a better
curve when the choice of the best is done in a principled way.

The ground-truth data consists of a collection of points in feature × label
space. Some of these may be repeated (for example, two different houses with
the same square footage may also have the same price), so our ground-truth
data should actually be a multiset 𝒟 of points in feature × label space. Recall

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2.2. Loss Function 29

Figure 2.2. Variation of linear regression parameters

that a multiset consists of a collection of possibly repeated points (i.e., mul-
tiplicity larger than 1). The cardinality |𝐴| of a multiset 𝐴 is the number of
elements, with multiplicity included. In other words, if 𝐴 def= {1, 1, 2, 4, 5, 5, 5},
then |𝐴| = 7. Directly thinking of multisets in feature-label space (as opposed
to indexing by an enumeration) will allow us to retain notational access to fea-
tures and labels. We believe that this will help with notational transparency
when we consider stochastic gradient descent (Chapters 7 and 8) and train-
ing, validation, and testing (Chapter 11). We are also wary of having too many
enumeration indices (gradient descent, dropout, epochs, and recurrent neural
networks will all require their own indices).

2.2. Loss Function

We need to define the notion of best which we will use to define the optimal 𝜃
of (2.2). Let’s first of all define an error function

(2.3) ℓ𝑦(𝑦′) def= (𝑦 − 𝑦′)2
for 𝑦 and 𝑦′ in ℝ𝐿, and then define a per-datapoint loss function
(2.4) 𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦 (𝔪(𝑥; 𝜃))
for (𝑥, 𝑦) ∈ 𝒟 and 𝜃 ∈ ℝ𝑃 , and then define an average loss
(2.5) Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

30 2. Linear Regression

Figure 2.3. Contour plot of loss Λ for linear regression

for 𝜃 ∈ ℝ𝑃 . Our best parameter vector 𝜃∗ is given by𝜃∗ = argmin {Λ(𝜃) ∶ 𝜃 ∈ ℝ𝑃} .
A few thoughts have guided our choice of notation:• The per-datapoint loss of (2.4) separates the model from the error

function; the same notation can be easily adapted to more compli-
cated feed forward neural networks.• The per-datapoint vs. average loss separates the effect of parameter
variation from the effect of averaging; this notation can be easily adap-
ted to stochastic gradient descent algorithms.

We have converted our search for a best line running through the points
of𝒟 to a problem of minimizing a function on the parameter space ℝ𝑃 . Since𝑃 = 2, we can construct a contour plot of Λ; see Figure 2.3. Computationally,
it looks likeΛ has a minimum (which we will more rigorously understand in a
moment), and theminimizer looks like a good choice of the slope and intercept
for a line passing through the data; see Figure 2.4.

2.3. Minimization

Our interest in linear regression is in setting up some generalizable ideas; let’s
see howwemight carry out gradient descent onΛ (conveniently forgetting that
the explicit solution of linear regression is well known). In Section 18.4.3 we
will revisit the topic of (stochastic) gradient descent applied to linear regres-
sion. Gradient descent seeks tominimize a function bymoving in the direction
of largest descent, i.e., the negative gradient. Namely, we want to construct a
sequence (𝜃𝑘)∞𝑘=1 given by
(2.6) 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘),
where 𝜂 > 0 is a learning rate.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2.3. Minimization 31

Figure 2.4. Best line through data

Explicitly, ∇Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟∇𝜆(𝑥,𝑦)(𝜃)
and, by the chain rule,

(2.7)
∇𝜆(𝑥,𝑦)(𝜃) = ℓ′𝑦(𝔪(𝑥; 𝜃)) (𝜕𝔪/𝜕𝑤(𝑥; 𝜃)𝜕𝔪/𝜕𝑏(𝑥; 𝜃))

= −2 (𝑦 −𝔪(𝑥; 𝜃)) (𝑥1) .
This allows us to explicitly write∇𝜆(𝑥,𝑦) as the sensitivity of the error func-

tion with respect to changes in the prediction model and in the sensitivity of
the model with respect to the parameters.

Collecting things together, we have

(2.8)

∇Λ(𝜃) = −2 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ((𝑦 − 𝔪(𝑥; 𝜃)) 𝑥𝑦 −𝔪(𝑥; 𝜃))
= −2 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ((𝑦 − 𝑤𝑥 − 𝑏) 𝑥𝑦 − 𝑤𝑥 − 𝑏)
= −2 (𝑥𝑦 − 𝑤𝑥2 − 𝑏𝑥𝑦 − 𝑤𝑥 − 𝑏)
= 2𝐴(𝑤𝑏) − 2 (𝑥𝑦𝑦) ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

32 2. Linear Regression

where in turn 𝐴 def= (𝑥2 𝑥𝑥 1) ,
𝑥 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑥,𝑦 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑦,𝑥2 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑥2,𝑥𝑦 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑥𝑦,𝑦2 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑦2.

Of course with an explicit (linear) formula for the ∇Λ, the first-order con-
ditions of optimality should help us explicitly find the minimizer. Explicit for-
mulas are the exception rather than the rule, so we relegate these standard
calculations to Section 2.6.

Gradient descent of (2.6) is thus (explicitly)

(𝑤𝑘+1𝑏𝑘+1) = (𝑤𝑘𝑏𝑘) − 2𝜂𝐴 (𝑤𝑘𝑏𝑘) + 2𝜂 (𝑥𝑦𝑦) .
Subtracting,

(2.9)
(𝑤𝑘+1 − 𝑤𝑘𝑏𝑘+1 − 𝑏𝑘) = (𝑤𝑘 − 𝑤𝑘−1𝑏𝑘 − 𝑏𝑘−1) − 2𝜂𝐴 (𝑤𝑘 − 𝑤𝑘−1𝑏𝑘 − 𝑏𝑘−1)= {𝐼2 − 2𝜂𝐴} (𝑤𝑘 − 𝑤𝑘−1𝑏𝑘 − 𝑏𝑘−1) ,

where 𝐼2 def= (1 00 1) .
Let’s understand the eigenvalues of 𝐴. The characteristic equation of 𝐴 is

then 0 = det (𝜆 − 𝑥2 −𝑥−𝑥 𝜆 − 1) = 𝜆2 − (𝑥2 + 1) 𝜆 + 𝑥2 − 𝑥2,
the two solutions of which are

𝜆± = 12 {(𝑥2 + 1) ±√(𝑥2 + 1)2 − 4 (𝑥2 − 𝑥2)} .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2.3. Minimization 33

Since

(2.10)
(𝑥2 + 1)2 − 4 (𝑥2 − 𝑥2) = (𝑥2 + 1)2 − 4𝑥2 + 4𝑥2

= (𝑥2 − 1)2 + 4𝑥2,
which is positive, the eigenvalues of 𝐴 are real (which of course also follows
from the fact that𝐴 is symmetric). By the Cauchy-Schwarz inequality, 𝑥2 ≤ 𝑥2,
so we can continue (2.10) as

(𝑥2 + 1)2 − 4 (𝑥2 − 𝑥2) ≤ (𝑥2 − 1)2 + 4𝑥2 = (𝑥2 + 1)2
implying that

(2.11) 0 ≤ 𝜆− ≤ 𝜆+ ≤ 𝑥2 + 1.
The left inequality implies that 𝐴 is nonnegative definite. Alternately, for

any (𝛼1, 𝛼2) ∈ ℝ2,
(𝛼1 𝛼2) 𝐴 (𝛼1𝛼2) = 𝛼21𝑥2 + 2𝛼1𝛼1𝑥 + 𝛼22

= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 {𝛼21𝑥2 + 2𝛼1𝛼2𝑥 + 𝛼22}
= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛼1𝑥 + 𝛼2)2 ≥ 0.

The eigenvalues of 𝐼2 − 2𝜂𝐴 are then 1 − 2𝜂𝜆+ and 1 − 2𝜂𝜆−. The system
(2.9) converges if it is a contraction, which occurs if|1 − 2𝜂𝜆±| < 1,
i.e., if −1 < 1 − 2𝜂𝜆± < 1,
i.e., if 𝜂 < min { 1𝜆+ , 1𝜆− } = 1𝜆+ .

Conversely, if 𝜂 > 1𝜆+ , the loss will diverge under gradient descent for a
generic initial condition. See Figures 2.6 and 2.5.

Following from (2.11), we are assured stability if

𝜂 < 1𝑥2 + 1.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

34 2. Linear Regression

Figure 2.5. Converging gradient descent: 𝜃𝑘+1 = 𝜃𝑘 − 0.119∇Λ(𝜃𝑘), where𝜂critical = 0.140; trajectory of gradient descent (left) and loss values (right).

Figure 2.6. Nonconverging gradient descent: 𝜃𝑘+1 = 𝜃𝑘 − 0.161∇Λ(𝜃𝑘),
where 𝜂critical = 0.140; trajectory of gradient descent (left) and loss values
(right).

Figure 2.7. Iterations of gradient descent in loss landscape

2.4. Metric

The loss function Λ serves as an objective function to minimize and quantify
best, but it may in fact be a mathematically convenient substitute for ametric,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2.5. Computational Realization 35

which we use to report the performance of our machine learning, and which
may make more sense to stakeholders. If, for example, the labels are prices
(and thus nonnegative), we might in fact be interested in the relative error of
the prediction

𝜇(𝔪(⋅; 𝜃∗)) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟
|𝑦 − 𝔪(𝑥; 𝜃∗)|𝑦 .

In this case, loss = 18.66 and metric = 0.52.
The absolute value function fails to be differentiable (at 0). Classification

algorithms (see Chapter 3) in particular have a wealth of metrics reflecting rel-
ative combinations of different types of errors.

2.5. Computational Realization

Ifwe look at how PyTorch implements linear regression, wewill find that things
are transposed. Suppose we have the matrix 𝐴 ∈ ℝ1×2

𝐴 def= (3 2) ,
and we want to use this as a linear map from ℝ2 (feature space) to ℝ (label
space) via 𝐴(𝑥1𝑥2) = 3𝑥1 + 2𝑥2,
andwewant to apply it to a collection ofℝ2 input (feature) vectorswhichwould
be computationally listed as

(2.12) [[3, 4], [−1, 0], [4, 2]].
Mathematically, we want to compute

(3 2) (34) = 9 + 8 = 17,
(3 2) (−10) = −3 + 0 = −3,
(3 2) (42) = 12 + 4 = 16.

The standard mathematical way to do this would be to horizontally stack
all of these computations together as

(2.13) (3 2) [3 −1 44 0 2] = [17 −3 16] .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

36 2. Linear Regression

However, we usually think of the input (2.12) as

[3 4−1 04 2] .
Transposing (2.13), we have the vertically stacked calculation

(2.14) [3 4−1 04 2]𝐴𝑇 = [17−316] ,
which corresponds to an output list

(2.15) [[17], [−3], [16]].
In practice, one rarely tries to access coefficients of linear transformations,

so (2.14) is preferred as it directly maps (2.12) to (2.15).

2.6. Brief Concluding Remarks

Our review of linear regression was structured to introduce the framework we
will use to understand deep neural networks. Deep neural networks will con-
sist of parametrized models (generalizations of (2.1)) which we will try to fit to
a ground-truth dataset. Error functions (generalizations of (2.3)) will allow us
to construct per-datapoint losses (generalizations of (2.4)) which we can then
aggregate to define an average loss (2.5). Gradient descent will help us mini-
mize this average loss, once we use the chain rule (as in (2.7)) to calculate the
gradient of the per-datapoint loss.

Of course with (2.8), the explicit solution of linear regression follows from
the first-order conditions of optimality; ∇Λ = 0 at the point

𝐴−1 (𝑥𝑦𝑦) = 1𝑥2 − 𝑥2 (1 −𝑥−𝑥 𝑥2) (𝑥𝑦𝑦)
= 1𝑥2 − 𝑥2 (𝑥𝑦 − 𝑥 𝑦−𝑥𝑦 𝑥 + 𝑥2 𝑦)
= 1𝑥2 − 𝑥2 (𝑥𝑦 − 𝑥 𝑦− (𝑥𝑦 − 𝑥 𝑦) 𝑥 + (𝑥2 − 𝑥2) 𝑦) .

This coincides with the standard formula: if we are given a new feature
value 𝑥new, our best guess of the label, under linear regression, is
𝑥𝑦 − 𝑥 𝑦𝑥2 − 𝑥2 𝑥new + − (𝑥𝑦 − 𝑥 𝑦) 𝑥 + (𝑥2 − 𝑥2) 𝑦𝑥2 − 𝑥2 = 𝑥𝑦 − 𝑥 𝑦𝑥2 − 𝑥2 (𝑥new − 𝑥) + 𝑦.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

2.7. Exercises 37

Explicit solutions of deep learning problems are the exception rather than
the rule.

Linear regression and linearmodels in general are a classical topic in statis-
tics and many excellent textbooks are available; see for example [Agr15,RS07]
for an excellent comprehensive treatment of the topic. There are many other
excellent sources on this as well ([DS98,MPV21]). The book [HTF10] also has
good coverage with an eye towards statistical learning.

2.7. Exercises

Exercise 2.1. Consider the loss function 𝑓(𝑥) = 9𝑥21+𝑥22 for 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2.
(1) Write down the iteration 𝑥(𝑘 + 1) = 𝑥(𝑘) − 𝜂∇𝑓(𝑥(𝑘)), where 𝑥(𝑘) =(𝑥1(𝑘), 𝑥2(𝑘)) and 𝜂 is the learning rate.
(2) For what values of 𝜂 will gradient descent converge?

Exercise 2.2. Consider the loss function 𝑓(𝑥) = 9𝑥21 + (𝑥2 − 3)2 for 𝑥 =(𝑥1, 𝑥2) ∈ ℝ2.
(1) Identify the minimum point of 𝑥∗ = (𝑥∗1, 𝑥∗2) of 𝑓.
(2) Write down the iteration 𝑥(𝑘 + 1) = 𝑥(𝑘) − 𝜂∇𝑓(𝑥(𝑘)), where 𝑥(𝑘) =(𝑥1(𝑘), 𝑥2(𝑘)) and 𝜂 is the learning rate.
(3) Define 𝑦(𝑘) = (𝑦1(𝑘), 𝑦2(𝑘)), with 𝑦1(𝑘) = 𝑥1(𝑘) − 𝑥∗1 and 𝑦2(𝑘) =𝑥2(𝑘) − 𝑥∗2. Write down an iteration for 𝑦.
(4) For what values of 𝜂 will the iteration for 𝑦 converge?

Exercise 2.3. Consider the loss function 𝑓(𝑥) = 9𝑥21+𝑥22 for 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2.
(1) Fix 𝜂>0 and consider the gradient descent𝑥(𝑘+1)=𝑥(𝑘)−𝜂∇𝑓(𝑥(𝑘)),

where 𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘)) and initial conditions 𝑥(0) = (1, 2). De-
fine 𝑋𝜂𝑡 = 𝑥(⌊𝑡/𝜂⌋) where ⌊⋅⌋ is the integer floor function. Find an
ordinary differential equation (ODE) for 𝑋𝑡 = lim𝜂→0 𝑋𝜂𝑡 .

(2) Explicitly solve the ODE for 𝑋(𝑡).
Exercise 2.4. Consider the loss function 𝑓(𝑥) = 𝜆𝑥2 for 𝑥 ∈ ℝ.

(1) Write down the iteration 𝑥(𝑘 + 1) = 𝑥(𝑘) − 𝜂𝑓′(𝑥(𝑘)), where 𝜂 is the
learning rate. Describe it explicitly.

(2) For what values of 𝜂 will the iteration for 𝑥 converge?
Exercise 2.5. What is the loss function for linear regression on the three points(0, 1), (2, 0), and (1, 3)?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 3

Logistic Regression

3.1. Introduction

Logistic regression, another classical topic in statistics, is a bit more compli-
cated than linear regression because i) it involves a nonlinearity, and ii) it does
not have an explicit solution. These two aspects will both be true for deep
neural networks. Logistic regression is something of a bridge from linear re-
gression to the full framework of deep neural networks. In thinking through
logistic regression, we shall see that the way we framed linear regression is ap-
propriate for the wider problems of deep neural networks.

Let’s start with some sample ground-truth data (see the github repository),
the first lines of which are in Table 3.1. The ground-truth data is a collection of(feature, label) pairs. While the feature is ℝ-valued (i.e., numerical), the label
is now {0, 1}-valued; i.e., the label is categorical (and in fact binary).

Again, let’s try to predict the label based on the feature. Let’s construct a
binned frequency plot of the labels as a function of the features; see Figure 3.1.

Table 3.1. Ground-truth data for binary classification

x y
10.84 1
6.49 0
7.66 1
14.40 1
11.47 1

39

10.1090/gsm/252/03

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

40 3. Logistic Regression

Figure 3.1. Binned frequency plot of ground-truth data for logistic regression

Figure 3.2. Logistic function

Roughly, we see that the normalized frequencies of the labels increase as the
frequency increases.

Logistic regression tries to fit a shifted and scaled logistic function (plotted
in Figure 3.2), 𝑆(𝑧) def= 𝑒𝑧1 + 𝑒𝑧 = 11 + 𝑒−𝑧 , 𝑧 ∈ ℝ,
to Figure 3.1. In betting parlance, the 𝑆(𝑧) is the probability with odds of 𝑒𝑧 to
1. Figure 3.3 gives a visual idea of the result. We want to do so in a robust way
which bypasses the details of binning. Let’s work through this, but do so in a
way which mimics some of the notation of linear regression and to simultane-
ously introduce several tools which will be useful in our development of deep
neural networks.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.2. Formalization of the Problem 41

Figure 3.3. Binned frequency plot with fitted logistic function

3.2. Formalization of the Problem

Let’s alter our perspective a bit. Instead of trying to directly predict the cate-
gorical label, let’s combine the idea of binned frequency plots and the logistic
function 𝑆 to try to predict probabilities. Since probabilities are numerical (they
take values in [0, 1]) as opposed to categorical, we should be able to reuse some
of the ideas of continuous optimization and gradient descent that we developed
for linear regression in Chapter 2.1 This becomes even more appealing when
we realize that our labels in this case can easily be reinterpreted as probabilities
that the label is 1:

label = ℙ{label is 1}.
Namely, if a ground-truth label is 1, it must (with probability 1) be of type

1. Conversely, if a ground-truth label is 0, it can’t (i.e., it has probability 0) be
of type 1. The binary labels 0 and 1 are thus extreme (i.e., the boundary of the
collection [0, 1] of allowed probabilities), but we can nevertheless try to use 𝑆
to approximate these probabilities.

Let’s format logistic regression using some notation similar to that of Chap-
ter 2. Let’s try to predict the probability that a feature value 𝑥 has label 1 with
model

(3.1) 𝔪(𝑥; 𝜃) def= 𝑆(𝑤𝑥 + 𝑏) = 𝑒𝑤𝑥+𝑏1 + 𝑒𝑤𝑥+𝑏 = 11 + 𝑒−(𝑤𝑥+𝑏) , 𝑥 ∈ ℝ,
1The field of combinatorial optimization, on the other hand, is dedicated to optimization over finite

sets, e.g., a finite collection of labels.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

42 3. Logistic Regression

Figure 3.4. Voting quantization

where

(3.2) 𝜃 = (𝑤𝑏)
are the parameters of the model, taking values (again) in Θ = ℝ2. The logistic
function 𝑆 maps ℝ in to (0, 1) (a subset of the probability space [0, 1]), and𝑥 ↦ 𝑤𝑥 + 𝑏 scales and shifts the features). In some way, we want to find the
best parameter vector 𝜃∗ that captures the idea of Figure 3.3.

Once we have found an optimal 𝜃∗, we can predict the probability that a
feature value 𝑥 has label 1 and then quantize by voting. Namely, for a feature
value 𝑥, our prediction will be given by
(3.3)

{predict class 1 if𝔪(𝑥; 𝜃∗) > 1/2
predict class 0 if𝔪(𝑥; 𝜃∗) < 1/2= 𝑞(𝔪(𝑥; 𝜃∗))

= {predict class 1 if 𝑤∗𝑥 + 𝑏∗ > 0
predict class 0 if 𝑤∗𝑥 + 𝑏∗ < 0,

where the voting quantizer 𝑞 (see Figure 3.4) is
(3.4) 𝑞(𝑧) = {1 if 𝑧 > 1/20 if 𝑧 < 1/2.

We’ll have a bitmore to say later about the discontinuity value of 𝑞 at 𝑧 = 1/2.
We want to find the optimal parameter vector 𝜃∗ by some optimization

problem. Let’s reuse some of the ideas of Chapter 2: for 𝑦 and 𝑦′ in our la-
bel space [0, 1], let ℓ𝑦(𝑦′) be error function which compares 𝑦 and 𝑦′. We wantℓ𝑦(𝑦′) ≥ 0 with equality if and only if 𝑦 = 𝑦′. Given ℓ, we can construct a

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.2. Formalization of the Problem 43

per-datapoint loss function

(3.5) 𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦(𝔪(𝑥; 𝜃))
for each (𝑥, 𝑦) ∈ ℝ × [0, 1] and 𝜃 ∈ ℝ𝑃 , and then define the average loss
(3.6) Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃)
for each 𝜃 ∈ ℝ𝑃 . The argmin of Λ will be the best parameter vector 𝜃∗.

For logistic regression, the error function ℓ𝑦(𝑦′) is given by the binary cross
entropy,

(3.7) ℓ𝑦(𝑦′) def= 𝑦 ln 𝑦𝑦′ + (1 − 𝑦) ln 1 − 𝑦1 − 𝑦′ .
More exactly ℓ𝑦(𝑦′) is the relative entropy of 𝑦with respect to 𝑦′. We define0 ln 0 def= 0, and since our ground-truth labels are in {0, 1}, we have

ℓ𝑦(𝑦′) = {− ln 𝑦′ if 𝑦 = 1− ln(1 − 𝑦′) if 𝑦 = 0 = −𝑦 ln 𝑦′ − (1 − 𝑦) ln(1 − 𝑦′).
In Figure 3.5 we plot the entropy for labels 0 and 1. For 𝑦′ ∈ (0, 1) (i.e., the

range of 𝑆), ln 𝑦′ and ln(1 − 𝑦′) are negative, so ℓ𝑦(𝑦′) > 0. Asymptotically,
ℓ0(0+) def= lim𝑦′↘0 ℓ0(𝑦′) = 0
ℓ1(1−) def= lim𝑦′↗0 ℓ1(𝑦′) = 0;

the error becomes small when 𝑦′ is close to 𝑦. We also have thatℓ0(1−) def= lim𝑦′↗1 ℓ0(𝑦′) = ∞
ℓ1(0+) def= lim𝑦′↘0 ℓ1(𝑦′) = ∞,

so the error becomes infinite when 𝑦′ gets close to the wrong binary label.
Let’s write out 𝜆(𝑥,𝑦)(𝜃) of (3.5). We have that1 − 𝑆(𝑧) = 11 + 𝑒𝑥 , 𝑥 ∈ ℝ.
For 𝑥 ∈ ℝ and 𝜃 given by (3.2),𝜆(𝑥,0)(𝜃) = − ln(1 − 𝑆(𝑤𝑥 + 𝑏)) = ln(1 + 𝑒𝑤𝑥+𝑏)𝜆(𝑥,1)(𝜃) = − ln 𝑆(𝑤𝑥 + 𝑏) = ln(1 + 𝑒−(𝑤𝑥+𝑏)) .
For a ground-truth datapoint (𝑥, 0) (i.e., label 0), 𝜆(𝑥,0)(𝜃) is small when𝑤𝑥+𝑏 ≈ −∞, while for a ground-truth datapoint (𝑥, 1) (i.e., label 1), 𝜆(𝑥,1)(𝜃) is

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

44 3. Logistic Regression

Figure 3.5. Entropy for labels 0 and 1
small when𝑤𝑥+𝑏 ≈ ∞. Thismakes sense: for a ground-truth datapoint (𝑥, 0),
minimizing 𝜆(𝑥,0)(𝜃) should drive 𝑤𝑥 + 𝑏 → −∞, implying that 𝔪(𝑥; 𝜃) ≈ 0
for all 𝑥 ∈ ℝ, implying that all predictions end up being label 0 according
to (3.3). On the other hand, for a ground-truth datapoint (𝑥, 1), minimizing𝜆(𝑥,1)(𝜃) should drive 𝑤𝑥 + 𝑏 → ∞, implying that 𝔪(𝑥; 𝜃) ≈ 1 for all 𝑥 ∈ ℝ,
implying that all predictions end up being label 1. Informally, minimizingΛ of
(3.6)means that in each bin of Figure 3.1, we have a competition ofminimizing𝜆(𝑥,0)(𝜃) and 𝜆(𝑥,1)(𝜃) for 𝑥 in that bin. See Figure 3.6.

As with linear regression, we want to carry out gradient descent. Namely,
we want to construct a sequence (𝜃𝑘)∞𝑘=1 given by
(3.8) 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘),
where 𝜂 > 0 is a learning rate.

Once again, ∇Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟∇𝜆(𝑥,𝑦)(𝜃).
Similarly to linear regression, the chain rule gives us

(3.9) ∇𝜆(𝑥,𝑦)(𝜃) = ℓ′𝑦(𝔪(𝑥; 𝜃)) (𝜕𝔪/𝜕𝑤(𝑥; 𝜃)𝜕𝔪/𝜕𝑏(𝑥; 𝜃)) .
Here, however, the formula for ℓ′𝑦 is a bit more complicated:

(3.10) ℓ′𝑦(𝑦′) = {− 1𝑦′ if 𝑦 = 1
11−𝑦′ if 𝑦 = 0 = − 𝑦𝑦′ + 1 − 𝑦1 − 𝑦′ .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.2. Formalization of the Problem 45

Figure 3.6. Binned frequency plot and variation of logistic regression parameters

We also have

𝑆′(𝑧) = 𝑒−𝑧(1 + 𝑒−𝑧)2 = 𝑒−𝑧1 + 𝑒−𝑧 × 11 + 𝑒−𝑧 = 1(1 + 𝑒𝑧)(1 + 𝑒−𝑧) , 𝑧 ∈ ℝ,
so (𝜕𝔪/𝜕𝑤(𝑥; 𝜃)𝜕𝔪/𝜕𝑏(𝑥; 𝜃)) = (𝑆′(𝑤𝑥 + 𝑏)𝑥𝑆′(𝑤𝑥 + 𝑏)) = 𝑆′(𝑤𝑥 + 𝑏) (𝑥1) .

For linear regression, the per-datapoint losswas a composition of the square
error function and a linear map; here the per-datapoint loss is a composition
of binary cross entropy, the logistic function, and a linear map. The chain rule
is a bit more complex than for linear regression. We obtain the gradient of the
per-datapoint loss (3.9) by combining (3.10) and (3.9). Combining everything
in one place, we have

∇𝜆(𝑥,𝑦)(𝜃) = ℓ′𝑦(𝑆(𝑤𝑥 + 𝑏))𝑆′(𝑤𝑥 + 𝑏)) (𝑥1) .
The results of gradient descent are in Figure 3.7. For linear regression, we

had an explicit formula for the solution and could use that as a reference point
for gradient descent. Here, we have used sklearn, i.e., another numerical algo-
rithm, to give us a numerical approximation 𝜃∗ of the solution. The optimal
values are 𝑤∗ = 2.22 and 𝑏∗ = −15.49.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

46 3. Logistic Regression

Figure 3.7. Converging gradient descent: 𝜃𝑘+1 = 𝜃𝑘−0.01∇Λ(𝜃𝑘); trajectory
of gradient descent (left) and loss values (right).

3.3. Metric

Howdoes our logistic regression algorithmperform? For the sake of specificity,
let’s take the optimal value 𝜃∗ of our parameters to be that given by sklearn;
(3.11) 𝑤∗ = 2.22 and 𝑏∗ = −15.49
We can then use (3.3). There are then a number of metrics we might use to
assess our prediction algorithm. The simplest might be to compute an average
classification error. Since a dataset might be imbalanced, we might alternately
use a metric which combines classification error with the frequencies of the
different labels.

3.4. Transitions and Scaling

Let’s take a closer look at our optimal 𝑥 ↦ 𝔪(𝑥; 𝜃∗) for predicting the proba-
bility that a feature has label 1. With

𝜃∗ = (𝑤∗𝑏∗)
given by sklearn (3.11), we explicitly have𝔪(𝑥; 𝜃∗) = 𝑆(𝑤∗𝑥 + 𝑏∗) = 𝑆 (sgn(𝑤∗)𝑥 − 𝑥𝑐𝑠) ,
where sgn(𝑧) def= 𝑧/|𝑧| is the sign function for 𝑧 ≠ 0, and the location 𝑥𝑐 and scale𝑠 are given by
(3.12)

𝑥𝑐 = −𝑏∗/𝑤∗𝑠 = 1/|𝑤∗|.
For our data,

(3.13) 𝑥𝑐 = 6.9689 and 𝑠 = 0.45.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.4. Transitions and Scaling 47

Figure 3.8. Transition of logistic function

Wehaven’t defined sgn(0), but this is only relevant if𝑤∗ = 0, in which case
our logistic regression would be 𝑥 ↦ 𝑆(𝑏∗).

The data of (3.13) also helps understand the naturalmathematical question
ofwhat dowe do ifwe are given a feature value𝑥new exactly such that𝑤∗𝑥new+𝑏∗ = 0, i.e., 𝑥new = 𝑥𝑐? Can you find a datapoint with feature exactly equal to𝑥𝑐?

Returning to Figure 3.6, we see that the transition from 0 to 1 visually agrees
with the value of 𝑥𝑐 in (3.13). Analytically, we can invert the logistic function:
if 𝑆(𝑧) = 𝑝, then 𝑒𝑧 = 𝑝/1 − 𝑝, implying that𝑧 = ln 𝑝1 − 𝑝.

Thus 95% of the transition of the logistic function (i.e., from 0.05 to 0.95)
occurs in the interval(ln 0.051 − 0.05 , ln 0.951 − 0.95) = (ln 0.050.95 , ln 0.950.05) = (−2.95, 2.95).
See Figure 3.8. Solving 𝑥 − 𝑥𝑐𝑠 = ±2.95,
we see that 95% of the transition in logistic regression should occur on the in-
terval (𝑥𝑐 − 2.95𝑠, 𝑥𝑐 + 2.95𝑠) .
See Figure 3.9.

Another nice feature of the logistic function is that it is symmetric around(0, 1/2): 𝑆(−𝑧) = 11 + 𝑒𝑧 = 1 − 𝑒𝑧1 + 𝑒𝑧 .
In other words, given that the point(𝑧, 𝑆(𝑧)) = (𝑧, 12 + (𝑆(𝑧) − 12))

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

48 3. Logistic Regression

Figure 3.9. Empirical location and scale for fitted logistic function

is on the graph of 𝑆, the point(−𝑧, 12 − (𝑆(𝑧) − 12)) = (−𝑧, 1 − 𝑆(𝑧))
is also on the graph of 𝑆. Consequently, the categorical predictions should be
invariant under the choice of which category is given label 1 (as opposed to
label 0).

3.5. Normalization

Returning to Figure 3.8, the transition from label 0 to label 1 occurred in the tail
of 𝑆 (compared to the fact that most of the transition in 𝑆 is between −3 and3. By scoring the feature data, we can use the intrinsic scale of the data, and
make it more likely that the transition in the data matches the transition in 𝑆.
In particular, gradient descent is likely to perform poorly in the tail, where the
derivative of 𝑆 is exponentially small. Define2

𝜇𝑧 def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑥
𝜎𝑧 def= { 1|𝒟| − 1 ∑(𝑥,𝑦)∈𝒟 (𝑥 − 𝜇𝑧)2}1/2 ,

2Recall Bessel’s correction https://en.wikipedia.org/wiki/Bessel%27s_correction for computing stan-
dard deviation.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://en.wikipedia.org/wiki/Bessel%27s_correction

3.5. Normalization 49

where, we compute

(3.14) 𝜇𝑧 = 7.04 and 𝜎𝑧 = 2.30.
We then define a scored dataset

𝒟𝑧 def= {(𝑥 − 𝜇𝑧𝜎𝑧 , 𝑦) ∶ (𝑥, 𝑦) ∈ 𝒟} .
The feature data in this new dataset, by construction, has mean zero and

variance 1; see Table 3.2.
Scoring allows us to consider a number of reference calculations.• It allows us to easily identify outlier data, which is more than several

standard deviations away from the mean.• Relevant behavior in the graph of scored data (𝒟𝑧) will occur at fea-
ture values of order 1. This suggests that optimal values for models
with scored data will also be of order 1. This suggests that gradient
descent algorithms also be initialized at values of order 1.• Scoring forces multidimensional data to all be at the same scale. This
suggests that different elements of the optimal parameter values will
also be of common order 1.

Table 3.3 gives the optimal parameter values for these different datasets,
and Figure 3.11 gives the contour plot for the loss for the scored data. We see
that the optimal parameter values for the scored and ground-truth data are of
order 1. We also see that the level curves of the loss function are more regular
for the scored data, suggesting that gradient descent algorithms will be more
robust.

Of course the optimum parameters in the different coordinate systems are
all related. If 𝑥 is the feature, our model assigns label 1 with probability

𝑆(𝑤∗𝑜𝑥 + 𝑏∗𝑜) = 𝑆 ((1000𝑤∗𝑜) 𝑥1000 + 𝑏∗𝑜) .
This shows the conversion between the optimum parameters (𝑤∗𝑜, 𝑏∗𝑜) in

the original coordinate system and the optimum parameters (𝑤∗, 𝑏∗) in what
we have called our ground-truth data:𝑤∗ = 1000𝑤∗𝑜𝑏∗ = 𝑏∗𝑜.

Similarly, we can write

𝑆(𝑤∗𝑜𝑥 + 𝑏∗𝑜) = 𝑆 ((𝑤∗𝑜𝜎) (𝑥 − 𝜇𝜎) + (𝑏∗𝑜 + 𝑤∗𝑜𝜇)) ,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

50 3. Logistic Regression

Table 3.2. Scored ground-truth data

x y
1.67 1−0.24 0
0.27 1
3.24 1
1.95 1

Figure 3.10. Scored data

Table 3.3. Optimal parameter values for original and scored ground-truth data

original scored𝑤: 2.22 5.06𝑏: −15.49 0.17

which shows the conversion between (𝑤∗𝑜, 𝑏∗𝑜) and the optimal parameters(𝑤∗𝑧, 𝑏∗𝑧) in the scored coordinate system,𝑤∗𝑧 = 𝑤∗𝑜𝜎𝑏∗𝑧 = 𝑏∗𝑜 + 𝑤∗𝑜𝜇.
The combination of (3.14) and Table 3.3 confirm this.
We will expand upon the notions of scoring in Chapter 10.
Of course the assumption of scoring is statistical homogeneity. If new data

has different statistics, both the scoring and the parameters of logistic regres-
sion must be recalculated.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.6. Perfect Data and Penalization 51

Figure 3.11. Contour plot of loss Λ for scored data

3.6. Perfect Data and Penalization

Perfect data for linear regression would mean that all feature-label points lie
on a common line. Perfect data for logistic regression might be a collection of
datapoints for all datapoints to the right of a threshold would all have label 1,
and all datapoints to the left of the thresholdwould have label 0. What happens
to logistic regression in this case?

Let’s consider a collection of 𝑁 = 100 feature values which are distributed
normally with mean 0 and variance 1. Let’s furthermore assume that all
ground-truth points with positive feature values are assigned label 1, and all
ground-truth datapoints with negative feature values are assigned label 0. See
Table 3.4.

Informally, logistic regression should give us

𝑆(∞𝑥)
and any positive feature value should always (i.e., probability 1) have label 1,
so we should be evaluating 𝑆 at a very large value. Conversely, any negative
feature value should never (i.e., probability 0) have label 1. The effect of the
bias 𝑏 should be negligible.

Starting with {𝑋𝑛}𝑁𝑛=1 normally chosen points, none of them are likely to be
exactly 0, In fact, the transition from 0 to 1 in our perfect dataset will be given
related to the minimum of {|𝑋𝑛|}𝑁𝑛=1. This minimum will become smaller as𝑁 becomes larger, and (3.12) then implies that 𝑚 should become larger as 𝑁

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

52 3. Logistic Regression

Table 3.4. Perfect ground-truth data

x y
1.79 1
0.44 1
0.10 1−1.86 0−0.28 0

becomes larger. For any level ℓ > 0,
ℙ { min1≤𝑛≤𝑁 |𝑋𝑛| > ℓ𝑁 } = 𝑁∏𝑛=1ℙ {|𝑋𝑛| > ℓ𝑁 }

= 𝑁∏𝑛=1 (1 − ℙ {|𝑋𝑛| ≤ ℓ𝑁 })
= (1 −∫ℓ/𝑁

−ℓ/𝑁
𝑒−𝑧2/2√2𝜋 𝑑𝑧)𝑁

≈ (1 − 2ℓ√2𝜋 1𝑁)𝑁
≈ exp[− 2√2𝜋ℓ] ,

where this approximation becomes more precise as 𝑁 becomes larger (i.e.,
a limiting statement). In other words, 𝑁min1≤𝑛≤𝑁 |𝑋𝑛| is approximately (as𝑁 ↗ ∞) exponentially distributed with parameter 2/√2𝜋. Thus, the mini-
mummin1≤𝑁≤𝑁 |𝑋𝑛| should approximately have expectation𝔼 [min1≤𝑁≤𝑁 |𝑋𝑛|] ≈ 1𝑁 2√2𝜋,
which can also be interpreted as an asymptotic for the transition within our
dataset. Taking 𝑚 to be the reciprocal of this transition width (i.e., (3.12)), 𝑚
should be of order 𝑁. In our case,
(3.15) 𝑚perfect = 252.95 and 𝑏perfect = −0.71.

This is unfortunate. For perfect data, logistic regression diverges. We can
regularize logistic regression by penalizing large values of 𝑚 and 𝑏. Fixing a
parameter 𝐶 > 0, we can replace the per-datapoint loss of (3.5) with
(3.16) 𝜆(𝐶)(𝑥,𝑦) (𝜃) def= ℓ𝑦(𝔪(𝑥; 𝜃)) + 𝐶‖𝜃‖2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.7. Multiclass prediction 53

Table 3.5. ground-truth data for multiclass classification

𝐱𝟏 𝐱𝟐 𝐲
3.73 1.30 2
2.16 6.82 2
3.94 −2.83 3
2.10 −0.35 2−0.01 1.33 1

Figure 3.12. Scatter plot of ground-truth data for multiclass classification

This will be similar to the loss of (3.5) for reasonably small values of 𝜃, but
will penalize large values of 𝜃. This makes more sense for scored data (Section
3.5), where we might expect the optimal parameters to be of order 1. In this
case, the minimal loss for perfect data will significantly differ from the logistic
regression loss when |𝑚| ≥ 1/√𝐶, i.e., when the transition between labels is at
scale less than 1/√𝐶. We will revisit this issue in Chapter 9 where we discuss
regularization methods.

3.7. Multiclass prediction

How can we generalize this to multiple classes, as in Table 3.5? See also Figure
3.12. Here, the features are points (𝑥1, 𝑥2) ∈ ℝ2 and the labels are in {1, 2, 3},
corresponding to elements in ℝ3, rather than in {0, 1}, which corresponded to
probabilities.

In predicting binary labels, one-dimensional logistic regression compares
the feature to a threshold; recall (3.3). The decision regions are thus half-lines.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

54 3. Logistic Regression

With higher-dimensional features and multiclass labels, we might expect deci-
sion regions to be polytopes.

At a high level, binary one-dimensional logistic regression consisted of two
parts; a calibrated probability model, viz. (3.1), and then a voting procedure,
viz. (3.4). With a binary label, it was sufficient to optimize over a model for
the probability of label 1; the probability of label 0 was complementary. This
also meant that our loss function (3.7) could be written as a function of one
argument, namely the probability of class 1. Similarly, with a binary label, the
class with the higher probability was also the class with probability larger than50%.

Logistic probabilities were essentially a function of one variable; the valued
function

(3.17) 𝑥 ↦ (1 − 𝑆(𝑥), 𝑆(𝑥)) = (11 + 𝑒𝑥 , 𝑒𝑥1 + 𝑒𝑥) , 𝑥 ∈ ℝ,
modeled the probability of class 0 and 1, respectively, as a function of 𝑥 ∈ ℝ.
The class of models we calibrated in (3.1) was the composition of logistic prob-
abilities with a linear map 𝑥 ↦ 𝑤𝑥+𝑏. Let’s now consider softmax probability
map

𝑆softmax(𝑥) def= (𝑒𝑥1∑3𝑖′=1 𝑒𝑥𝑖′ , 𝑒𝑥2∑3𝑖′=1 𝑒𝑥𝑖′ , 𝑒𝑥3∑3𝑖′=1 𝑒𝑥𝑖′) , 𝑥 = (𝑥1𝑥2𝑥3) ∈ ℝ3.
Let’s take our model of probabilities of the classes to be softmax probabil-

ities composed with linear transformations from feature space into ℝ3. In our
example, 𝔪(𝑥; 𝜃) = 𝑆softmax(𝑤𝑥 + 𝑏),
where 𝜃 = (𝑊, 𝑏)
is a parameter vector in Θ = ℝ3×2 × ℝ3 consisting of weight and bias compo-
nents of an affine transformation ofℝ2. Oncewe have amodel for probabilities,
we can use plurality voting to predict the class. Writing𝔪(𝑥; 𝜃) = (𝔪1(𝑥; 𝜃),𝔪2(𝑥; 𝜃),𝔪3(𝑥; 𝜃))
to denote the different components of𝔪(𝑥; 𝜃), we will predict
(3.18)

⎧⎨⎩
predict class 1 if𝔪1(𝑥; 𝜃) > max{𝔪2(𝑥; 𝜃),𝔪3(𝑥; 𝜃)}
predict class 2 if𝔪2(𝑥; 𝜃) > max{𝔪1(𝑥; 𝜃),𝔪3(𝑥; 𝜃)}
predict class 3 if𝔪3(𝑥; 𝜃) > max{𝔪1(𝑥; 𝜃),𝔪2(𝑥; 𝜃)}.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.7. Multiclass prediction 55

Extending (3.7), let’s define

(3.19) ℓ𝑝′(𝑝) def= ∑𝑖∈{1,2,3}𝑝𝑖 ln 𝑝𝑖𝑝′𝑖
for probability vectors (i.e., a vector of elements taking values in [0, 1] whose
elements add up to 1) 𝑝 = (𝑝1 𝑝2 𝑝3) and 𝑝′ = (𝑝′1 𝑝′2 𝑝′3) such that 𝑝′ ∈(0, 1)3. We should write our ground-truth label data as vectors representing
certainty of the different classes:• assign label (1 0 0) if the label is 1,• assign label (0 1 0) if the label is 2,• assign label (0 0 1) if the label is 3.
These labels are one-hot vectors: one entry is 1, and the others are 0. One-hot
vectors are a common way to encode categorical data. Our ground-truth data𝒟 is then a collection of points (𝑥, 𝑦) in ℝ2 × ℝ3, where the 𝑦’s are one-hot
probability vectors.

The per-datapoint loss is

𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦 (𝔪(𝑥; 𝜃)) , (𝑥, 𝑦) ∈ 𝒟,
and the average loss is

Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃).
Making (3.19) a bit more explicit, we haveℓ𝑝′(𝑝) = − ln𝑝𝑖

if 𝑝′ is the one-hot vector whose 𝑖th element is equal to 1 and the rest of the
elements are equal to 0. We note that (3.19) thus naturally generalizes (3.7)
to higher dimensions (this being one of the appeals of using entropy as a loss
function).

To be specific, let’s work through the quantization rule of (3.18) if the op-
timal parameter vector is

𝜃∗ =
⎛⎜⎜⎜⎜⎝
(2 1−1 01 −3)
(30−1)

⎞⎟⎟⎟⎟⎠
,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

56 3. Logistic Regression

i.e., our model is

𝔪(𝑥; 𝜃∗) = 𝑆softmax ((2 1−1 01 −3) (𝑥1𝑥2) + (30−1))
= 𝑆softmax ((2𝑥1 + 𝑥2 + 3𝑥1𝑥1 − 3𝑥2 − 1))
= (𝑒2𝑥1+𝑥2+3𝐷 , 𝑒𝑥1𝐷 , 𝑒𝑥1−3𝑥2−1𝐷)

𝑥 = (𝑥1𝑥2) ∈ ℝ2,

where 𝐷 def= 𝑒2𝑥1+𝑥2+3 + 𝑒𝑥1 + 𝑒𝑥1−3𝑥2−1.
We can then rewrite (3.18) as

⎧⎪⎨⎪⎩
predict class 1 if 𝑒2𝑥1+𝑥2+3𝐷 > max { 𝑒𝑥1𝐷 , 𝑒𝑥1−3𝑥2−1𝐷 }
predict class 2 if 𝑒𝑥1𝐷 > max { 𝑒2𝑥1+𝑥2+3𝐷 , 𝑒𝑥1−3𝑥2−1𝐷 }
predict class 3 if 𝑒𝑥1−3𝑥2−1𝐷 > max { 𝑒2𝑥1+𝑥2+3𝐷 , 𝑒𝑥1𝐷 }

= ⎧⎨⎩
predict class 1 if 𝑒2𝑥1+𝑥2+3 > max {𝑒𝑥1 , 𝑒𝑥1−3𝑥2−1}
predict class 2 if 𝑒𝑥1 > max {𝑒2𝑥1+𝑥2+3, 𝑒𝑥1−3𝑥2−1}
predict class 3 if 𝑒𝑥1−3𝑥2−1 > max {𝑒2𝑥1+𝑥2+3, 𝑒𝑥1}

= ⎧⎨⎩
predict class 1 if 2𝑥1 + 𝑥2 + 3 > max {𝑥1, 𝑥1 − 3𝑥2 − 1}
predict class 2 if 𝑥1 > max {2𝑥1 + 𝑥2 + 3, 𝑥1 − 3𝑥2 − 1}
predict class 3 if 𝑥1 − 3𝑥2 − 1 > max {2𝑥1 + 𝑥2 + 3, 𝑥1}.

Looking a bit more closely at the requirements for predicting class 1, the
inequality 2𝑥1 + 𝑥2 + 3 > max {𝑥1, 𝑥1 − 3𝑥2 − 1}
is equivalent to2𝑥1 + 𝑥2 + 3 > 𝑥1 and 2𝑥1 + 𝑥2 + 3 > 𝑥1 − 3𝑥2 − 1,
which is equivalent to𝑥1 + 𝑥2 > −3 and 𝑥1 + 4𝑥2 > −4.

In other words, we decide class 1 if

(1 1) (𝑥1𝑥2) > −3 and (1 4) (𝑥1𝑥2) > −4.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

3.7. Multiclass prediction 57

This captures the decision rule for class 1 as the intersection of two hy-
perplanes (defined by their normals). Alternately, we could write the require-
ments for deciding class 0 as

𝑥2 > −𝑥1 − 3 and 𝑥2 > − 12𝑥2 − 1,
which captures the decision rule for class 0 as half-spaces defined by lines. As
with univariate logistic regression, we are unlikely to ever face a feature vari-
able (𝑥1, 𝑥2) on the boundary lines or the triple-point where all inequalities are
replaced by equalities. In summary, multiclass multivariate logistic regression
leads to polytopes.

The framework of multiclass classification reduces to standard logistic re-
gression for binary labels. If we would try to predict a {1, 2}-valued label on the
basis of a scalar label 𝑥 in the above way, multiclass prediction would search
over probabilities of label 2 of the form

(1 − 𝑆(𝑤𝑥 + 𝑏), 𝑆(𝑤𝑥 + 𝑏)) = (11 + 𝑒𝑤𝑥+𝑏 , 𝑒𝑤𝑥+𝑏1 + 𝑒𝑤𝑥+𝑏)= 𝑆softmax (0, 𝑤𝑥 + 𝑏)
= 𝑆softmax ((0𝑤)𝑥 + (0𝑏)) ,

so the collection of models considered by binary logistic regression is a subset
of the collection of models considered by multiclass prediction. On the other
hand, for general

𝑊 = (𝑤1𝑤2) and 𝐵 = (𝑏1𝑏2) ,
we have

𝑆softmax (𝑊𝑥 + 𝐵)
= (𝑒𝑤1𝑥+𝑏1𝑒𝑤1𝑥+𝑏1 + 𝑒𝑤2𝑥+𝑏2 , 𝑒𝑤2𝑥+𝑏2𝑒𝑤1𝑥+𝑏1 + 𝑒𝑤2𝑥+𝑏2)
= (11 + 𝑒(𝑤2−𝑤1)𝑥+(𝑏2−𝑏1) , 𝑒(𝑤2−𝑤1)𝑥+(𝑏2−𝑏1)1 + 𝑒(𝑤2−𝑤1)𝑥+(𝑏2−𝑏1))= (1 − 𝑆 ((𝑤1 − 𝑤2)𝑥 + (𝑏1 − 𝑏2)) , 𝑆 ((𝑤1 − 𝑤2)𝑥 + (𝑏1 − 𝑏2))) .

Thus, the models of multiclass predictive probabilities collapse to the col-
lection of models of logistic regression probabilities. Optimizing over models
with logistic regression predictive probabilities is consequently the same as op-
timizing over models with multiclass predictive probabilities.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

58 3. Logistic Regression

3.8. Brief Concluding Remarks

Logistic regression is another classical topic in statistics. Many excellent text-
books are available in the literature. The books [Agr15,MSN08] contain a nice
exposition of logistic regression and more generally to generalized, linear, and
mixed models, but there are many other excellent sources on this topic as well;
see for example ([DS98,MPV21]). The book [HTF10] also has a good coverage
with an eye towards statistical learning.

Our review of logistic regression was structured to introduce prediction of
categorical variables. Deep neural networks heavily use the logistic function to
model probabilities. Entropy, the softmax function, and one-hot encoding all
scale well to higher-dimensional problems. We will extend our use of gradient
descent to the more complex problems in deep neural networks.

3.9. Exercises

Exercise 3.1. Prove that the softmax function 𝑆softmax(𝑥) ∶ ℝ𝐷 → ℝ𝐷 pro-
duces a probability distribution.

Exercise 3.2. Consider logistic regression with the two feature-label data-
points (𝑥1, 𝑦1) = (−2, 0) and (𝑥2, 𝑦2) = (1, 1). Compute the loss function at
parameter values 𝜃 = (𝑤, 𝑏) = (1/2, 1).
Exercise 3.3. Consider the relative entropy

𝐻(𝑝′, 𝑝) = 𝑝′ ln 𝑝′𝑝 + (1 − 𝑝′) ln 1 − 𝑝′1 − 𝑝 ,
with 𝑝, 𝑝′ ∈ (0, 1). Show that the function 𝑝′ ↦ 𝐻(𝑝, 𝑝′) is convex for each𝑝 ∈ [0, 1].
Exercise 3.4. Consider the relative entropy

𝐻(𝑝′, 𝑝) = 𝑝′ ln 𝑝′𝑝 + (1 − 𝑝′) ln 1 − 𝑝′1 − 𝑝 ,
with 𝑝, 𝑝′ ∈ (0, 1). Let us use entropy as a means to understand Euler’s equa-
tions of optimality. Show that the Legendre-Fenchel transform of relative en-
tropy, i.e., 𝐿(𝜃, 𝑝) = max𝑝′∈(0,1){𝜃𝑝′−𝐻(𝑝′, 𝑝)}, is the logarithm of themoment
generating function of the Bernoulli random variable.

Exercise 3.5. Compute the Legendre-Fenchel transform𝐿(𝜃, 𝑝) = max𝑝′∈(0,1){𝜃𝑝′ − ln(𝑝𝑒𝜃 + (1 − 𝑝))},
and compare your answer to the setting of Exercise 3.4.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 4

From the Perceptron
Model to Kernels
to Neural Networks

4.1. Introduction

The goal of this chapter is to offer a different angle on how one can approach
the classification problemwith the ultimate goal of building towards the neural
network formulation. We start with the simple perceptron model, show its
connection to kernels, which then naturally leads to the conception of a neural
network as a classifier and function approximator.

Kernel methods and kernel-based formulations are standard statistics and
machine learning topics that one can find in many textbooks. In this chapter
we use the framework of perceptron and kernels in order to introduce neural
networks and motivate stochastic gradient descent. We describe the percep-
tron model in Section 4.2, which will motivate the stochastic gradient descent
algorithm for neural networks. Then, in Section 4.3 we revisit the perceptron
model and reformulate it through the lens of a kernel. In Section 4.4 we revisit
linear regression and connect it to kernels. In Section 4.5, we motivate neural
networks through the lens of kernels.

We introduce the idea of the neural network as a classifier and function ap-
proximator through the lens of the kernel formulation. As we will see, neural
networks naturally come up as function approximators via the kernel perspec-
tive, building towards deep learning.

59

10.1090/gsm/252/04

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

60 4. From the Perceptron Model to Kernels to Neural Networks

4.2. PerceptronModel and Stochastic Gradient Descent

Consider the problem of binary classification. In particular, assume that 𝑦 ∈{−1, 1} and set (again with 𝜃 = (𝑤, 𝑏)⊤)
𝔪(𝑥; 𝜃) = sign(𝑤 ⋅ 𝑥 + 𝑏) = {−1 if 𝑤 ⋅ 𝑥 + 𝑏 < 0,1 if 𝑤 ⋅ 𝑥 + 𝑏 ≥ 0.

This is the perceptronmodel introduced in [Ros58]. Consider, for example,
the case where 𝑤 = (𝑤1, 𝑤2). Here 𝑤1, 𝑤2 could for instance be length and
weight, respectively, and we may, for example, be interested into classifying
cats versus dogs.

An obvious loss function is the 0 − 1 loss function
Λ0−1(𝜃) = 1𝑀 𝑀∑𝑚=1 1{𝑦𝑚≠𝔪(𝑥𝑚;𝜃)}.

Note that the function 𝜆𝑚0−1(𝜃) = 1{𝑦𝑚≠𝔪(𝑥𝑚;𝜃)} is not a differentiable
loss function. This lack of differentiability makes it hard to use optimization
tools to minimize Λ0−1(𝜃) in order to find the potential minimizer 𝜃∗. Other
(smoother) loss functions that can be used in place of 𝜆𝑚0−1(𝜃) are for example𝜆𝑚hinge(𝜃) = 𝖱𝖾𝖫𝖴(−𝑦𝑚(𝑤 ⋅ 𝑥𝑚 + 𝑏)) = max(0, −𝑦𝑚(𝑤 ⋅ 𝑥𝑚 + 𝑏)),𝜆𝑚logistic(𝜃) = log(1 + 𝑒−𝑦𝑚(𝑤⋅𝑥𝑚+𝑏)) .

Then, the optimization problem becomes

Find 𝜃∗ = argmin 1𝑀 𝑀∑𝑚=1 𝜆𝑚(𝜃)(4.1)

for the chosen 𝜆𝑚(𝜃), which, for example, could be any of the hinge loss,𝜆𝑚hinge(𝜃), or the logistic loss, 𝜆𝑚logistic(𝜃).
A simple, but powerful, idea to solve this optimization problem is

Update the weights in the direction of the negative gradient.

Assume now that 𝑏 = 0. Alternatively, note that 𝑏 can be absorbed into 𝑤
by extending the vector 𝑥 to have its first element be defined to be equal to one.
In either case, let the parameter 𝜃 be defined to be 𝜃 = 𝑤. In the case of hinge
loss for example, we then compute

∇𝜆𝑚hinge(𝑤) = {−𝑦𝑚𝑥𝑚 if 𝑦𝑚(𝑤 ⋅ 𝑥𝑚) < 0 (i.e., 𝑥𝑚 incorrectly predicts)0 otherwise.
The algorithm becomes• At time 𝑘, select a datapoint (𝑥𝑘, 𝑦𝑘) sampled uniformly from𝒟train.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4.3. Perceptron Through the Lens of a Kernel 61

• Update the weights

𝑤𝑘+1 = {𝑤𝑘 + 𝑦𝑘𝑥𝑘 if 𝑦𝑘 ≠ sign(𝑤𝑘 ⋅ 𝑥𝑘)𝑤𝑘 otherwise.(4.2)

Notice that the weight𝑤𝑘+1 becomes𝑤𝑘+𝑦𝑘 ⋅𝑥𝑘 only if amistake happens.
In fact, by direct substitution, using the fact that 𝑦2𝑘 = 1 yields𝑦𝑘(𝑤𝑘+1 ⋅ 𝑥𝑘) = 𝑦𝑘(𝑤𝑘 ⋅ 𝑥𝑘) + ‖𝑥𝑘‖2,
which says that an update leads to the quantity 𝑦𝑘(𝑤⋅𝑥𝑘) getting a push towards
the positive direction, i.e., it increases. Thus, the algorithm inherently attempts
to correct itself, eventually leading to a positive value for 𝑦𝑘(𝑤 ⋅ 𝑥𝑘).

This algorithm is essentially the stochastic gradient descent (SGD) algo-
rithm that we study in detail in Chapter 7. In short, if we have an optimization
problem like (4.1), SGD tries to approximate 𝜃∗ by iteratively computing𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜆𝑚(𝜃𝑘)
for a randomly chosen 𝑚 ∈ {1, . . . ,𝑀}. Here 𝜂 is the learning rate. We study
the SGD algorithm in detail in Chapters 7 and 8 and later its theoretical aspects
in Chapter 18.

4.3. Perceptron Through the Lens of a Kernel

In this section, we present how one can go from a perceptron to a kernel which,
as we will see in Section 4.5, then naturally leads to a neural network formula-
tion.

Recall the update 𝑤𝑘+1 via (4.2). Let 𝛼𝑚 ∈ {0, 1, 2, . . . } denote how many
times the perceptron sampled the datapoint (𝑥𝑚, 𝑦𝑚) and led to an incorrect
prediction. Then, we accumulate all those times in the linear combination

̂𝑐 = 𝑀∑𝑚=1𝛼𝑚𝑦𝑚𝑥𝑚,
which naturally leads to the model, classifying the prediction to be −1 or 1,

𝔪(𝑥; 𝜃) = sign(̂𝑐 ⋅ 𝑥) = sign(𝑀∑𝑚=1𝛼𝑚𝑦𝑚𝑥𝑚 ⋅ 𝑥) ,
where 𝜃 = ̂𝑐. Observing the last formula, we note that if for a given 𝑥 we want
to compute the classifier 𝔪(𝑥; 𝜃), we have two options. The first option is to
keep track of ̂𝑐 at the end of training. The second option is to keep track of{𝛼1, . . . , 𝛼𝑀}. As we shall see next, this second option can be thought of as a
representation in which the kernel formulation arises in a natural way. In fact
this second option carries the name of dual representation and the {𝛼1, . . . , 𝛼𝑀}
are called the dual variables. Another interpretation of the dual variables is

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

62 4. From the Perceptron Model to Kernels to Neural Networks

that they constitute the weights that linearly combine with the training dataset{𝑥1, . . . , 𝑥𝑀} to multiply the new input 𝑥 to produce the corresponding predic-
tion.

Let’s assume now that we want to map 𝑥 to a higher-dimensional space
called the feature space, represented by, potentially, a high-dimensional vector𝜓(𝑥), called the feature vector. To have a concrete example in mind, we may
think of the situation of polynomial regression where a polynomial of higher
order seems to fit the data the best instead of the straight line. For example, if𝑥 = (𝑎, 𝑏) is two-dimensional and the feature space is quadratic, we could set𝜓(𝑥) = (𝑎2, √2𝑎𝑏, 𝑏2) to obtain the quadratic feature space. We will see more
such concrete examples in Chapter 11. Then, we can set

𝑐𝑘+1 = {𝑐𝑘 + 𝑦𝑘𝜓(𝑥𝑘) if 𝑦𝑘 ≠ sign(𝑐𝑘 ⋅ 𝜓(𝑥𝑘))𝑐𝑘 otherwise.
Following the previous logic, we write for the accumulation of times that

the perceptron predicted incorrectly

̂𝑐 = 𝑀∑𝑚=1𝛼𝑚𝑦𝑚𝜓(𝑥𝑚).
In this case, in order to do a prediction for a given input 𝑥, we use themodel

𝔪(𝑥; 𝜃) = sign(̂𝑐 ⋅ 𝜓(𝑥)) = sign(𝑀∑𝑚=1𝛼𝑚𝑦𝑚𝜓(𝑥𝑚) ⋅ 𝜓(𝑥))
= sign(𝑀∑𝑚=1𝛼𝑚𝑦𝑚 (𝜓(𝑥𝑚) ⋅ 𝜓(𝑥))) .

It is interesting to note that we no longer have a linear combination
of the data {𝑥𝑚}𝑀𝑚=1. Instead, we have a linear combination of the features{𝜓(𝑥𝑚)}𝑀𝑚=1. In addition, we also notice that to compute the prediction for a
new datapoint 𝑥, we need to keep track of the product𝐾(𝑥𝑚, 𝑥) = 𝜓⊤(𝑥𝑚)𝜓(𝑥).

In the quadratic example above, where 𝑥𝑚 = (𝑎𝑚, 𝑏𝑚) ∈ ℝ2 and 𝑥 =(𝑎, 𝑏) ∈ ℝ2, we have 𝐾(𝑥𝑚, 𝑥) = (𝑎𝑚𝑎 + 𝑏𝑚𝑏)2 = (𝑥𝑚 ⋅ 𝑥)2.
It turns out that the perspective that led to the formulation above and the

function 𝐾(⋅, ⋅) that we just defined are of broader interest. In fact, such func-
tions 𝐾 are called kernels.

Definition 4.1. If𝐾 ∶ 𝒳×𝒳 ↦ ℝ is symmetric and positive semidefinite then
it is called a kernel.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4.3. Perceptron Through the Lens of a Kernel 63

Let us look at the perceptron model through the lens of a kernel based on
the dual representation (see also [STC04]). This is sometimes referred to as the
kernel perceptron update rule. Instead of adding 𝑦 ⋅ 𝑥 to 𝑤 when 𝑥 is misclas-
sified (see (4.2)), we add 1 to the corresponding dual variable 𝛼:• Initialize at 𝛼𝑚 = 0 for every𝑚 ∈ {1, . . . ,𝑀}.• Sample at the𝑚th iteration a datapoint (𝑥𝑚∗ , 𝑦𝑚∗) ∈ 𝒟train uniformly

at random.• If there is an error, namely if we have that

𝑦𝑚∗ ≠ sign(𝑀∑𝑚=1𝛼𝑚𝑦𝑚𝐾(𝑥𝑚, 𝑥𝑚∗)) ,
then update 𝛼𝑚∗ = 𝛼𝑚∗ + 1.

Note that, in this reformulation, we do not compute 𝜓(𝑥) anymore, which
could be a very high-dimensional vector, and thus, is very expensive to com-
pute. Instead, we compute the so-calledGrammatrix of the data𝐺𝑖,𝑗=𝐾(𝑥𝑖, 𝑥𝑗).
We recall that we arrived at this formulation by setting𝐾(𝑥𝑖, 𝑥𝑗) = 𝜓⊤(𝑥𝑖)𝜓(𝑥𝑗).
Remark 4.2. Some comments on the kernel formulation versus the feature-
space version are in order. While the kernel perceptron uses all available data
samples at each iteration, the Gram matrix instead computes the kernel on all
different pairs in the available dataset. Generally in machine learning, even
though the Gram matrix formulation is preferable when the feature vector is
large, the feature-space version is more attractive when the dataset is large.
Low rank approximations methods can be used to make the calculation of the
Gram matrix more tractable.

Let us now point out another interesting connection between Grammatri-
ces and features. We have seen that given features, we can define the Gram
matrix of the data 𝐺 via the relation 𝐺𝑖,𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜓⊤(𝑥𝑖)𝜓(𝑥𝑗). It turns
out that one can go in the other direction as well.

To see this, we first note that the Gram matrix of any dataset is a positive
semidefinite matrix. Indeed, for all 𝜉 ∈ ℝ𝑀 , we have that

𝜉⊤𝐺𝜉 = 𝑀∑𝑖,𝑗=1 𝜉𝑖𝜉𝑗𝐾(𝑥𝑖, 𝑥𝑗) = (𝑀∑𝑚=1 𝜉𝑚𝜓(𝑥𝑚))
⊤ (𝑀∑𝑚=1 𝜉𝑚𝜓(𝑥𝑚)) ≥ 0,

showing that 𝐺 is a positive semidefinite matrix.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

64 4. From the Perceptron Model to Kernels to Neural Networks

Second, by Mercer’s theorem, we have that for a function 𝐾 ∶ 𝒳 ×𝒳 ↦ ℝ,
which is• symmetric;• square integrable, i.e.,

∫(𝑥,𝑥′)∈𝒳×𝒳 |𝐾(𝑥, 𝑥′)|2𝑑𝑥𝑑𝑥′ < ∞,
(which, in the finite-dimensional case 𝒳 = {𝑥1, . . . , 𝑥𝑀}, translates to∑𝑀𝑖,𝑗=1 |𝐾(𝑥𝑖, 𝑥𝑗)|2 < ∞); and such that,• for all ℎ ∈ 𝐿2(𝒳)

∫(𝑥,𝑥′)∈𝒳×𝒳 𝐾(𝑥, 𝑥′)ℎ(𝑥)ℎ(𝑥′)𝑑𝑥𝑑𝑥′ ≥ 0,
(which, in the finite dimensional case 𝒳 = {𝑥1, . . . , 𝑥𝑀}, translates to
requiring that for any 𝜉 ∈ ℝ𝑀 ,∑𝑀𝑖,𝑗=1 𝜉𝑖𝜉𝑗𝐾(𝑥𝑖, 𝑥𝑗) ≥ 0),

there exist 𝜓𝑖 ∶ 𝒳 ↦ ℝ and 𝜇𝑖 ≥ 0 such that𝐾(𝑥, 𝑥′) = ∑𝑖≥1 𝜇𝑖𝜓⊤𝑖 (𝑥) ⋅ 𝜓𝑖(𝑥).
Mercer’s theorem demonstrates that indeed we can also go from kernels to

features. This is an important and powerful observation. In particular, kernels
allow us to not have to worry much about feature spaces. Mercer’s theorem
essentially says that if the function 𝐾 that we have chosen to work with is a
kernel, then there will be a feature space to which 𝐾 corresponds. We will
further explore this key property in Section 4.5 to motivate deep learning.

4.4. Linear Regression and Kernels

Now that we have seen what a kernel is and how it applies in the perceptron
model case, let us see how kernels naturally emerge in the setting of linear
regression that we saw in Chapter 2.

Let us consider the case of linear regression with penalization. Similar to
(3.16), we consider

(4.3) 𝜆(𝐶)(𝑥,𝑦) (𝜃) = ℓ𝑦(𝔪(𝑥; 𝜃)) + 𝐶‖𝜃‖2,
where we setℓ𝑦(𝔪(𝑥; 𝜃)) = 12(𝑦 − 𝔪(𝑥; 𝜃))2, with𝔪(𝑥; 𝜃) = 𝑤⊤𝜓(𝑥) + 𝑏,

𝜃 = 𝑤
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4.4. Linear Regression and Kernels 65

(for the sake of exposition, we assume that 𝑏 is known) and𝜓(𝑥) is a potentially
nonlinear feature space mapping. With |𝒟| = 𝑀, let the average loss be

Λ(𝜃) = 1𝑀 𝑀∑𝑚=1 𝜆(𝐶)(𝑥𝑚,𝑦𝑚)(𝜃).
This can still be viewed as a linear regression problem, as even though the

dependence on 𝑥may not be linear, the dependence on the unknown parame-
ter 𝜃 = 𝑤 is affine.

Taking the gradient∇𝑤Λ(𝜃) = ∇𝑤Λ(𝑤) = 0, we obtain the equation for the
corresponding 𝑤

𝑤 = − 12𝐶 𝑀∑𝑚=1(𝑤⊤𝜓(𝑥𝑚) + 𝑏)𝜓(𝑥𝑚).
We deliberately do not solve this equation for 𝑤. Instead, we define 𝛼𝑚 =− 12𝐶 (𝑤⊤𝜓(𝑥𝑚) + 𝑏). With this definition, we then write for the optimal 𝑤 in

terms of the 𝛼𝑚’s,
𝑤 = 𝑀∑𝑚=1𝛼𝑚𝜓(𝑥𝑚).(4.4)

The next step is to plug that into Λ(𝑤). For this purpose, we let 𝐾(𝑥𝑖, 𝑥𝑗) =𝜓⊤(𝑥𝑖)𝜓(𝑥𝑗) be a kernel, let 𝐺 = [𝐺𝑖,𝑗]𝑀𝑖,𝑗=1 be the Gram matrix with elements𝐺𝑖,𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗), ̃𝑏 = (𝑏, . . . , 𝑏)⊤, and let 𝛼 = (𝛼1, . . . , 𝛼𝑀)⊤. We can then write
that Λ(𝑤) = 1𝑀 [12|𝛼⊤𝐺|2 + 𝛼⊤𝐺 ̃𝑏 + 12 ̃𝑏⊤ ̃𝑏 + 𝐶𝛼⊤𝐺𝛼] .

Now, we notice that instead of viewing Λ as a function of 𝑤, we can also
view it as a function of 𝛼. Namely, abusing notation, we writeΛ(𝛼) = 1𝑀 [12|𝛼⊤𝐺|2 + 𝛼⊤𝐺 ̃𝑏 + 12 ̃𝑏⊤ ̃𝑏 + 𝐶𝛼⊤𝐺𝛼] .

The aforementioned expression is called the dual representation, and 𝛼 are
the dual variables.

Setting now the gradient ∇𝛼Λ(𝛼) = 0, we subsequently obtain for the solu-
tion with respect to the dual variables 𝛼𝛼 = −(𝐺 + 2𝐶𝐼)−1 ̃𝑏.

How can this be used for model prediction when a new datapoint 𝑥∗ comes
in? Going back to (4.4) and defining the designmatrixΨ to be thematrix whose𝑘th column is given by 𝜓(𝑥𝑘) gives𝑤 = Ψ𝛼,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

66 4. From the Perceptron Model to Kernels to Neural Networks

giving for the correspondingmodel’s prediction 𝑦∗ (we assume 𝑏 is known here
for convenience) 𝑦∗ = 𝑤⊤𝜓(𝑥∗) + 𝑏 = 𝛼⊤Ψ⊤𝜓(𝑥∗) + 𝑏.

Note that in the last display, Ψ⊤𝜓(𝑥∗) is simply the vector with elements𝐾(𝑥𝑖, 𝑥∗).
Therefore, we have obtained that the linear regression problem can be for-

mulated simply in terms of the Gram matrix 𝐺 (through the dual variables 𝛼)
and the kernel function 𝐾. Hence, as we show with the perceptron model in
Section 4.3, in the linear regression setting we can work explicitly with the
kernel function 𝐾. Then, thinking in the reverse direction, if we do indeed
workwith the kernel formulation, thenMercer’s theoremguarantees that there
would be a feature space to which the chosen kernel 𝐾 corresponds.

4.5. From Kernels to Neural Networks

In the previous sections, we show that linear models such as linear regression
and the perceptron can bewritten in the dual representation in terms of aGram
matrix 𝐺, or equivalently (in these cases) in terms of a kernel 𝐾. Mercer’s the-
orem says that if 𝐾 satisfies certain properties, then there is a feature space to
which 𝐾 corresponds.

A natural question arises. Is there a practical way to understand the under-
lying feature space? How could we choose 𝜓 representing the feature space?

We take the perspective of learning the feature vectors 𝜓 instead of fixing
them a priori! This is one of the key ideas behind deep learning.

In the case of the perceptron we saw that

𝔪(𝑥; 𝜃) = sign(𝑐 ⋅ 𝜓(𝑥)) = sign(𝑁∑𝑛=1 𝑐𝑛𝜓𝑛(𝑥)) ,
where 𝑐 = (𝑐1, . . . , 𝑐𝑁) are weights and 𝜓(𝑥) = (𝜓1(𝑥), . . . , 𝜓𝑁(𝑥)) are features.

Let us set 𝜓(𝑥) = 𝜎(𝑤⋅𝑥) for a (potentially) unknownmatrix𝑤. Ourmodel
now has become 𝔪(𝑥; 𝑐, 𝑤) = sign(𝑐 ⋅ 𝜎(𝑤 ⋅ 𝑥)),
and we want to augment 𝜃 to include 𝑤 as an unknown parameter. We define𝜃 = (𝑐1, . . . , 𝑐𝑁 , 𝑤1, . . . , 𝑤𝑁), and we instead consider the model

𝔪(𝑥; 𝜃) = sign(𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥)) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4.6. Brief Concluding Remarks 67

We can define the features to be 𝜓𝑛(𝑥) = 𝜎(𝑤𝑛 ⋅ 𝑥). We then find 𝜃 through
the operation

𝜃∗ = argmin𝜃=(𝑐,𝑤)∈Θ 1𝑀 𝑀∑𝑚=1 𝜆 (𝑦𝑚,
𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥𝑚)) ,

where 𝜆 could for example be the hinge loss that we saw earlier (or the logistic
loss or any other loss function of our choice).

The latter step of modeling 𝜓𝑛(𝑥) = 𝜎(𝑤𝑛 ⋅ 𝑥) and considering 𝜃 = (𝑐, 𝑤)
as the parameter to be learned is very consequential. The problem suddenly
becomes (a) nonlinear, (b) nonconvex, and (c) high dimensional. Indeed:• nonlinear: the model is now a nonlinear function of (𝑐, 𝑤).• nonconvex: the optimizationwith respect to 𝑐was a convex problem,

whereas now the optimizationwith respect to the augmented variable(𝑐, 𝑤) is a nonconvex problem.• high dimensional: previously we were only dealing with the vector𝑐, whereas now we also need to learn the matrix 𝑤.
In fact,𝔪(𝑥; 𝜃) = sign(∑𝑁𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥)) is a neural network!

4.6. Brief Concluding Remarks

The conception of the perceptronmodel by Rosenblatt in 1958 [Ros58] was one
of the biggest milestones in the development of neural network-based artificial
intelligence. The book [MP17] goes deeper into the properties of perceptron
learning.

Kernel methods for pattern analysis and statistical learning is a huge and
verywell-developed subject. Kernel functions enable us to be able toworkwith
lower-dimensional algorithms and play a central role in the problem of linear
approximation in the high-dimensional limit. Excellent texts that significantly
expand on the topic of kernel methods include [STC04,Bis06,HTF10,Bac24].
There, kernel methods are discussed and analyzed for generic statistical and
machine learning problems (not necessarily specific to deep learning).

The reader who is interested in how kernel methods compare to neural
network-based methods is referred to [GMMM20] and the references therein.
In particular, a number of empirical studies has shown that for many tasks,
suitable kernel-based methods can replace neural network-based methods
without much of a decline in performance. On the other hand, it has also
been shown that neural networks suffer less from the curse of dimensionality
and can approximate functions which cannot be learned through kernel-based
methods.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

68 4. From the Perceptron Model to Kernels to Neural Networks

Our goal in this chapter was more modest. Our exploration of kernels
was centered around the objective of motivating the formulation of neural net-
works. The goal was to demonstrate in an intuitive way that the kernel for-
mulation motivates the passage from linear problems to nonlinear problems,
leading to the neural network formulation.

As we demonstrated in this chapter, kernels can motivate the formulation
of neural networks; see also the lecture notes [Cha22] for a related discussion
that partially also motivated aspects of the presentation in Sections 4.3 and 4.5,
as well as [Bis06] for a related discussion regarding Section 4.4. In Chapter 5
we introduce one of the main classes of neural networks, that of feed forward
neural networks, which is the building block for many of the deep learning
algorithms.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 5

Feed Forward
Neural Networks

5.1. Introduction

Feed forward networks can be thought of as compositions of logistic regres-
sion operators, which themselves are a composition of linear regression and
the logistic function 𝑆.

To handle the higher-dimensional framework of feed forward networks,
let’s overload functions by vectorizing them (which numpy naturally does in
Python). If 𝜙 ∶ ℝ → ℝ, we define

𝜙 ⎛⎜⎜⎝
⎛⎜⎜⎝
𝑥1𝑥2⋮𝑋𝑁
⎞⎟⎟⎠
⎞⎟⎟⎠
def= ⎛⎜⎜⎝

𝜙(𝑥1)𝜙(𝑥2)⋮𝜙(𝑥𝑁)
⎞⎟⎟⎠ ,

i.e., 𝜙 of a vector is defined as 𝜙 applied to the elements of the vector. A feed
forward neural network 𝔪(𝑥; 𝜃) chains together some parts of the models of
multiclass prediction of Chapter 3.

Let’s build what amounts to a feed forward network with two internal lay-
ers of dimensions 3 and 4 with internal activation functions of tanh. Let’s also
use a 𝖱𝖾𝖫𝖴 for the final layer, where

𝖱𝖾𝖫𝖴(𝑥) def= max{𝑥, 0}, 𝑥 ∈ ℝ.
69

10.1090/gsm/252/05

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

70 5. Feed Forward Neural Networks

Let’s define

(5.1)

𝐷0 = 2,𝐷1 = 3,𝐷2 = 4,𝐷3 = 1.
For 𝑛 ∈ {1, 2, 3} and𝑊𝑛 ∈ ℝ𝐷𝑛×𝐷𝑛−1 (i.e., amatrix of dimensions𝐷𝑛×𝐷𝑛−1)

and 𝐵𝑛 ∈ ℝ𝐷𝑛 , define the linear mapping 𝐿(𝑛)𝑊𝑛,𝐵𝑛 ∶ ℝ𝐷𝑛−1 → ℝ𝐷𝑛 as
𝐿(𝑛)𝑊𝑛,𝐵𝑛(𝑥) def= 𝑊𝑛𝑥 + 𝐵𝑛, 𝑥 ∈ ℝ𝐷𝑛−1 .

For a parameter vector

𝜃 def= (𝑊1, 𝐵1,𝑊2, 𝐵2,𝑊3, 𝐵3)
in the parameter space Θ = ℝ𝐷1×𝐷0 × ℝ𝐷1 × ℝ𝐷2×𝐷1 × ℝ𝐷2 × ℝ𝐷3×𝐷2 × ℝ𝐷3 ,
let’s define the feed forward neural network𝔪(𝑥; 𝜃) def= 𝖱𝖾𝖫𝖴 (𝐿(3)𝑊3,𝐵3 (tanh(𝐿(2)𝑊2,𝐵2 (tanh(𝐿(1)𝑊1,𝐵1(𝑥)))))) , 𝑥 ∈ ℝ𝐹 .

To be very specific, if

(5.2) 𝜃 = ⎛⎜⎜⎝(
1 −32 4−6 0) , (

−20−1) ,
⎛⎜⎜⎝
−1 −2 06 7 −15 6 −20 1 −2

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
41−23
⎞⎟⎟⎠ , (5 −1 1 0) , 6⎞⎟⎟⎠ ,

then 𝔪(𝑥; 𝜃)
= 𝖱𝖾𝖫𝖴 ⎛⎜⎜⎝(5 −1 1 0) tanh⎛⎜⎜⎝

⎛⎜⎜⎝
−1 −2 06 7 −15 6 −20 1 −2

⎞⎟⎟⎠ tanh((
1 −32 4−6 0) (𝑥1𝑥2)

+(−20−1)) +
⎛⎜⎜⎝
41−23
⎞⎟⎟⎠
⎞⎟⎟⎠ + 6⎞⎟⎟⎠ .(5.3)

In practice we would rarely write out the parameter vector 𝜃; we here hope
that a fully expressed simple example will make things very concrete. We also
remark that this example is a special case of the generic formula (1.1) for feed
forward neural networks, which is the composition of layers of linear trans-
formations and nonlinear functions. Oftentimes, it is customary to represent
neural networks schematically, as in Figure 5.1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.1. Introduction 71

Figure 5.1. A schematic representation of a feed forward neural network
with two hidden layers

In Figure 5.1 the vertices on the left represent the input data 𝑥1, . . . , 𝑥5. The
two sets of vertices in the middle represent the two hidden layers, composed
of hidden units. The arrows represent linear transformation of the inputs (ei-
ther input feature data at the beginning or hidden units in what follows). The
vertex on the far right represents the neural network output. Note that in a
feed forward neural network any single input affects all the subsequent hidden
layers.

Given our training data 𝒟, which is a multiset in ℝ2 × ℝ, we might want
to define an error function

ℓ𝑦(𝑦′) def= (𝑦 − 𝑦′)2 , 𝑦′ ∈ ℝ,
for 𝑦 ∈ ℝ and then define the per-datapoint loss

(5.4) 𝜆(𝑥,𝑦)(𝜃) def= ℓ𝑦 (𝔪(𝑥; 𝜃)) ,
for (𝑥, 𝑦) ∈ 𝒟 and 𝜃 ∈ Θ. Finally, we define the average loss function

Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃), 𝜃 ∈ Θ.
The model (5.3) leads to several natural questions:

(1) How can we improve our choice (5.2) of parameters?
(2) Did we choose the number (2) of internal layers well?
(3) Did we choose the dimensions (3 and 4) of the internal layers well?
(4) Did we choose the internal activation functions (tanh) well?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

72 5. Feed Forward Neural Networks

We can use gradient descent to address the first question; this is typically called
training. The second and third questions are typically thought of as hyperpa-
rameter selection, and it is typically addressed via validation procedures, see
Chapter 11.

5.2. Truth Tables

Feed forward networks are one of the core architectures of deep neural net-
works. In practice, one selects the number of layers and their internal dimen-
sions (i.e., (5.1)), the activation functions (i.e., tanh and 𝖱𝖾𝖫𝖴), and the loss
function (i.e., (5.4)), and then implements these in code.

In this section, we explore a nontrivial neural network without needing to
explicitly compute the neural network. We also show using explicit basic con-
structions that linear combinations of indicators of rectangles can approximate
generic functions. The latter can be viewed as a precursor to thewell-developed
universal approximation theory for neural networks that we explore in Chapter
16.

To make sure that we fully understand the basics, let’s see how to imple-
ment two-dimensional truth tables as neural networks.

As an example, let’s consider training data consisting of a Gaussian collec-
tion of points in the (𝑥, 𝑦) plane. Let’s assume that the statistics of the 𝑥 and 𝑦
coordinates have independent standard normal distribution. Let’s assume that
the points in the first quadrant (where 𝑥 and 𝑦 are both positive) have label 1
and the others have label 0. See Figure 5.2. We would like to train a neural
network to recover the rule underlying these labeled data. Namely, we want to
construct an analogue of (5.3) which approximates the labeling map

(5.5) (𝑥, 𝑦) ↦ {1 if 𝑥 ≥ 0 and 𝑦 ≥ 00 else
= 𝟏ℝ+×ℝ+(𝑥, 𝑦).

Given that there are four quadrants (see Figure 5.3), there are 24 = 16
possible labeling maps depending only on quadrant. Several benefits accrue
from thinking through how to implement a number of these labeling maps in
neural networks.• It is a generic problem: any function can be approximated by a lin-

ear combination of indicators of rectangles (i.e., andmaps, similar to
(5.5)), see [RF10].• We can use theoretically derived representations of neural networks
as points of comparison for computationally derived representations.• The labeling map (5.5) is an and map (it assigns label 1 when 𝑥 > 0
and 𝑦 > 0). More complicated truth tables can be decomposed into

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 73

Figure 5.2. First quadrant

Figure 5.3. Quadrants

and, or, and not. More complicated logic should require deeper net-
works.

A basic building block will be an approximation of the step function 𝟏ℝ+ .
For 𝜀 > 0, define

𝑆𝜀(𝑥) def= 𝑆 (𝑥𝜀) = 𝑒𝑥/𝜀1 + 𝑒𝑥/𝜀 , 𝑥 ∈ ℝ.
Then 𝟏ℝ+(𝑥) ≈ 𝑆𝜀(𝑥)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

74 5. Feed Forward Neural Networks

Figure 5.4. Scaled and reversed logistic functions

Figure 5.5. Degenerate cases

for (almost) 𝑥 ∈ ℝ as 𝜀 ↘ 0; see Figure 5.4. We can also write𝟏ℝ−(𝑥) ≈ 𝑆𝜀(−𝑥)𝟏ℝ−(𝑥) ≈ 1 − 𝑆𝜀(𝑥)
for (almost) all 𝑥 ∈ ℝ as 𝜀 ↘ 0. Thus, it should not surprise us that various
representations will not be unique.

Let’s start with some degenerate cases. Let’s assume that all ground-truth
datapoints are labeled 0; see Figure 5.5. We might write𝟏∅(𝑥, 𝑦) = 𝑆𝜀(−1)
for all (𝑥, 𝑦) ∈ ℝ2 as 𝜀 ↘ 0; i.e., the underlying labeling map generating the
data is approximated by 𝑆𝜀(−1). In fact, 𝜀 ↘ 0, 𝑆𝜀(𝑧) ≈ 0 for all 𝑧 < 0; for
simplicity, let us take 𝑧 = −1. Alternately, if all ground-truth points are labeled
1, we might write 𝟏ℝ2(𝑥, 𝑦) ≈ 𝑆𝜀(1)
for all (𝑥, 𝑦) ∈ ℝ2 as 𝜀 ↘ 0.

We might next consider half-planes. Assume that all ground-truth data-
points (𝑥, 𝑦) ∈ ℝ2 with 𝑥 > 0 (i.e., the right half-plane) are labeled 1, and all
ground-truth points (𝑥, 𝑦) ∈ ℝ2 with 𝑥 < 0 (the left half-plane); see Figure 5.6.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 75

Figure 5.6. Half-planes

Let’s here write 𝟏ℝ+×ℝ(𝑥, 𝑦) ≈ 𝑆𝜀(𝑥)
as 𝜀 ↘ 0. Similarly, we can write𝟏ℝ−×ℝ(𝑥, 𝑦) ≈ 𝑆𝜀(𝑥),𝟏ℝ×ℝ+(𝑥, 𝑦) ≈ 𝑆𝜀(𝑦),𝟏ℝ×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀(−𝑦).

Let’s now dive into a more interesting ground-truth set. Let’s assume that
all ground-truth datapoints (𝑥, 𝑦) in the first quadrant ℝ+ × ℝ+ are labeled 1,
and the rest are labeled 0 (see Figure 5.2). Ignoring points on the axes, and
assuming that 𝜀 ≪ 1, let’s calculate that
(5.6)

𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) ≈ ⎧⎨⎩
2 if (𝑥, 𝑦) ∈ ℝ+ × ℝ+ (1st quadrant)1 if (𝑥, 𝑦) ∈ (ℝ+ × ℝ−) ∪ (ℝ− × ℝ+) (2nd, 4th quadrants)0 if (𝑥, 𝑦) ∈ ℝ− × ℝ− (3rd quadrant).

We can then single out the first quadrant as the collection of points (𝑥, 𝑦)
where 𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) > 3/2 (and actually we could replace 3/2 with any number
in (1, 2)). Let us implement applying a shift 𝑧 ↦ 𝑆𝜀 (𝑧 − 3/2) of 𝑆𝜀. Namely,

𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) ≈ {1 if (𝑥, 𝑦) ∈ ℝ+ × ℝ+ (the first quadrant)0 else≈ 𝟏ℝ+×ℝ+(𝑥, 𝑦).(5.7)
Returning to (5.6), we note that we can replace 3/2 with any shift 𝑧 ∈ (1, 2),
as least in the regime where 𝜀 ↘ 0. Specific values of 𝑧 and 𝜀 naturally come

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

76 5. Feed Forward Neural Networks

Figure 5.7. The first quadrant

fromminimizing a loss function which matches the model to training data. In
a certain regime, this loss function should thus be (asymptotically and locally)
independent of 𝑧. Without delving into a more precise formulation, this nev-
ertheless suggests that loss functions in deep neural networks may in practice
be approximately constant along lower-dimensional submanifolds.

Let’s next assume that the points (𝑥, 𝑦) in our ground-truth dataset are la-
beled 1 only in the fourth quadrantℝ+×ℝ−; see Figure 5.8. We can reflect the
above calculations for the first quadrant across the 𝑥 axis to get
(5.8) 𝟏ℝ+×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(−𝑦) − 3/2) .

Using the symmetry of 𝑆, we of course also have that
(5.9) 𝟏ℝ+×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀(𝑥) + {1 − 𝑆𝜀(𝑦)} − 3/2) = 𝑆𝜀 (𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) − 1/2) .

This reflects the analogue of (5.6):

𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) ≈ ⎧⎪⎨⎪⎩
1 − 1 if (𝑥, 𝑦) ∈ ℝ+ × ℝ+ (1st quadrant)0 − 1 if (𝑥, 𝑦) ∈ ℝ+ × ℝ+ (2nd quadrant)0 − 0 if (𝑥, 𝑦) ∈ ℝ− × ℝ− (3rd quadrant)1 − 0 if (𝑥, 𝑦) ∈ ℝ+ × ℝ− (4th quadrant)

= ⎧⎨⎩
0 if (𝑥, 𝑦) ∈ (ℝ+ × ℝ+) ∪ (ℝ− × ℝ−) (1st and 3rd quadrants)−1 if (𝑥, 𝑦) ∈ ℝ+ × ℝ+ (2nd quadrant)1 if (𝑥, 𝑦) ∈ ℝ+ × ℝ− (4th quadrant).

Here, the shifted logistic map 𝑧 ↦ 𝑆𝜀 (𝑧 − 1/2) allows us to single out the
fourth quadrant.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 77

Figure 5.8. The fourth quadrant

Remark 5.1. A fairly profound consequence follows. Deep neural networks
(as almost all other machine learning procedures) depend upon minimizing a
loss function to best match coefficients to training data. We should not expect
this loss function to have a unique minimum. In our example here of selecting
a quadrant in ℝ2 (a logical and), the loss function should have (at least) two
minima, corresponding to (5.8) and (5.9).

We can of course easily generalize to the second and third quadrants:𝟏ℝ−×ℝ+(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(𝑦) − 3/2) = 𝑆𝜀 (−𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 1/2)𝟏ℝ−×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 3/2) = 𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(−𝑦) + 1/2) .
We can of course take complements. Let’s assume that all ground-truth

datapoints (𝑥, 𝑦) in the first quadrant ℝ+ × ℝ+ are labeled 0, and the rest are
labeled 1 (see Figure 5.9). Naturally,𝟏ℝ2⧵(ℝ+×ℝ+)(𝑥, 𝑦) ≈ 1 − 𝟏ℝ+×ℝ+(𝑥, 𝑦) = 1 − 𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) .

To be parallel to our other representations (where the last layer is 𝑆𝜀), let’s
again use the symmetry of 𝑆𝜀 to write𝟏ℝ2⧵(ℝ+×ℝ+)(𝑥, 𝑦) ≈ 𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) + 3/2) .
Similarly,𝟏ℝ2⧵(ℝ+×ℝ−)(𝑥, 𝑦) ≈ 𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(−𝑦) + 3/2) = 𝑆𝜀 (−𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) + 1/2) ,𝟏ℝ2⧵(ℝ−×ℝ+)(𝑥, 𝑦) ≈ 𝑆𝜀 (−𝑆𝜀(−𝑥) − 𝑆𝜀(𝑦) + 3/2) = 𝑆𝜀 (𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) + 1/2) ,𝟏ℝ2⧵(ℝ−×ℝ−)(𝑥, 𝑦) ≈ 𝑆𝜀 (−𝑆𝜀(−𝑥) − 𝑆𝜀(−𝑦) + 3/2)= 𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 1/2) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

78 5. Feed Forward Neural Networks

Figure 5.9. Complement of the first quadrant

Finally, let’s consider opposing quadrants. Assume that all ground-truth
datapoints (𝑥, 𝑦) in eitherℝ+×ℝ+ orℝ−×ℝ− are labeled 1, and the remaining
points (in ℝ+ × ℝ− and ℝ− × ℝ+, i.e., the second and fourth quadrants) are
labeled 0; see Figure 5.11. We can then write𝟏(ℝ+×ℝ+)∪(ℝ−×ℝ−)(𝑥, 𝑦) ≈ 𝟏ℝ+×ℝ+(𝑥, 𝑦) + 𝟏ℝ−×ℝ−(𝑥, 𝑦)≈ 𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) + 𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 3/2) .(5.10)

We are approximating 𝟏(ℝ+×ℝ+)∪(ℝ−×ℝ−) as the sum of two functions which take
values in (0, 1). We have no assurance that this sum will take values in (0, 1),
particularly in the transition region near the origin (0, 0). We would also like
the output of our approximate labeling map to be in (0, 1). Consider the map
(5.11) 𝑧 ↦ 𝑆𝜀 (𝑧 − 1/2) .

This function approximates the identity map on {0, 1}, and takes values in(0, 1) (i.e., it clips values greater than 1). Let’s replace (5.10) with𝟏(ℝ+×ℝ+)∪(ℝ−×ℝ−)(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2)+𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 3/2) − 1/2) .(5.12)

We can of course similarly write𝟏(ℝ+×ℝ−)∪(ℝ−×ℝ+)(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(−𝑦) − 3/2)+𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(𝑦) − 3/2) − 1/2) .(5.13)

The representations (5.12) and (5.13) have three layers of compositions of𝑆𝜀. Using (5.11), we can of course rewrite all of our representations with three
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 79

Figure 5.10. Clipping function

Figure 5.11. The first and third quadrants

layers. Collecting everything together, we have (for 𝜀 ≪ 1)

(5.14)

𝟏∅(𝑥, 𝑦) = 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−1) − 1/2) − 1/2) ,𝟏ℝ2(𝑥, 𝑦) = 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(1) − 1/2) − 1/2) ,𝟏ℝ+×ℝ(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) − 1/2) − 1/2) ,𝟏ℝ−×ℝ(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−𝑥) − 1/2) − 1/2) ,𝟏ℝ×ℝ+(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑦) − 1/2) − 1/2) ,𝟏ℝ×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−𝑦) − 1/2) − 1/2) ,𝟏ℝ+×ℝ+(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) − 1/2) ,𝟏ℝ+×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(−𝑦) − 3/2) − 1/2)= 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) − 1/2) − 1/2) ,𝟏ℝ−×ℝ+(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(𝑦) − 3/2) − 1/2)= 𝑆𝜀 (𝑆𝜀 (−𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 1/2) − 1/2) ,𝟏ℝ−×ℝ−(𝑥, 𝑦) ≈ 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 3/2) − 1/2)= 𝑆𝜀 (𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(−𝑦) + 1/2) − 1/2) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

80 5. Feed Forward Neural Networks

This allows us to represent two-dimensional truth tables as compositions
of affine transformations and scaled logistic functions.

Define 𝐷0 = 2,𝐷1 = 2,𝐷2 = 2,𝐷3 = 1.
For 𝑛 ∈ {1, 2, 3} and𝑊𝑛 ∈ ℝ𝐷𝑛×𝐷𝑛−1 and 𝐵𝑛 ∈ ℝ𝐷𝑛 , define

𝐿(𝑛)𝑊𝑛,𝐵𝑛(𝑋) def= 𝑊𝑛𝑋 + 𝐵𝑛, 𝑋 ∈ ℝ𝐷𝑛−1 .
For a parameter vector

𝜃 def= (𝑊1, 𝐵1,𝑊2, 𝐵2,𝑊3, 𝐵3)
in the parameter space Θ = ℝ𝐷1×𝐷0 × ℝ𝐷1 × ℝ𝐷2×𝐷1 × ℝ𝐷2 × ℝ𝐷3×𝐷2 × ℝ𝐷3 ,
define for (𝑥, 𝑦) ∈ ℝ2

𝔪((𝑥𝑦) ; 𝜃) def= 𝑆𝜀 (𝐿(3)𝑊3,𝐵3 (𝑆𝜀 (𝐿(2)𝑊2,𝐵2 (𝑆𝜀 (𝐿(1)𝑊1,𝐵1 ((𝑥𝑦))))))) .
Let’s start to go through the representations of (5.14), starting with 𝟏∅ and𝟏ℝ2 . Let’s take

(5.15)

𝑊 (1) = (0 00 0) , 𝐵(1),± = (±1±1)/𝜀,
𝑊 (2) = (1 00 1)/𝜀, 𝐵(2) = −(1/21/2)/𝜀,
𝑊 (3) = (1/2 1/2) /𝜀, 𝐵(3) = −1/2𝜀.

Then

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1),±) = 𝑆 ((0 00 0) (𝑥𝑦) + (±1/𝜀±1/𝜀)) = (𝑆𝜀(±1)𝑆𝜀(±1)) ,
𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) = 𝑆 ((1/𝜀 00 1/𝜀) (𝑆𝜀(±1)𝑆𝜀(±1)) − (1/2𝜀1/2𝜀))

= 𝑆 ((𝑆𝜀(±1) − 1/2𝑆𝜀(±1) − 1/2)/𝜀)
= (𝑆𝜀 (𝑆𝜀(±1) − 1/2)𝑆𝜀 (𝑆𝜀(±1) − 1/2)) ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 81

and

𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
= 𝑆 ((1/2𝜀 1/2𝜀) (𝑆𝜀 (𝑆𝜀(±1) − 1/2)𝑆𝜀 (𝑆𝜀(±1) − 1/2)) − 1/2𝜀)= 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(±1) − 1/2) − 1/2)
≈ {𝟏ℝ2(𝑥, 𝑦) if input is +1𝟏∅(𝑥, 𝑦) if input is −1.

The choice (5.15) of parameters directly implemented the first two lines of
(5.14). We might also set

(5.16) 𝑊 (3) = (0 0) /𝜀 and 𝐵(3) = −1/2𝜀,
and we can then take 𝑊 (1), 𝐵(1), 𝑊 (2), and 𝐵(2) to be any elements of ℝ2×1,ℝ2, ℝ2×2, and ℝ2, respectively. This of course implies both a degenerate loss
function (which does not depend on (𝑊 (1), 𝐵(1),𝑊 (2), or 𝐵(2) as long as (5.16)
holds), and which has multiple global minima (at (5.15) and (5.16)).

Let’s next consider the truth table which differentiates between the right-
and left-hand planes. Let’s consider 𝟏ℝ+×ℝ, and take

𝑊 (1) = (1 00 0)/𝜀, 𝐵(1) = (00)/𝜀,
𝑊 (2) = (1 00 0)/𝜀, 𝐵(2) = −(1/20)/𝜀,
𝑊 (3) = (1 0) /𝜀, 𝐵(3) = −1/2𝜀.

Then

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) = 𝑆 ((1/𝜀 00 0) (𝑥𝑦) + (00))
= 𝑆 ((𝑥/𝜀0)) = (𝑆𝜀(𝑥)𝑆(0)) ,

𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) = 𝑆 ((1/𝜀 00 0) (𝑆𝜀(𝑥)𝑆(0)) − (1/2𝜀0))
= 𝑆 ((𝑆𝜀(𝑥) − 1/20)/𝜀)
= (𝑆𝜀 (𝑆𝜀(𝑥) − 1/2)𝑆(0)) ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

82 5. Feed Forward Neural Networks

and

𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
= 𝑆 ((1/𝜀 0) (𝑆𝜀 (𝑆𝜀(𝑥) − 1/2)𝑆(0)) − 1/2𝜀)= 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) − 1/2) − 1/2) ≈ 𝟏ℝ+×ℝ(𝑥, 𝑦).

Similar representations hold for the indicators of the upper, left, and lower
half-planes.

Thirdly, we can represent the indicator of the first quadrant. Let’s consider𝟏ℝ+×ℝ+ and take

𝑊 (1) = (1 00 1)/𝜀, 𝐵(1) = (00) ,
𝑊 (2) = (1 10 0)/𝜀, 𝐵(2) = −(3/20)/𝜀,
𝑊 (3) = (1 0) /𝜀, 𝐵(3) = −1/2𝜀.

Then

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) = 𝑆 ((1/𝜀 00 1/𝜀) (𝑥𝑦) + (00)) = 𝑆 ((𝑥/𝜀𝑦/𝜀)) = (𝑆𝜀(𝑥)𝑆𝜀(𝑦)) ,
𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) = 𝑆 ((1/𝜀 1/𝜀0 0) (𝑆𝜀(𝑥)𝑆𝜀(𝑦)) − (3/2𝜀0))

= 𝑆 ((𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/20)/𝜀)
= (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2)𝑆(0)) ,

and

𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
= 𝑆 ((1/𝜀 0) (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2)𝑆(0)) − 1/2𝜀)= 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) − 1/2) ≈ 𝟏ℝ+×ℝ+(𝑥, 𝑦).

Similar calculations hold for representations of indicators of other quad-
rants. Let’s next represent the indicator of the complement of a single quadrant.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.2. Truth Tables 83

To approximate 𝟏ℝ2⧵(ℝ−×ℝ+ , let’s take

𝑊 (1) = (−1 00 −1)/𝜀, 𝐵(1) = (00) ,
𝑊 (2) = (1 10 0)/𝜀, 𝐵(2) = −(1/20)/𝜀,
𝑊 (3) = (1 0) /𝜀, 𝐵(3) = −1/2𝜀.

Then

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) = 𝑆 ((−1/𝜀 00 −1/𝜀) (𝑥𝑦) + (00))
= 𝑆 ((−𝑥/𝜀−𝑦/𝜀)) = (𝑆𝜀(−𝑥)𝑆𝜀(−𝑦)) ,𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) = 𝑆 ((1/𝜀 1/𝜀0 0) (𝑆𝜀(−𝑥)𝑆𝜀(−𝑦)) − (1/2𝜀0))
= 𝑆 ((𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 1/20)/𝜀)
= (𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 1/2)𝑆(0)) ,

and

𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
= 𝑆 ((1/𝜀 0) (𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 1/2)𝑆(0)) − 1/2𝜀)= 𝑆𝜀 (𝑆𝜀 (𝑆𝜀(−𝑥) + 𝑆𝜀(−𝑦) − 1/2) − 1/2)≈ 𝟏ℝ2⧵(ℝ+×ℝ+)(𝑥, 𝑦).

Finally, let’s consider opposing quadrants. To approximate 𝟏(ℝ+×ℝ+)∪(ℝ−×ℝ−),
let’s take

𝑊 (1) = (1 00 1)/𝜀, 𝐵(1) = (00) ,
𝑊 (2) = (1 1−1 −1)/𝜀, 𝐵(2) = (−3/21/2)/𝜀,
𝑊 (3) = (1 1) /𝜀, 𝐵(3) = −1/2𝜀.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

84 5. Feed Forward Neural Networks

Then, we have

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) = 𝑆 ((1/𝜀 00 1/𝜀) (𝑥𝑦) + (00)) = 𝑆 ((𝑥/𝜀𝑦/𝜀)) = (𝑆𝜀(𝑥)𝑆𝜀(𝑦)) ,𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) = 𝑆 ((1/𝜀 1/𝜀−1/𝜀 −1/𝜀) (𝑆𝜀(𝑥)𝑆𝜀(𝑦)) + (− 3/2𝜀1/2𝜀))
= 𝑆 ((𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2−𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) + 1/2)/𝜀)
= (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2)𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) + 1/2)) ,

and

𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
= 𝑆 ((1/𝜀 1/𝜀) (𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2)−𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) − 1/2) − 1/2𝜀)
= 𝑆𝜀(𝑆𝜀 (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 3/2) + 𝑆𝜀 (−𝑆𝜀(𝑥) − 𝑆𝜀(𝑦) + 1/2) − 1/2)≈ 𝟏(ℝ+×ℝ+)∪(ℝ−×ℝ−)(𝑥, 𝑦).

While we might have been a bit too thorough in writing out all of these
cases, hopefully we have driven home the point that (sufficiently) deep neural
networks can implement all logic.

5.3. Numerical Exploration

Some controlled computational experiments might help even more. The code
for these examples can be found at https://mathdl.github.io/.

5.3.1. Half-space. We simulate some labeled data representing 𝟏ℝ+×ℝ (see
Figure 5.6) and then use PyTorch to train a two-layer neural network. We get

(5.17)

𝑊 (1) = (7.380 0.1745.809 0.165) ≈ (6.6 06.6 0) ,
𝐵(1) = (−0.283−0.311) ≈ (00) ,𝑊 (2) = (8.187 5.993) ,𝐵(2) = −6.287.

Let’s see how this compares to our theoretical representations. The first
column of𝑊 (1) seems to be significantly larger than the second, and both ele-
ments of the first column are the same order of magnitude. Building upon this,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathdl.github.io/

5.3. Numerical Exploration 85

𝐵(1) is also small. The first layer of the neural network corresponding to (5.17)
is then about

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) ≈ 𝑆 (((1 01 0) (𝑥𝑦)/𝜀) + (00))
= 𝑆 ((𝑥𝑥)/𝜀) = (𝑆𝜀(𝑥)𝑆𝜀(𝑥))

with 1𝜀 = 7.380 + 5.8092 ≈ 6.595.
The second layer is approximately𝑆 (8.187𝑆𝜀(𝑥) + 5.993𝑆𝜀(𝑦) − 6.287) ≈ 𝑆𝜀′ (𝑆𝜀(𝑥) − 0.443) ,

where 1𝜀′ = 8.187 + 5.993 ≈ 14.180.
We thus approximately have that

(5.18) 𝑆 (𝑊 (2)𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) + 𝐵(2)) ≈ 𝑆𝜀′ (𝑆𝜀(𝑥) − 0.5) ,
which makes sense from our theoretical development.

Let’s continuewith this example, but start with a different initial condition.
We here get

𝑊 (1) = (−4.730 −0.1467.795 0.169) ≈ (−6.3 06.3 0) ,
𝐵(1) = (0.099−0.136) ≈ (00) ,𝑊 (2) = (−5.676 9.608) ,𝐵(2) = −1.754.

Then

𝑆 (𝑊 (1) (𝑥𝑦) 𝐵(1)) ≈ 𝑆𝜀 ((−1 01 0) (𝑥𝑦) + (00)) = 𝑆𝜀 ((−𝑥𝑥))
= (𝑆𝜀(−𝑥)𝑆𝜀(𝑥)) ,

where 1𝜀 = 7.380 + 5.8092 ≈ 6.595.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

86 5. Feed Forward Neural Networks

The second layer is approximately𝑆 (−5.676𝑆𝜀(−𝑥) + 9.608𝑆𝜀(𝑥) − 1.754)≈ 𝑆 (−5.676 + 5.676𝑆𝜀(𝑥) + 9.608𝑆𝜀(𝑥) − 1.754)≈ 𝑆 (15.284𝑆𝜀(𝑥) − 7.43)≈ 𝑆𝜀′ (𝑆𝜀(𝑥) − 0.486) ,
where 1𝜀′ = −5.676 + 9.608 ≈ 15.284.

We again approximately have (5.18).

5.3.2. Quadrant. Let’s do another example. We simulate some labeled data
representing 𝟏ℝ+×ℝ+ (see Figure 5.2), and we then use PyTorch to train a two-
layer neural network. Here we get

𝑊 (1) = (0.096 −7.4747.514 0.063) ≈ (0 −7.57.5 0) ,
𝐵(1) = (−0.2370.054) ≈ (00) ,𝑊 (2) = (−9.638 9.194) ,𝐵(2) = −4.422.

Here𝑊 (1) is approximately a large off-diagonal matrix, and𝑊 (2) is is ap-
proximately a scaled version of a vector of 1’s. Then

𝑆 (𝑊 (1) (𝑥𝑦) + 𝐵(1)) ≈ (𝑆𝜀(−𝑦)𝑆𝜀(𝑥))
with 1𝜀 ≈ 7.2.

The second layer is approximately𝑆 (−9.638𝑆𝜀(−𝑦) + 9.194𝑆𝜀(𝑥) − 4.422)≈ 𝑆 (−9.638 + 9.638𝑆𝜀(𝑦) + 9.194𝑆𝜀(𝑥) − 4.422)≈ 𝑆 (9.638𝑆𝜀(𝑥) + 9.194𝑆𝜀(𝑥) − 14.06)≈ 𝑆𝜀′ (𝑆𝜀(𝑥) + 𝑆𝜀(𝑦) − 1.493)
with 1𝜀′ = −9.638 + 9.1942 ≈ 9.416.
This exactly agrees with (5.7).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.4. Activation Functions 87

Figure 5.12. Logistic function

5.4. Activation Functions

Thus far, we have focused on logistic function nonlinearities. There are a num-
ber of other commonly used activation functions. Informally, activation func-
tions have a linear regime, outside of which they saturate (see Figure 5.12).
Composing activation functions with linear layers, we can represent local lin-
ear transformations; this is strongly reminiscent of a first-order Taylor expan-
sion.

The hyperbolic tangent function

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥𝑒𝑥 + 𝑒−𝑥 , 𝑥 ∈ ℝ,
is often used in internal layers. It is linear near the origin and saturates at ±1;
see Figure 5.13.

Of course the tanh and logistic function 𝑆 are related:
𝑆(𝑥) = 𝑒𝑥1 + 𝑒𝑥 = 𝑒𝑥/2𝑒𝑥/2𝑒𝑥/2 (𝑒𝑥/2 + 𝑒−𝑥/2)

= 𝑒𝑥/2𝑒𝑥/2 + 𝑒−𝑥/2 = 12 (𝑒𝑥/2 + 𝑒−𝑥/2) + (𝑒𝑥/2 − 𝑒−𝑥/2)𝑒𝑥/2 + 𝑒−𝑥/2= 12 {1 + tanh(𝑥/2)} .
This means that the set of compositions of linear layers and logistic func-

tions is equivalent to the set of compositions of linear layers and tanh functions:
5𝑆(6𝑥 + 8) + 7 = 10 (12 {1 + tanh(6𝑥 + 82)}) + 2= 10 tanh(3𝑥 + 4) + 2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

88 5. Feed Forward Neural Networks

Figure 5.13. Tangent function

Figure 5.14. Arctangent function

The arctangent (inverse of tangent) function arctan can play a similar role
as the tanh function, except that it saturates at ±𝜋/2. Since both arctan andtanhhave derivative 1/4 at the origin, we can compare arctan to𝑥↦ 𝜋2 tanh(2𝜋𝑥).
See Figure 5.15.

The 𝖱𝖾𝖫𝖴 (rectified linear unit) function𝑥 ↦ max{𝑥, 0}
is linear for positive argument, but is zero for negative values; see Figure 5.16.
Note that the derivative of the 𝖱𝖾𝖫𝖴 function is the Heaviside function 𝟏ℝ+ .
Gradient descent methods for finding the optimal scaling and shifting of mod-
els involving 𝖱𝖾𝖫𝖴s can thus get stuck in dead zones where the derivative is
zero.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.4. Activation Functions 89

Figure 5.15. arctan and scaled tanh

Figure 5.16. 𝖱𝖾𝖫𝖴 function

Figure 5.17. Heaviside function

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

90 5. Feed Forward Neural Networks

Figure 5.18. 𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌𝛽 activation functions
The Softplus function 𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌 is a (parametrized) approximation of the𝖱𝖾𝖫𝖴 function; see also Exercise 5.1. For 𝛽 > 0,

𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌𝛽(𝑥) def= 1𝛽 ln(1 + 𝑒𝛽𝑥) , 𝑥 ∈ ℝ.
For 𝑥 ≫ 1/𝛽 (typically 𝛽 ≫ 1), 𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌𝛽(𝑥) ≈ 𝑥, while for 𝑥 ≪ −1/𝛽,𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌𝛽(𝑥) ≈ 0. See Figure 5.18. The derivative of 𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌𝛽 is

𝖲𝗈𝖿𝗍𝗉𝗅𝗎𝗌′𝛽(𝑥) = 𝑒𝛽𝑥1 + 𝑒𝛽𝑥 = 𝑆(𝛽𝑥),
i.e., a scaled logistic function (which is strictly positive).

5.5. Brief Concluding Remarks

In this chapter we introduced, probably, the most basic (but not trivial) neural
network architecture, i.e., feed forward neural networks. Part of the success
of deep learning is due to the fact that neural networks are universal approx-
imators. This means that they can approximate any reasonable function. In
Chapter 16 of Part 2 of the book, we present the basic and fundamental results
on universal approximation theory.

In Chapters 19 and 20 of Part 2 of the book, we study scaling limits of
feed forward neural networks, namely the neural tangent kernel (oftentimes
called the linear regime) and mean field scaling (oftentimes called the nonlin-
ear regime). As we shall see there, such results bring more light into how, why,
and when deep learning algorithms work in practice.

Now, the next step after defining feed forward neural networks is to train
them so that we can estimate their parameter 𝜃 ∈ Θ based on observed data.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

5.6. Exercises 91

To do so, we need to be able to quickly compute derivatives of the loss functionΛ(𝜃) with respect to 𝜃. This leads to the backpropagation algorithm, which is
studied in Chapter 6, and to some extent is the backbone of all deep learning
algorithms. The actual training is done via the various versions of the different
gradient descent type of algorithms, studied in Chapters 7 and 8 of Part 1 from
a practical perspective and in Chapters 17 and 18 of Part 2 of the book from a
theoretical perspective.

5.6. Exercises

Exercise 5.1. Let 𝛽 > 0 and consider the function 𝑓𝛽 ∶ ℝ𝑑 ↦ ℝ such that for𝑥 = (𝑥1, . . . , 𝑥𝑑), 𝑓𝛽(𝑥) = 𝛽 ln(𝑒 𝑥1𝛽 +⋯+ 𝑒 𝑥𝑑𝛽) .
Prove that for a given 𝑥 ∈ ℝ𝑑,lim𝛽↓0 𝑓𝛽(𝑥) = max{𝑥1, . . . , 𝑥𝑑}.
What does this result imply for the approximation of 𝖱𝖾𝖫𝖴 activation func-

tions by smooth functions?

Exercise 5.2. Consider the logistic activation function 𝑆(𝑥; 𝑐) = 11+𝑒−𝑐𝑥 . Prove
that for 𝑐 > 0 and for all 𝑥 ∈ ℝ we have 0 ≤ 𝑆′(𝑥; 𝑐) ≤ 𝑐4 .
Exercise 5.3. Construct a two-layer neural network with a sigmoid activation
function which gives• Class 1, if 0 < 𝑦 < 2𝑥 + 3.• Class 0, otherwise.

Exercise 5.4. Construct a two-layer neural network with a sigmoid activation
function which gives• Class 1, if 𝑦 < 2𝑥 + 3 and 𝑥 > 0.• Class 0, otherwise.

Exercise 5.5. Consider the function

𝑓(𝑥) = ⎧⎨⎩
0, 𝑥 < 0,𝑥, 0 ≤ 𝑥 < 1,2𝑥 − 1, 𝑥 ≥ 1.

Write the function 𝑓(𝑥) in the form𝑓(𝑥) = 𝑊 (2)𝖱𝖾𝖫𝖴(𝑊 (1)𝑥 + 𝐵(1)) + 𝐵(2),
for some𝑊 (1), 𝐵(1) ∈ ℝ2×1,𝑊 (2) ∈ ℝ1×2, and 𝐵(2) ∈ ℝ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

92 5. Feed Forward Neural Networks

Exercise 5.6. Consider the function

𝑓(𝑥) = ⎧⎨⎩
−2𝑥, 𝑥 < 0,0, 0 ≤ 𝑥 < 1,3(𝑥 − 1), 𝑥 ≥ 1.

Write the function 𝑓(𝑥) in the form𝑓(𝑥) = 𝑊 (2)𝖱𝖾𝖫𝖴(𝑊 (1)𝑥 + 𝐵(1)) + 𝐵(2)
for some𝑊 (1), 𝐵(1) ∈ ℝ2×1,𝑊 (2) ∈ ℝ1×2, and 𝐵(2) ∈ ℝ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 6

Backpropagation

6.1. Introduction

Neural networks are trained by updating their weights using (stochastic) gra-
dient descent on a desired loss function Λ(𝜃),𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘),
where we denote by 𝜂 the learning rate (which oftentimes depends on the iter-
ation 𝑘 as well).

Backpropagation is an algorithm that allows us to compute ∇Λ(𝜃𝑘) in an
efficient way. It is essentially the chain rule done in an intelligent way. Back-
propagation is a form of an automatic differentiation algorithm. In Chapter 24
we shall discuss automatic differentiation in more detail, while in this chapter
we focus on backpropagation.

Let us assume that we want to compute the derivative 𝜕𝐹(𝐿)(𝜃)𝜕𝜃 of a function𝐹(𝐿) ∶ ℝ𝑑𝜃 ↦ ℝ𝑀 that is the composition of 𝐿 differentiable functions,𝐹(𝐿)(𝜃) = 𝜎𝐿 (𝜎𝐿−1 (𝜎𝐿−2 (⋯𝜎1(𝜎0(𝜃))⋯))) ,
where 𝜎0(𝜃) = 𝜃, 𝜎1 ∶ ℝ𝑑𝜃 ↦ ℝ𝐾 , 𝜎ℓ ∶ ℝ𝐾 ↦ ℝ𝐾 for ℓ = 2, . . . , 𝐿 − 1 and𝜎𝐿 ∶ ℝ𝐾 ↦ ℝ𝑀 . Let us denote the differential operator 𝐷ℓ = 𝜕𝜍ℓ𝜕𝜍ℓ−1 . Then,
using the chain rule, we can write informally𝜕𝐹(𝐿)(𝜃)𝜕𝜃 = 𝐷𝐿𝐷𝐿−1𝐷𝐿−2⋯𝐷1.

Computing the chain rule from inside to outside (that is, first we
compute 𝐷1 followed by 𝐷2, etc.) is usually referred to as the forward mode
of differentiation and, in the case presented here, it has a cost of the order of𝒪 (𝐾2𝑑𝜃 + (𝐿 − 2)𝐾2𝑑𝜃 +𝑀𝐾𝑑𝜃).

93

10.1090/gsm/252/06

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

94 6. Backpropagation

Computing the chain rule from outside to inside (that is, first we compute𝐷𝐿 followed by 𝐷𝐿−1, etc.) to obtain 𝜕𝐹(𝐿)(𝜃)𝜕𝜃 is usually referred to as the reverse
mode of differentiationwhich, in the case presented here, has a cost of the order
of 𝒪 (𝐾2𝑑𝜃 + (𝐿 − 2)𝐾2𝑀 +𝑀𝐾𝑑𝜃).

By comparing the two costs, we see that• Forward mode is better if𝑀 > 𝑑𝜃.• Reverse mode is better if𝑀 < 𝑑𝜃.
In deep learning, the dimension of the parameter space is typically much

larger than the dimension of the output space. Hence, reverse mode differ-
entiation is preferable. As a matter of fact, backpropagation is an example of
reverse mode differentiation.

In this chapter, we derive the backpropagation formula for calculating the
gradient of a loss function with respect to the model parameters. We start with
an example of a neural networkwith one hidden layer that has one neuron (the
simplest possible case!) in Section 6.2. Section 6.3 has a slightly more general
case of a feed forward neural network with two layers and a two-dimensional
input. Backpropagation for general feed forward neural networks is presented
in Section 6.4. Then, in Section 6.5 we present backpropagation in the context
of learning. A common issue in training neural network models is the van-
ishing gradient problem that we describe in the setting of backpropagation in
Section 6.6. We will visit backpropagation again in Chapters 7 and 8 when we
formally discuss stochastic gradient descent for shallow and deep neural net-
works, respectively, as well as in Chapter 13 when we discuss recurrent neural
networks.

6.2. Introductory Example

Let us consider first the simplest possible case: one hidden layer with one neu-
ron. Let 𝜃 = (𝑐, 𝑤)⊤ and Λ(𝜃) = 12 (𝑦 − 𝑐𝜎(𝑤 ⋅ 𝑥))2, where 𝜎 is some sufficiently
smooth activation function. By the chain rule, the derivatives of the loss func-
tion with respect to the unknown parameters are𝜕Λ𝜕𝑐 = (𝑦 − 𝑐𝜎(𝑤 ⋅ 𝑥))(−𝜎(𝑤 ⋅ 𝑥))𝜕Λ𝜕𝑤 = (𝑦 − 𝑐𝜎(𝑤 ⋅ 𝑥))(−𝑐𝜎′(𝑤 ⋅ 𝑥))𝑥.

Let us define 𝑍 = 𝑤 ⋅ 𝑥 and 𝐻 = 𝜎(𝑍). The idea of backpropagation (see
[RHW86] for one of the first related applications to learning neural networks)
is the following:

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6.2. Introductory Example 95

(1) The quantities 𝑍 and (𝑦 − 𝑐𝐻) are computed many times, so storing
them and reusing them is a good idea. For instance, in the computa-
tion above, the same quantities appear in both derivatives. Hence we
can compute them once, store them, and reuse them.

(2) Quantities like (𝑦 − 𝑐𝐻),𝐻 = 𝜎(𝑍), and 𝑍 can be viewed as outputs of
consecutive layers. We need to be good with bookkeeping!

(3) There are two general steps: forward computation and backward com-
putation. Activations are computed forward, sensitivities, i.e., deriva-
tives, are computed backward.

Forward computation iswhere activations are computed from inside to out-
side. 𝑍 = 𝑤 ⋅ 𝑥,𝐻 = 𝜎(𝑍),𝔪 = 𝑐 ⋅ 𝐻,Λ = 12(𝑦 −𝔪)2.

Backward computation is where sensitivities are computed from outside to
inside. We shall write 𝜕Λ𝜕𝑍 = 𝛿 to denote the derivative (sensitivity) of the loss
function with respect to a given layer. Sometimes in the literature, the 𝛿 sensi-
tivities will be defined to be derivatives with respect to𝐻 = 𝜎(𝑍) (see Chapters
7 and 8 for related examples) instead of being with respect to 𝑍. However, both
formulations are essentially equivalent, given that one is a direct function of
the other one.

Even though the concept of 𝛿-sensitivities is not very important in this sim-
ple case, its importance will become much clearer in Section 6.3.𝜕Λ𝜕𝔪 = 𝜕Λ𝜕Λ 𝜕Λ𝜕𝔪 = (−(𝑦 −𝔪)),𝜕Λ𝜕𝑐 = 𝜕Λ𝜕𝔪 𝜕𝔪𝜕𝑐 = (−(𝑦 −𝔪)) ⋅ 𝐻,𝜕Λ𝜕𝐻 = 𝜕Λ𝜕𝔪 𝜕𝔪𝜕𝐻 = (−(𝑦 −𝔪)) ⋅ 𝑐,𝜕Λ𝜕𝑍 = 𝜕Λ𝜕ℎ 𝜕𝐻𝜕𝑍 = (−(𝑦 −𝔪) ⋅ 𝑐)𝜎′(𝑍) = 𝛿,𝜕Λ𝜕𝑤 = 𝜕Λ𝜕𝑍 𝜕𝑍𝜕𝑤 = 𝛿 ⋅ 𝑥.

It is interesting to note that in the above calculation each line uses the out-
put of the previous line. Objects like (𝑦 − 𝔪),𝔪 = 𝑐 ⋅ 𝐻, 𝜎′(𝑍), and 𝑍 = 𝑤 ⋅ 𝑥
need only be computed once and are then simply reused.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

96 6. Backpropagation

6.3. Backpropagation in a More General Case

In the previous section we investigated the case of one hidden layer with one
neuron. Let us now look into a slightly more general case. Let us consider
a feed forward neural network with two layers and a two-dimensional input𝑥 ∈ ℝ2, 𝔪(𝑥; 𝜃) = 𝜎 ((𝑊2)⊤𝜎((𝑊1)⊤ ⋅ 𝑥 + 𝐵1) + 𝐵2) ,
where we assume that 𝑥 ∈ ℝ2 and 𝜃 = (𝑊2,𝑊1, 𝐵2, 𝐵1). To make it a little bit
more interesting, we will assume that𝑊1 ∈ ℝ2×2 is a 2×2matrix,𝑊2, 𝐵1 ∈ ℝ2
are two-dimensional vectors and 𝐵2 ∈ ℝ. We have also made the convention
that 𝜎 applied to a vector acts componentwise on its components.

We use the convention that superscripts correspond to the layer number,
and subscripts correspond to the vector/matrix element. We emphasize that
superscripts do not indicate powers; they indicate layer number.

Let us see now what backpropagation looks like in this case. As we shall
see, just increasing the number of layers from one to two already makes things
interesting and shows the importance of good bookkeeping. Let us define the
output of the inner layer to be𝑍1 = (𝑊1)⊤ ⋅ 𝑥0 + 𝐵1

= (𝑤111 𝑤121𝑤112 𝑤122) (𝑥01𝑥02) + (𝑏11𝑏12)= (𝑤111𝑥01 + 𝑤121𝑥02 + 𝑏11𝑤112𝑥01 + 𝑤122𝑥02 + 𝑏12)= (𝑍11𝑍12) .
So, we have

𝑥1 = (𝑥11𝑥12) = (𝜎(𝑍11)𝜎(𝑍12)) .
Then, we have for the outer layer𝑍21 = (𝑊2)⊤ ⋅ 𝑥1 + 𝐵2

= (𝑤211 𝑤221) (𝑥11𝑥12) + 𝐵2
= 𝑤211𝑥21 + 𝑤221𝑥22 + 𝐵2.

Let us now see what the derivatives of our loss function Λ with respect to
the weights look like. We will use the 𝛿-notation for sensitivities with respect
to output of the different layers, namely we will set 𝜕Λ𝜕𝑍𝑗𝑖 = 𝛿𝑗𝑖 . As we shall now

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6.3. Backpropagation in a More General Case 97

show, the 𝛿′s of the inner and the outer layer are related. We have, using the
chain rule,

𝛿11 = 𝜕Λ𝜕𝑍11 = 𝜕Λ𝜕𝑍21 𝜕𝑍21𝜕𝑍11 = 𝛿21 𝜕𝑍21𝜕𝑍11= 𝛿21𝑤211𝜎′(𝑍11).
In a similar way we obtain

𝛿12 = 𝜕Λ𝜕𝑍12 = 𝜕Λ𝜕𝑍11 𝜕𝑍11𝜕𝑍12 = 𝛿21𝑤221𝜎′(𝑍12).
Thus, we can write

(𝛿11𝛿12) = 𝛿21 (𝑤211𝜎′(𝑍11)𝑤221𝜎′(𝑍12)) .
What about 𝛿21? We compute𝛿21 = 𝜕Λ𝜕𝑍21 = 𝜕Λ𝜕𝔪 𝜕𝔪𝜕𝑍21 = 𝜕Λ𝜕𝔪𝜎′(𝑍21).
If, for example, we choose the loss function Λ(𝜃) = 12 (𝑦 − 𝔪(𝑥; 𝜃))2, then

we shall have 𝜕Λ𝜕𝔪 = (𝑦 −𝔪(𝑥; 𝜃)).
The last displays demonstrate that the 𝛿’s of the inner layer are given in

terms of the 𝛿’s of the outer layer.
Now that we demonstrated that the 𝛿′s of the different layers are related to

each other, let us show that they can also determine the derivatives of the loss
function Λ with respect to the parameters of interest 𝜃 = (𝑊2,𝑊1, 𝐵2, 𝐵1). In
fact, by the chain rule again, we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕Λ𝜕𝑏21 = 𝜕Λ𝜕𝑍21 𝜕𝑍
21𝜕𝑏21 = 𝛿21

𝜕Λ𝜕𝑤211 = 𝜕Λ𝜕𝑍21 𝜕𝑍21𝜕𝑤211 = 𝛿21 ⋅ 𝑥11
𝜕Λ𝜕𝑤221 = 𝜕Λ𝜕𝑍21 𝜕𝑍21𝜕𝑤221 = 𝛿21 ⋅ 𝑥12,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕Λ𝜕𝑏11 = 𝜕Λ𝜕𝑍11 𝜕𝑍
11𝜕𝑏11 = 𝛿11

𝜕Λ𝜕𝑤111 = 𝜕Λ𝜕𝑍11 𝜕𝑍11𝜕𝑤111 = 𝛿11 ⋅ 𝑥01
𝜕Λ𝜕𝑤121 = 𝜕Λ𝜕𝑍11 𝜕𝑍11𝜕𝑤121 = 𝛿11 ⋅ 𝑥02,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

98 6. Backpropagation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕Λ𝜕𝑏12 = 𝜕Λ𝜕𝑍12 𝜕𝑍
12𝜕𝑏12 = 𝛿12

𝜕Λ𝜕𝑤112 = 𝜕Λ𝜕𝑍12 𝜕𝑍12𝜕𝑤112 = 𝛿12 ⋅ 𝑥01
𝜕Λ𝜕𝑤122 = 𝜕Λ𝜕𝑍12 𝜕𝑍12𝜕𝑤122 = 𝛿12 ⋅ 𝑥02.

So, with ℓ = 1, 2 we can summarize the previous calculations as𝜕Λ𝜕𝑏ℓ𝑗 = 𝛿ℓ𝑗 ,𝜕Λ𝜕𝑤ℓ1𝑗 = 𝛿ℓ𝑗 ⋅ 𝑥ℓ−1𝑗 ,
which then allows us to write the stochastic gradient descent algorithm (more
of this in Chapters 7 and 8) in terms of the sensitivities 𝛿ℓ𝑗 , as follows𝑤ℓ𝑖𝑗,𝑘+1 = 𝑤ℓ𝑖𝑗,𝑘 − 𝜂𝛿ℓ𝑗 𝑥ℓ−1𝑗,𝑘𝑏ℓ𝑗,𝑘+1 = 𝑏ℓ𝑗,𝑘 − 𝜂𝛿ℓ𝑗 .
6.4. Backpropagation for Multilayer Feed Forward Neural

Networks

Let us consider now the case of a feed forwardneural network of arbitrary depth𝐿 < ∞ of the form

𝐻ℓ𝑗 = 𝜎(𝑁ℓ∑𝑖=1𝑤ℓ𝑖𝑗𝐻ℓ−1𝑖 + 𝑏ℓ𝑗) , ℓ = 1, . . . , 𝐿.
Here ℓ denotes the layer index and 𝐻ℓ𝑗 is the output of the corresponding𝑗th neuron. The input variable is 𝐻0 = 𝑥 and 𝐻0𝑖 = 𝑥𝑖 is its 𝑖th component.

The network’s output, i.e., the model is 𝔪(𝑥; 𝜃) = 𝐻𝐿 = (𝐻𝐿1 , . . . , 𝐻𝐿𝑁𝐿), with𝜃 = {(𝑤ℓ𝑖𝑗, 𝑏ℓ𝑗), 𝑗 = 1, . . . , 𝑁ℓ, 𝑖 = 1, . . . , 𝑁ℓ, ℓ = 1, . . . , 𝐿}. The loss function is
Λ(𝜃) = 12 𝑁𝐿∑𝑗=1(𝑦𝑗 −𝔪𝑗(𝑥; 𝜃))2.

We use the same convention as before in that superscripts correspond to
the layer number and subscripts to the vector/matrix element. We emphasize
that, here, superscripts do not indicate powers, they indicate layer number.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6.5. Backpropagation Applied to a Deep Learning Example 99

Following the same process as in the previous section, we obtain that the
sensitivities 𝛿ℓ𝑗 among the different layers are related as follows𝛿𝐿𝑗 = (𝐻𝐿𝑗 − 𝑦𝑗)𝜎′(𝑍𝐿𝑗), for 𝑗 = 1, . . . , 𝑁𝐿,

𝛿ℓ−1𝑖 = 𝜎′(𝑍ℓ−1𝑖) 𝑁ℓ∑𝑗 𝛿(ℓ)𝑗 𝑤ℓ𝑖𝑗,
while the derivatives of the loss function with respect to the parameters of the
neural network can be written as𝜕Λ𝜕𝑏ℓ𝑗 = 𝛿ℓ𝑗 ,𝜕Λ𝜕𝑤ℓ𝑖𝑗 = 𝛿ℓ𝑗𝐻ℓ−1𝑖 .

It is interesting to note that the formulas above are generalizations of the
formulas for the two-layer neural network in Section 6.3.

In matrix notation, the neural network can be written as𝐻ℓ = 𝜎 ((𝑊ℓ)⊤𝐻ℓ−1 + 𝐵ℓ) ,
and the relation of the 𝛿′s among the different layers is compactly given by𝛿𝐿 = (𝐻𝐿 − 𝑦) ⊙ 𝜎′(𝑍𝐿),𝛿ℓ−1 = (𝑊ℓ𝛿ℓ) ⊙ 𝜎′(𝑍ℓ−1),
where⊙ is the elementwise product operation, and the derivatives of the loss
function with respect to the network parameters take the form𝜕Λ𝜕𝐵ℓ = 𝛿ℓ𝜕Λ𝜕𝑊ℓ = 𝐻ℓ−1 (𝛿ℓ)⊤ .
Remark 6.1. Note that one more use of the backpropagation formula is that
if we change the objective function, the only thing that would change in the
formulas above would be the formula for 𝛿𝐿.
6.5. Backpropagation Applied to a Deep Learning Example

Let us consider in this section a simple example of learning with backpropa-
gation. We will see more complex examples in Chapter 8. Suppose that the
feature × label space is ℝ3 × ℝ and that we want to train a three-layer neural
network on the dataset𝒟 = {((1, 2, 3), 4), ((5, 6, 7), 8), . . . } .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

100 6. Backpropagation

In particular, let the parameter be

𝜃 = (𝑊1,𝑊2,𝑊3, 𝐵1, 𝐵2, 𝐵3),
and consider the model

𝔪(𝑥; 𝜃) = 𝜎3 (𝑊3𝜎2 (𝑊2𝜎1(𝑊1𝑥 + 𝐵1) + 𝐵2) + 𝐵3) ,
where 𝜎1, 𝜎2, and 𝜎3 are given differentiable activation functions and the fea-
tures 𝑥 ∈ ℝ3. We consider the loss function

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃),
where

𝜆(𝑥,𝑦)(𝜃) = ℓ𝑦(𝔪(𝑥; 𝜃))
compares 𝑦 and𝔪(𝑥; 𝜃) in some differentiable way.

Gradient descent for the loss function gives us iterations for

𝜃𝑘 = (𝑊1𝑘 ,𝑊2𝑘 ,𝑊3𝑘 , 𝐵1𝑘, 𝐵2𝑘, 𝐵3𝑘),
where

𝑊 𝑗𝑘+1 = 𝑊 𝑗𝑘 − 𝜂 𝜕Λ𝜕𝑊 𝑗 (𝜃𝑘)𝐵𝑗𝑘+1 = 𝐵𝑗𝑘 − 𝜂 𝜕Λ𝜕𝐵𝑗 (𝜃𝑘),
with 𝜂 > 0 the learning rate. Backpropagation deals with the computation of
the derivatives 𝜕Λ𝜕𝑊 𝑗 (𝜃𝑘) and 𝜕Λ𝜕𝐵𝑗 (𝜃𝑘). The forward step computes

𝑍1𝑘 = 𝑊1𝑘 𝑥 + 𝐵1𝑘𝑍2𝑘 = 𝑊2𝑘 𝜎1(𝑍1𝑘) + 𝐵2𝑘𝑍3𝑘 = 𝑊3𝑘 𝜎2(𝑍2𝑘) + 𝐵3𝑘.
The backward computation (sensitivities) is

𝛿3𝑘 = 𝜕𝜕𝔪ℓ𝑦(𝔪(𝑥; 𝜃𝑘)) ⊙ 𝜎′3 ((𝑍3𝑘)⊤)𝛿2𝑘 = 𝛿3𝑘𝑊3𝑘 ⊙𝜎′2 ((𝑍2𝑘)⊤)𝛿1𝑘 = 𝛿2𝑘𝑊2𝑘 ⊙𝜎′1 ((𝑍1𝑘)⊤) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6.5. Backpropagation Applied to a Deep Learning Example 101

Therefore, we have the following explicit formulas for the derivatives involved
in the gradient descent step:

𝜕Λ𝜕𝑊3 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿3𝑘)⊤ 𝜎2 ((𝑍2𝑘)⊤) ,𝜕Λ𝜕𝐵3 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿3𝑘)⊤ ,𝜕Λ𝜕𝑊2 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿2𝑘)⊤ 𝜎1 ((𝑍1𝑘)⊤) ,𝜕Λ𝜕𝐵2 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿2𝑘)⊤ ,𝜕Λ𝜕𝑊1 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿1𝑘)⊤ 𝑥⊤,𝜕Λ𝜕𝐵1 (𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝛿1𝑘)⊤ .
Note that there are many transposes to compute in the last expression. A

more efficient implementation of this algorithmwould first convert the dataset𝒟 into feature and label arrays

(1 2 35 6 7⋮) and (48⋮) ,
and then work with transposes of the original calculations. In particular, we
would have

𝑊 𝑗,⊤𝑘+1 = 𝑊 𝑗,⊤𝑘 − 𝜂 (𝜕Λ𝜕𝑊 𝑗 (𝜃𝑘))⊤
𝐵𝑗,⊤𝑘+1 = 𝐵𝑗,⊤𝑘 − 𝜂 (𝜕Λ𝜕𝐵𝑗 (𝜃𝑘))⊤ ,

with 𝜂 > 0 the learning rate.
Then, we would define

𝑍1,⊤𝑘 = 𝑥⊤𝑊1,⊤𝑘 + 𝐵1,⊤𝑘𝑍2,⊤𝑘 = 𝜎1(𝑍1,⊤𝑘)𝑊2,⊤𝑘 + 𝐵2,⊤𝑘𝑍3,⊤𝑘 = 𝜎2(𝑍2,⊤𝑘)𝑊3,⊤𝑘 + 𝐵3,⊤𝑘 .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

102 6. Backpropagation

The backward computation (sensitivities) becomes

𝛿3𝑘 = 𝜕𝜕𝔪ℓ𝑦(𝔪(𝑥; 𝜃𝑘)) ⊙ 𝜎′3 ((𝑍3𝑘)⊤) ,𝛿2𝑘 = 𝛿3𝑘𝑊3𝑘 ⊙𝜎′2 ((𝑍2𝑘)⊤) ,𝛿1𝑘 = 𝛿2𝑘𝑊2𝑘 ⊙𝜎′1 ((𝑍1𝑘)⊤) .
Finally, we have the following explicit formulas for the derivatives involved

in the gradient descent step:

(𝜕Λ𝜕𝑊3 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜎2 (𝑍2𝑘) 𝛿3𝑘,
(𝜕Λ𝜕𝐵3 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝛿3𝑘,
(𝜕Λ𝜕𝑊2 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜎1 (𝑍1𝑘) 𝛿2𝑘,
(𝜕Λ𝜕𝐵2 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝛿2𝑘,
(𝜕Λ𝜕𝑊1 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝑥𝛿1𝑘,
(𝜕Λ𝜕𝐵1 (𝜃𝑘))⊤ = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝛿1𝑘.

Notice that what makes the last computation more efficient is the fact that
there are fewer transpose matrices to compute in the actual gradient descent.

6.6. Vanishing Gradient Problem

In this section we briefly describe an issue that is common across many deep
neural network architectures, that of the vanishing gradient problem. We will
revisit this issue in more detail in Section 8.4 as well as in Chapter 13, where
we study recurrent neural networks.

Let us assume that the activation function 𝜎(𝑧) is the logistic function 𝑆(𝑧).
Thenwewill have that 𝑆′(𝑧) = 𝑆(𝑧)(1−𝑆(𝑧)). In that case the backpropagation
algorithm yields

𝛿ℓ−1𝑖 = 𝑆(𝑍ℓ−1𝑖) (1 − 𝑆(𝑍ℓ−1𝑖)) 𝑁ℓ∑𝑗 𝛿ℓ𝑗𝑤ℓ𝑖𝑗.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6.7. Brief Concluding Remarks 103

Some remarks are now in order.• If 𝑍ℓ−1𝑖 is large in absolute value, then the logistic function is close to
either zero or one. So 𝛿ℓ−1𝑖 would saturate to zero.• By Exercise 5.2, we immediately see that 𝑆′(𝑧) = 𝑆(𝑧)(1 − 𝑆(𝑧)) ≤ 14 .
This suggests that we get a reduction of 𝛿ℓ−1𝑖 by a factor of 4.• We also have 𝜕Λ𝜕𝑤ℓ𝑖𝑗 = 𝛿ℓ𝑗𝐻ℓ−1𝑖𝜕Λ𝜕𝑏ℓ𝑗 = 𝛿ℓ𝑗 .
Thus, if we propagate through several layers, the resulting gradient
will eventually become very small. This phenomenon is called the
vanishing gradient problem.

These suggest that 𝜃 ↦ Λ(𝜃) has flat regions, which of course is not good
for stochastic gradient descent. In those cases momentum stochastic gradient
descent studied inChapters 17 and 18may sometimes help. Using an activation
function that would not saturate, like 𝖱𝖾𝖫𝖴 for instance, would also help; see
also Chapter 13.

6.7. Brief Concluding Remarks

The backpropagation algorithm is the backbone of deep learning algorithms
because it can lead to quick computation of the gradient of the loss functionΛ(𝜃) with respect to 𝜃. Backpropagation is part of the automatic differentia-
tion algorithms that we discuss in Chapter 24. We do remark here though for
completeness that automatic differentiation algorithms may not always be op-
timal, see for example [Nau08].

As we mentioned in the Introduction, the paper on backpropagation by
Rumelhart, Hornik, and Williams in 1986 [RHW86] led to a considerable
resurgence of interest in the field of neural network based artificial intelligence
in a period where it was not clear how to efficiently trainmultilayer neural net-
works. An interesting mathematical framework for studying backpropagation
from the lens of a Lagrangian formalism can be found in [Lec88].

Backpropagation is one of themain ingredients needed for the practical im-
plementation and scaling to high-dimensional problems of the stochastic gra-
dient descent algorithm. We explore the stochastic gradient descent algorithm
in Chapters 7 and 8 for shallow and multi-layer neural networks, respectively.
In Chapters 17 and 18 of Part 2 we discuss theoretical convergence properties
of gradient descent and stochastic gradient descent.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

104 6. Backpropagation

6.8. Exercises

Exercise 6.1. Develop the backpropagation algorithm for the regular cross-
entropy objective function when the activation function of the last layer is the
logistic function.

Exercise 6.2. Assume that in a feed forward neural network the activation
function in the ℓth layer is linear. Assume further that the weights and the in-
puts are independent randomvariables. Prove that 𝛿ℓ𝑗 and𝑊ℓ𝑖,𝑗 are independent
random variables.

Exercise 6.3. Consider the neural network𝔪(𝑥; 𝜃) = ℎ(𝜎3(𝑤3𝜎2(𝑤2𝜎1(𝑤1𝑥 + 𝑏1) + 𝑏2) + 𝑏3)),
where 𝜃 = (𝑏1, 𝑏2, 𝑏3, 𝑤1, 𝑤2, 𝑤3) ∈ 𝑅6 and 𝜎1, 𝜎2, 𝜎3, ℎ are sufficiently smooth
activation functions. We consider quadratic error loss, i.e.,

Λ(𝜃) = 1𝑀 𝑀∑𝑚=1(𝑦𝑚 −𝔪(𝑥𝑚; 𝜃))2.
Then,
(1) Write down the forward propagation step in terms of the three differ-

ent layers, 𝑍1, 𝑍2, 𝑍3.
(2) Compute the sensitivities 𝛿𝑗 = 𝜕Λ𝜕𝑍𝑗 for 𝑗 = 1, 2, 3, in terms of 𝑍𝑗’s.
(3) Compute the derivatives 𝜕Λ𝜕𝑤𝑖 and

𝜕Λ𝜕𝑏𝑖 for 𝑖 = 1, 2, 3.
(4) Compare your results with Section 6.4.

Exercise 6.4. Define 𝜎𝑛(𝑥) = cos(2𝑛𝑥) with 𝑥 ∈ ℝ and 𝑛 ∈ {1, 2, 3}. Define
the function 𝑓(𝑥, 𝑤1, 𝑤2, 𝑤3) = 𝑒𝜋𝜍3(𝑤3𝜍2(𝑤2𝜍1(𝑤1𝑥+𝑏1)+𝑏2)+𝑏3). Write down the
backpropagation algorithm to compute

(1) (𝜕𝑓𝜕𝑤1 , 𝜕𝑓𝜕𝑤2 , 𝜕𝑓𝜕𝑤3),
(2) (𝜕𝑓𝜕𝑏1 , 𝜕𝑓𝜕𝑏2 , 𝜕𝑓𝜕𝑏3).

Exercise 6.5. Define 𝜎𝑛(𝑥) = cos(2𝑛𝑥) with 𝑥 ∈ ℝ and 𝑛 ∈ {1, 2}. Define the
function 𝑓(𝑥, 𝑤1, 𝑤2) = |𝜎2(𝑤2𝜎1(𝑤1𝑥)) − 3|2. Write down the backpropaga-
tion algorithm to compute (𝜕𝑓𝜕𝑤1 , 𝜕𝑓𝜕𝑤2).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 7

Basics of Stochastic
Gradient Descent

7.1. Introduction

Stochastic gradient descent is the method of choice for training deep learn-
ing models. While the standard gradient descent algorithm uses all available
data at each iteration of the algorithm, stochastic gradient descent uses only a
randomly sampled subset (typically of small size) of the data each time. Even
though the gradient descent algorithm can be thought to be more accurate,
it becomes computationally prohibitive for large datasets. Stochastic gradient
descent, despite not using all available information at each iteration, has been
demonstrated to be both computationally efficient and accurate.

This chapter presents themechanics of the standard stochastic gradient de-
scent algorithm. In Chapter 17 we present convergence theory for the gradient
descent algorithm, whereas in Chapter 18 we present the convergence theory
for the stochastic gradient descent algorithm. As we shall see in Chapter 18 the
extra randomness coming from the random choice of a subset of the data to be
used at each iteration of the algorithm poses unique mathematical challenges.

In addition, besides the standard stochastic gradient descent algorithmpre-
sented in this chapter, there are many other variants (e.g., stochastic gradient
descent with momentum, AdaGrad, RMSprop, ADAM, AdaMax) which we will
cover in detail in Chapter 18.

In this chapter we focus on the application of the stochastic gradient al-
gorithm to shallow neural networks. In Chapter 8 we apply the algorithm to
multi-layer neural networks. Both chapters include implementation examples
in Python.

105

10.1090/gsm/252/07

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

106 7. Basics of Stochastic Gradient Descent

7.2. The basic setup

Let us briefly review the basic setup. Machine learning estimates a statistical
model for the relationship between an input 𝑋 and an output 𝑌 . Formally,
suppose there is data (𝑋, 𝑌) ∈ ℝ𝑑×𝒴 and a statisticalmodel𝔪(𝑥; 𝜃) ∶ ℝ𝑑 → 𝒴,
where 𝜃 ∈ Θ are the parameters in the model and must be estimated using the
available data. The choice of the space 𝒴 depends on the problem at hand.
It could for example be a Euclidean space ℝ𝐽 for some 𝐽 ∈ ℕ in a regression
problem or a space of possible labels in a classification problem. We wish to
find a model𝔪(𝑥; 𝜃) such that𝔪(𝑋; 𝜃) is an accurate prediction for 𝑌 .

To make this statement precise, for a given 𝑦 ∈ 𝒴, recall that the functionℓ𝑦(𝑧) ∶ 𝒴 → ℝmeasures how close a prediction 𝑧 ∈ 𝒴 is to the actual observed
outcome 𝑦 ∈ 𝒴. Then, we recall the definition of the objective functionΛ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃), where 𝜆(𝑥,𝑦)(𝜃) = ℓ𝑦(𝔪(𝑥; 𝜃)).(7.1)

The objective function (7.1) is a natural objective function for estimating
the parameter 𝜃. The quantity ℓ𝑦(𝔪(𝑥; 𝜃))measures the error beingmadewhen
themodel𝔪(𝑥; 𝜃) is used to predict the value 𝑦. The error is then averaged over
the distribution 𝑃𝒟 of the data 𝒟. The goal is to find a parameter 𝜃 such that
the average error that the model𝔪(𝑥; 𝜃) makes when predicting the outcome𝑦 is small.

The best model, within the class of models {𝔪(𝑥; 𝜃)}𝜃∈Θ, is the model𝔪(𝑥; 𝜃∗), where 𝜃∗ satisfies 𝜃∗ = argmin𝜃∈Θ Λ(𝜃).(7.2)

For some simplemodels, (7.2) can be calculated exactly. However, formore
complicated models such as neural networks, it cannot be exactly calculated.
Instead, numerical methods are used to minimize the objective function (7.1).
When (7.1) is convex, these numerical methods may converge to the exact so-
lution (7.2). However, when (7.1) is nonconvex, the numerical methods are
not guaranteed to converge to the exact solution of (7.2). Neural networks are
nonconvex. In the nonconvex case, numerical methods are only guaranteed
to converge to a point which satisfies certain optimization properties. We will
discuss these important mathematical points later. The most widely used nu-
merical method for minimizing (7.1) is stochastic gradient descent, which is
the topic of this chapter.

Example 7.1. Consider a logistic regressionmodel for classificationwhere𝒴 ={𝑙1, 𝑙2, . . . , 𝑙𝐽}, where 𝑙𝑗 represents the 𝑗th label for 𝑗 = 1, 2, . . . , 𝐽, and 𝜃 ∈ Θ,
where Θ = ℝ𝐽×𝑑. Note that we do not list the labels via enumeration, as in
many cases it can mistakenly suggest that ordering of labels corresponds to

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.3. Stochastic gradient descent algorithm 107

ordering of feature values. Given an input 𝑥 ∈ ℝ𝑑, the model𝔪(𝑥; 𝜃) produces
a probability of each possible outcome in 𝒴:𝔪(𝑥; 𝜃) = 𝑆softmax(𝜃𝑥),𝑆softmax(𝑧) = 1∑𝐽𝑗=1 𝑒𝑧𝑗 (𝑒𝑧1 , 𝑒𝑧2 , . . . , 𝑒𝑧𝐽),
where 𝑧𝑗 is the 𝑗th element of the vector 𝑧=𝜃𝑥∈ℝ𝐽 . The function 𝑆softmax(𝑧) ∶ℝ𝐽 → 𝒫(𝒴) is called the softmax function and is frequently used in deep learn-
ing. Here 𝒫(𝒴) is the set of probability measures on 𝒴. 𝑆softmax(𝑧) takes a𝐽-dimensional input and produces a probability distribution function on 𝒴.
That is, the output of 𝑆softmax(𝑧) is a vector of probabilities for the events𝑙1, 𝑙2, . . . , 𝑙𝐽 . The softmax function can be thought of as a smooth approxima-
tion to the argmax function since it pushes its smallest inputs towards 0 and
its largest input towards 1.

The objective function is the negative log-likelihood (commonly referred
to in machine learning as the cross-entropy error):

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃),
𝜆(𝑥,𝑦)(𝜃) = − 𝐽∑𝑗=1 𝟏𝑦=𝑙𝑗 log𝔪𝑗(𝑥; 𝜃),

where𝔪𝑗(𝑥; 𝜃) is the 𝑗th element of the vector𝔪(𝑥; 𝜃) and 𝟏𝑦=𝑙𝑗 is the indicator
function

𝟏𝑦=𝑙𝑗 = {1, 𝑦 = 𝑙𝑗0, 𝑦 ≠ 𝑙𝑗.
As we discussed in Section 3.7, the labels are typically encoded as one-hot

vectors; one entry is 1 and the others are 0. Our ground-truth data 𝒟 is then
a collection of points (𝑥, 𝑦) in ℝ𝑑 × ℝ𝐽 , where the 𝑦’s are one-hot probability
vectors.

7.3. Stochastic gradient descent algorithm

The objective function (7.1) can be minimized via the well-known method of
gradient descent: 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃Λ(𝜃𝑘).(7.3)

Gradient descent repeatedly takes steps in the direction of steepest descent.
The negative gradient of the objective function Λ(𝜃) is the direction of steep-
est descent. The negative gradient is the direction in which Λ(𝜃) is decreasing.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

108 7. Basics of Stochastic Gradient Descent

Gradient descent repeatedly takes small steps in the direction of the steepest de-
scent. The magnitude of these steps is governed by the learning rate 𝜂𝑘, which
is a positive scalar which may depend upon the iteration number 𝑘.

We can show that if the learning rate 𝜂𝑘 is sufficiently small, the 𝑘th step
of the gradient descent algorithm (7.3) is guaranteed to decrease the objective
function. Assuming 𝜃 ∈ ℝ|Θ| and using a Taylor expansion,
Λ(𝜃𝑘+1) − Λ(𝜃𝑘) = ∇𝜃Λ(𝜃𝑘)(𝜃𝑘+1 − 𝜃𝑘) + 12(𝜃𝑘+1 − 𝜃𝑘)⊤∇𝜃𝜃Λ(̄𝜃)(𝜃𝑘+1 − 𝜃𝑘)

= −𝜂𝑘(∇𝜃Λ(𝜃𝑘))⊤∇𝜃Λ(𝜃𝑘) + 12(𝜂𝑘)2∇𝜃Λ(𝜃𝑘)⊤∇𝜃𝜃Λ(̄𝜃𝑘)∇𝜃Λ(𝜃𝑘),
where ̄𝜃𝑘 is a point on the line segment connecting 𝜃𝑘+1 and 𝜃𝑘. As long as
we are not already at a stationary point ∇𝜃Λ(𝜃𝑘) = 0, there is a choice of 𝜂𝑘
such that the objective function will decrease, i.e., Λ(𝜃𝑘+1) − Λ(𝜃𝑘) < 0. It is
also clear that if 𝜂𝑘 is too large, the objective function may increase due to the
second-order term. In practice, a careful choice of the learning rate is very im-
portant. The gradient descent algorithm uses only the first derivative ∇𝜃Λ(𝜃)
to update the parameter 𝜃. If the algorithm takes too-large steps, the first de-
rivative no longer accurately describes the change in the objective function.

Gradient descent requires computing the gradient ∇𝜃Λ(𝜃𝑘), which can be
computationally costly since it involves a summation over (potentially) many
points (𝑥, 𝑦):

∇𝜃Λ(𝜃𝑘) = ∇𝜃 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃𝑘) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟∇𝜃𝜆(𝑥,𝑦)(𝜃𝑘).
Stochastic gradient descent is a computationally efficient scheme for min-

imizing (7.1). It follows a noisy (but unbiased) descent direction:𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘),(7.4)

where (𝑥𝑘, 𝑦𝑘) are independent and identically distributed (i.i.d.) samples from
the distributionℙ(𝑋,𝑌). In particular, note that the average descent direction in
(7.4) equals the descent direction in (7.3) since

𝐸𝒟[∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘)||𝜃𝑘] = 𝐸𝒟[∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘)||𝜃𝑘] = ∇𝜃Λ(𝜃𝑘).
Stochastic gradient descent is computationally efficient since it only re-

quires the gradient of the loss from a single data sample. It can therefore per-
form many more iterations than gradient descent, given the same amount of
time. In practice, stochastic gradient descent (7.4) typically converges much
more rapidly than gradient descent (7.3).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.3. Stochastic gradient descent algorithm 109

Data samples {(𝑥𝑚, 𝑦𝑚)𝑀𝑚=1} are available from the distribution ℙ(𝑋,𝑌).
Then, (7.1) can be written as

Λ(𝜃) = 1𝑀 𝑀∑𝑚=1 𝜆(𝑥𝑚,𝑦𝑚)(𝜃).(7.5)

The gradient descent algorithm for (7.5) is

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 1𝑀 𝑀∑𝑚=1∇𝜃𝜆(𝑥𝑚,𝑦𝑚)(𝜃𝑘).(7.6)

The stochastic gradient descent algorithm for (7.5):• Randomly initialize the parameter 𝜃(0).• For 𝑘 = 0, 1, . . . , 𝐾:
– Select a data sample (𝑥𝑘, 𝑦𝑘) at random from the dataset {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1.
– Calculate the gradient for the loss from the data sample (𝑥𝑘, 𝑦𝑘),𝐺𝑘 = ∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘).
– Update the parameters

(7.7) 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐺𝑘,
where 𝜂𝑘 is the learning rate.

The gradient descent algorithm (7.6) converges slowly since in order to
take a single step, it must calculate the gradients for every data sample in the
dataset. In contrast, the stochastic gradient descent algorithm (7.7) can rapidly
take many steps since each step only requires calculating the gradient for a
single data sample. For this reason, stochastic gradient descent is typically su-
perior to gradient descent in practice. Stochastic gradient descent is especially
advantageous when the size of the dataset𝑀 is large.

The gradient 𝐺𝑘 in (7.7) determines the direction of the step. The learn-
ing rate 𝜂𝑘 determines the size of the step. In order for (7.4) to converge, the
learning rate must decay as 𝑘 → ∞. The decaying learning rate is required to
average out the noise in the stochastic gradient descent step.

In fact, the learning rate must satisfy the following conditions in order for
(7.4) to converge (see Theorem 7.3):

∞∑𝑘=0 𝜂𝑘 = ∞,
∞∑𝑘=0 (𝜂𝑘)2 < ∞.(7.8)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

110 7. Basics of Stochastic Gradient Descent

In Chapter 18wewill justify the need for these choices and explainwhy the
learning rate needs to decay. A learning rate which satisfies these conditions is𝜂𝑘 = 𝐶0𝐶1 + 𝑘,
where 𝐶0 and 𝐶1 are positive constants.
Example 7.2. Wewill derive the stochastic gradient descent algorithm for the
logistic regression model stated in Example 7.1. The logistic regression model𝔪(𝑥; 𝜃) is estimated from the dataset (𝑥𝑚, 𝑦𝑚)𝑀𝑚=1 where (𝑥𝑚, 𝑦𝑚) ∼ ℙ𝑋,𝑌 .

The gradient of the loss function for a generic data sample (𝑥, 𝑦) is∇𝜃𝜆(𝑋,𝑌)(𝜃) = −∇𝜃 log 𝑆softmax,𝑦(𝜃𝑥),
where 𝑆softmax,𝑗(𝑧) is the 𝑗th element of the vector output of the function𝑆softmax(𝑧). Let 𝜃𝑗,∶ be the 𝑗th row of the matrix 𝜃. If for the 𝑗th label 𝑦 ≠ 𝑙𝑗,

∇𝜃𝑗,∶ log 𝑆softmax,𝑦(𝜃𝑥) = − 𝑒𝜃𝑦,∶𝑥𝑆softmax,𝑦(𝜃𝑥) 𝑒𝜃𝑗,∶𝑥(∑𝐽𝑗=1 𝑒𝜃𝑗,∶𝑥)2𝑥= − 𝑒𝜃𝑗,∶𝑥∑𝐽𝑗=1 𝑒𝜃𝑗,∶𝑥𝑥= −𝑆softmax,𝑗(𝜃𝑥)𝑥.(7.9)
If for the 𝑗th label 𝑦 = 𝑙𝑗,

∇𝜃𝑗,∶ log 𝑆softmax,𝑦(𝜃𝑥) = 𝑥 − 𝑒𝜃𝑦,∶𝑥𝑆softmax,𝑦(𝜃𝑥) 𝑒𝜃𝑗,∶𝑥(∑𝐽𝑗=1 𝑒𝜃𝑗,∶𝑥)2𝑥= 𝑥 − 𝑆softmax,𝑗(𝜃𝑥)𝑥.(7.10)
Combining equations (7.9) and (7.10), we have that, for any 𝑗,∇𝜃𝑗,∶ log 𝑆softmax,𝑦(𝜃𝑥) = (𝟏𝑦=𝑙𝑗 − 𝑆softmax,𝑗(𝜃𝑥))𝑥.
Therefore, ∇𝜃 log 𝑆softmax,𝑦(𝜃𝑥) = (𝑒(𝑦) − 𝑆softmax(𝜃𝑥))𝑥⊤,
where 𝑒(𝑦) = (𝟏𝑦=𝑙1 , . . . , 𝟏𝑦=𝑙𝐽),(7.11)
represents the one-hot encoding vector. The stochastic gradient descent algo-
rithm is:• Select a data sample (𝑥𝑘, 𝑦𝑘) at random from the dataset {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1.• Calculate the gradient for the loss from the data sample (𝑥𝑘, 𝑦𝑘):𝐺𝑘 = −(𝑒(𝑦𝑘) − 𝑆softmax(𝜃𝑘𝑥𝑘))(𝑥𝑘)⊤.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.3. Stochastic gradient descent algorithm 111

• Update the parameters:𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐺𝑘.
7.3.1. Learning rates in practice. Although the conditions (7.8) are math-
ematically required for convergence, it is often sufficient in practice to simply
use a piecewise learning rate schedule for 𝑘 = 0, 1, . . . , 𝐶4 such as

𝜂𝑘 = ⎧⎪⎨⎪⎩
𝐶0 𝑘 ≤ 𝐶10.1𝐶0 𝐶1 < 𝑘 ≤ 𝐶20.01𝐶0 𝐶2 < 𝑘 ≤ 𝐶30.001𝐶0 𝐶3 < 𝑘 ≤ 𝐶4.

If the learning rate is too small, convergence may be very slow. However, if
the learning rate is too large, the algorithmmay oscillate andmake no progress.
Stochastic gradient descent takes unbiased but noisy steps. Therefore, too large
of a learning rate may amplify this noise and cause oscillations. The larger the
noise, the smaller the learning rate that is required. For this reason, gradient
descent can use a larger learning rate than stochastic gradient descent. We
will partially address this later by developingminibatch stochastic gradient de-
scent in Section 7.3.4 which uses small batches of random samples to reduce
the noise. In the end, the optimal learning rate heavily depends upon the spe-
cific problem and dataset.

7.3.2. Convergence. There is a large literature on the mathematical analy-
sis of gradient descent as well as stochastic gradient descent. As a matter of
fact we will go over the main convergence results in Chapters 17 and 18 for
gradient descent and stochastic gradient descent, respectively. Nevertheless,
this literature does not address many of the challenges of neural networks. To
demonstrate, we present one of the strongest theorems regarding convergence
for the stochastic gradient descent algorithm (7.4):

Theorem 7.3. Suppose that∇𝜃Λ(𝜃) is globally Lipschitz and bounded. Further-
more, assume that the condition (7.8) holds and Λ(𝜃) is bounded. Then,

ℙ[lim𝑘→∞ ‖∇𝜃Λ(𝜃𝑘)‖2 = 0] = 1.(7.12)

The proof of Theorem7.3 and of other related results for stochastic gradient
descent are discussed in Chapter 18.

Theorem 7.3 states that, provided certain technical conditions are present,
the parameter estimate 𝜃𝑘 will converge to a stationary point of the objective
function Λ(𝜃). Theorem 7.3 is powerful since it covers nonconvex objective
functions. The type of convergence in (7.12) is called almost sure convergence
since with probability 1 the convergence occurs. For example, this is a stronger

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

112 7. Basics of Stochastic Gradient Descent

type of convergence than convergence in probability (see Appendix A for the
definition of different modes of convergence).

Let us now examine the conditions necessary for Theorem 7.3 to hold. Re-
call that the function ∇𝜃Λ(𝜃) is globally Lipschitz if‖∇𝜃Λ(𝜃) − ∇𝜃Λ(𝜃′)‖2 ≤ 𝐿 ‖𝜃 − 𝜃′‖2 ,
for any 𝜃, 𝜃′ ∈ Θ. Although there exist many models which satisfy this global
Lipschitz condition, neural network models typically do not satisfy it. In fact,
the gradient of a fully connected neural network with a single hidden layer
will not be globally Lipschitz. It will also not be globally bounded. Therefore,
Theorem 7.3 does not cover neural networks.

This discussion demonstrates some of themathematical challenges of neu-
ral networks. The analysis of stochastic gradient descent algorithms for neural
network models remains an interesting problem. We will visit related conver-
gence results in Chapters 19 and 20. Stochastic gradient descent has proven
very effective in practice and is the fundamental building block of nearly all
approaches for training deep learning models.

7.3.3. Local Minima. Stochastic gradient descent is not guaranteed to con-
verge to the globalminimumof the objective functionΛ(𝜃) if themodel𝔪(𝑥; 𝜃)
is a neural network. In fact, it is very unlikely to do so. A global minimum is a
parameter 𝜃∗ such that Λ(𝜃∗) ≤ Λ(𝜃),
for any 𝜃 ∈ Θ. The globalminimum for neural networks is typically not unique
(i.e., there are multiple global minima).

Neural networks typically have many local minima. The point 𝜃 is a local
minimum if there exists a 𝛿 > 0 such thatΛ(𝜃′) ≥ Λ(𝜃) for every ‖𝜃′ − 𝜃‖2 < 𝛿.

Stochastic gradient descent may converge to a local minimum and not a
global minimum. This is one of the challenges of nonconvex optimization.
Neural networks are nonconvex and, as a consequence, the objective functionΛ(𝜃) is also nonconvex. The issues of nonconvexity and existence of local min-
ima for neural networks are presented in Exercises 7.9 and 7.6, respectively.

7.3.4. Minibatch Gradient Descent. The stochastic gradient descent algo-
rithm we presented earlier only uses a single data sample for computing the
update direction. Although the update is unbiased, it may be very noisy (i.e., a
large variance) since there is a large amount of randomness in the single data
sample that is drawn. Very noisy updates can cause oscillations and slow down
convergence.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.3. Stochastic gradient descent algorithm 113

The noise in stochastic gradient descent can be easily reduced by comput-
ing the gradient on a small minibatch of data samples instead of just a single
data sample. More data samples reduce the variance in the update. The num-
ber of data samples 𝑀 in the minibatch is still small compared to the size of
the dataset𝑁 though, and therefore minibatch stochastic gradient descent still
converges much more rapidly than gradient descent. Frequently, minibatch
stochastic gradient descent and (one sample) stochastic gradient descent have
the same computational speed since computations can be efficiently vectorized
for moderate sized𝑀 (∼ 100 − 1, 000) .

Since the noise in the updates is reduced, minibatch stochastic gradient de-
scent can use a larger learning rate than stochastic gradient descent. Typically,
the larger the minibatch size𝑀, the larger the learning rate can be.

The minibatch stochastic gradient descent algorithm for (7.5):• Randomly initialize the parameter 𝜃0.• For 𝑘 = 0, 1, . . . , 𝐾:
– Select𝑀∘ data samples {(𝑥(𝑘,𝑚), 𝑦(𝑘,𝑚))𝑀∘𝑚=1} at random from the dataset{(𝑥𝑚, 𝑦𝑚)𝑀𝑚=1}, where𝑀∘ ≪ 𝑀.
– Calculate the gradient for the loss from the data samples:

𝐺𝑘 = 1𝑀∘
𝑀∘∑𝑚=1∇𝜃𝜆(𝑥(𝑘,𝑚),𝑦(𝑘,𝑚))(𝜃𝑘).

– Update the parameters:𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐺𝑘,
where 𝜂𝑘 is the learning rate.

The minibatch update𝐺𝑘 is clearly still an unbiased estimate for the gradi-
ent ∇𝜃Λ(𝜃𝑘). Furthermore, it is less noisy than the stochastic gradient descent
update with a single sample, i.e.,

Var [𝐺𝑘||𝜃𝑘] = Var [1𝑀∘
𝑀∘∑𝑚=1∇𝜃𝜆(𝑥(𝑘,𝑚),𝑦(𝑘,𝑚))(𝜃𝑘)||𝜃𝑘]

= 1𝑀∘ Var [∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘)||𝜃𝑘].
The conditional variance of a minibatch update is smaller by a factor of 1𝑀∘

than stochastic gradient descent with a single sample, where 𝑀∘ is the mini-
batch size.

Although we have differentiated here between minibatch stochastic gradi-
ent descent and stochastic gradient descent, the former is also often referred to
stochastic gradient descent. In practice, the term stochastic gradient descent

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

114 7. Basics of Stochastic Gradient Descent

is frequently used with the implicit assumption that it is in fact minibatch sto-
chastic gradient descent. The term batch is also often used interchangeably
withminibatch.

7.4. Applications to Shallow Neural Networks

A fully connected network with a single hidden layer (shallow neural network)
can be written as follows

𝑍 = 𝑊𝑥 + 𝑏1,𝐻𝑖 = 𝜎(𝑍𝑖), 𝑖 = 0, . . . , 𝑑𝐻 − 1,𝔪(𝑥; 𝜃) = 𝐶𝐻 + 𝑏2.(7.13)

The neural network 𝔪(𝑥; 𝜃) ∶ ℝ𝑑 → 𝒴 takes an input 𝑥 of size 𝑑 and
produces an output in 𝒴 and let’s say 𝒴 = ℝ𝐽 . The parameters are 𝐶 ∈ ℝ𝐽×𝑑𝐻 ,𝑏1 ∈ ℝ𝑑𝐻 , 𝑏2 ∈ ℝ𝐽 , and 𝑊 ∈ ℝ𝑑𝐻×𝑑. These parameters are collected in 𝜃 ={𝐶, 𝑏1, 𝑏2,𝑊}.

Let us examine the architecture of the neural network (7.13). First, a linear
transformation 𝑍 = 𝑊𝑥 + 𝑏1 of the input 𝑥 is taken. Then, an elementwise
nonlinearity 𝜎(⋅) ∶ ℝ → ℝ is applied to each element of the vector 𝑍 ∈ ℝ𝑑𝐻 .
This elementwise transformation of 𝑍 produces the hidden layer 𝐻 ∈ ℝ𝑑𝐻 .
The number of units in the hidden layer is 𝑑𝐻 . The final output of the neural
network is a linear transformation 𝐶𝐻 + 𝑏2 of the hidden layer.

Typical choices for the nonlinearities 𝜎(𝑧) are:• tanh(𝑧),• Sigmoidal units: 𝑒𝑧1+𝑒𝑧 ,• Rectified linear units (ReLU):max(𝑧, 0).
In particular, ReLUs have proven very successful for multi-layer neural net-

works, and we will discuss them in more detail later.
The neural networkmodel can be used to predict an outcome𝑌 ∈ ℝ𝐽 given

an input 𝑋 ∈ ℝ𝑑. This is a regression problem, and the parameters 𝜃 must be
chosen to minimize the error between the model prediction 𝔪(𝑋; 𝜃) and the
actual outcome 𝑌 (e.g., the error here could be the squared Euclidean distanceℓ𝑦(𝑧) = ‖𝑧 − 𝑦‖22). Then, the goal is to select parameters 𝜃 that minimize the
objective function

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ‖𝑦 − 𝔪(𝑥; 𝜃)‖22 .(7.14)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.4. Applications to Shallow Neural Networks 115

A global minimum of the objective function (7.14) is

𝜃∗ ∈ argmin𝜃∈Θ Λ(𝜃).
The neural network (7.13) with a single hidden layer is the simplest neural

network architecture. However, even in this basic setup, the objective function
(7.14) is nonconvex. Therefore, it is not guaranteed that stochastic gradient
descent will converge to the global minimum.

The neural network (7.13) is a nonlinear model due to the hidden layer 𝐻
which involves the application of the elementwise nonlinearities 𝜎(⋅). The ap-
proximation power of the neural network increases with the number of hidden
units. First, wewillmake this statementmathematically precise. Then, wewill
discuss the practical implications.

Assume now that we would like to learn a model𝔪(𝑥; 𝜃) for the relation-
ship 𝑦 = 𝔪̄(𝑥) by observing data samples (𝑋, 𝑌). Under mild technical condi-
tions (see Chapter 16 on the universal approximation theorems and [HSW90])
for any 𝜖 > 0, there exists a neural network with 𝑑𝐻 hidden units such that

𝔼𝑋,𝑌 [‖𝑌 −𝔪(𝑋; 𝜃∗)‖22] < 𝜖.(7.15)

This result indicates that the neural network𝔪(𝑥; 𝜃) can approximate the tar-
get function 𝔪̄(𝑥) arbitrarily well if it has a sufficiently large number of hidden
units.

It is important to understand that the result (7.15) does not necessarily
mean that a neural network trained in practice will accurately approximate
the target function 𝔪̄(𝑥). Inequality (7.15) achieves the approximation error 𝜖
at a global minimum. However, numerically solving for the global minimum
is intractable in practice. Instead, the objective function Λ(𝜃) is minimized
using stochastic gradient descent, which may converge to a local minimum.
Nonetheless, (7.15) implies that greater accuracy can be achieved by increas-
ing the number of hidden units. In practice, increasing the number of hidden
units will frequently increase the accuracy (as long as the neural network does
not begin to overfit).

7.4.1. ClassificationwithNeural Networks. The example (7.14) considers
a regression problem where a model is trained to predict a real-valued output
given an input. Neural networks can also be used for classification problems
where a model is trained to predict a categorical outcome given an input. In
this case, the outcome is one of a set of discrete values 𝒴 = {𝑙1, 𝑙2, . . . , 𝑙𝐽}, where𝑙𝑗 represents the 𝑗th label for 𝑗 = 1, 2, . . . , 𝐽. The output of the model will be a
vector of probabilities for these potential outcomes.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

116 7. Basics of Stochastic Gradient Descent

In order to perform classification, a softmax layer is added to the neural
network. The neural network architecture becomes𝑍 = 𝑊𝑥 + 𝑏1,𝐻𝑖 = 𝜎(𝑍𝑖), 𝑖 = 0, . . . , 𝑑𝐻 − 1,𝑈 = 𝐶𝐻 + 𝑏2,𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈).
The dimensions of the𝑊,𝐶, 𝑏1, and 𝑏2 remain the same as in (7.13).

With the addition of the softmax layer, the neural network now maps the
input 𝑥 to a probability distribution on 𝒴, i.e., 𝔪(𝑥; 𝜃) ∶ ℝ𝑑 → 𝒫(𝒴). The ob-
jective function is the negative log-likelihood (commonly also called the cross-
entropy error):

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃),
𝜆(𝑥,𝑦)(𝜃) = − 𝐽∑𝑗=1 𝟏𝑦=𝑙𝑗 log𝔪𝑗(𝑥; 𝜃).

The neural network produces a vector of probabilities for all potential out-
comes in 𝒴. Inmany typical applications, a single prediction is required for the
most likely outcome. The most likely outcome isargmax𝑗=1,2,. . .,𝐽 𝔪𝑗(𝑥; 𝜃),
where𝔪𝑗(𝑥; 𝜃) is the 𝑗th element of the output of the model𝔪(𝑥; 𝜃).
7.4.2. Backpropagation Algorithm. In Chapter 6 we went over the basics
of the backpropagation algorithm. Wewill now revisit this topic and derive the
backpropagation formula for the classification problem in the previous subsec-
tion.

The stochastic gradient descent algorithm requires calculating the gradient
of 𝜆 ∶= 𝜆(𝑋,𝑌)(𝜃) with respect to the parameters 𝜃 = {𝐶, 𝑏1, 𝑏2,𝑊}. We will
calculate this gradient using the chain rule.

First, similar to our calculations for logistic regression,𝜕𝜆𝜕𝑈 = −(𝑒(𝑌) − 𝔪(𝑋; 𝜃)),𝑒(𝑦) = (𝟏𝑦=𝑙1 , . . . , 𝟏𝑦=𝑙𝐽).
Then, we immediately have the gradient with respect to 𝑏2:𝜕𝜆𝜕𝑏2 = 𝜕𝜆𝜕𝑈 ⊙ 𝜕𝑈𝜕𝑏2 = 𝜕𝜆𝜕𝑈 ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.4. Applications to Shallow Neural Networks 117

Recall that 𝑥 ⊙ 𝑦 denotes the elementwise multiplication of 𝑥 and 𝑦. For ex-
ample, if 𝑥, 𝑦 ∈ ℝ𝑑 and 𝑧 = 𝑥 ⊙ 𝑦, then 𝑧 ∈ ℝ𝑑 and 𝑧𝑖 = 𝑥𝑖𝑦𝑖. Similarly, if𝑥, 𝑦 ∈ ℝ𝑑1×𝑑2 , then 𝑧 ∈ ℝ𝑑1×𝑑2 and 𝑧𝑖,𝑗 = 𝑥𝑖,𝑗𝑦𝑖,𝑗.

Next, we consider the gradient with respect to 𝐶.𝜕𝜆𝜕𝐶𝑖,𝑞 = 𝐽∑𝑗=1 𝜕𝜆𝜕𝑈𝑗 𝜕𝑈𝑗𝜕𝐶𝑖,𝑞 = 𝜕𝜆𝜕𝑈𝑖𝐻𝑞,
where 𝐶𝑖,𝑞 is the element of the matrix 𝐶 corresponding to the 𝑖th row and the𝑞th column. In matrix notation, 𝜕𝜆𝜕𝐶 = 𝜕𝜆𝜕𝑈𝐻⊤.

Define 𝛿 ∶= 𝜕𝜆𝜕𝑍 .
We have by the chain rule that

𝛿𝑖 = 𝐽∑𝑗=1 𝜕𝜆𝜕𝑈𝑗 𝜕𝑈𝑗𝜕𝐻𝑖
𝜕𝐻𝑖𝜕𝑍𝑖

= 𝐽∑𝑗=1 𝜕𝜆𝜕𝑈𝑗𝐶𝑗,𝑖𝜎′(𝑍𝑖)
= 𝜕𝜆𝜕𝑈 ⋅ 𝐶∶,𝑖𝜎′(𝑍𝑖),

where 𝐶∶,𝑖 is the 𝑖th column of the matrix 𝐶.
In matrix notation, 𝛿 = 𝐶⊤ 𝜕𝜆𝜕𝑈 ⊙ 𝜎′(𝑍),

where, with a slight abuse of notation, 𝜎′(𝑍) is understood as the elementwise
application of 𝜎′(⋅), i.e.,

𝜎′(𝑍) = (𝜎′(𝑍0), 𝜎′(𝑍1), . . . , 𝜎′(𝑍𝑑𝐻−1)).
Then, we immediately have the gradient with respect to 𝑏1 in terms of 𝛿:𝜕𝜆𝜕𝑏1 = 𝛿.
Next, let’s consider the gradient with respect to𝑊 , which can also be writ-

ten in terms of 𝛿: 𝜕𝜆𝜕𝑊𝑖,ℓ = 𝛿𝑖𝑋ℓ.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

118 7. Basics of Stochastic Gradient Descent

Therefore, 𝜕𝜆𝜕𝑊 = 𝛿𝑋⊤.
Collecting our results, the stochastic gradient descent algorithm for updat-

ing 𝜃 is:• Randomly select a new data sample (𝑋, 𝑌).• Compute the forward step 𝑍,𝐻,𝑈,𝔪(𝑋; 𝜃), and 𝜆(𝑋,𝑌)(𝜃).• Calculate the partial derivative𝜕𝜆𝜕𝑈 = −(𝑒(𝑌) − 𝔪(𝑋; 𝜃)).
• Calculate the partial derivatives𝜕𝜆𝜕𝑏2 = 𝜕𝜆𝜕𝑈 ,𝜕𝜆𝜕𝐶 = 𝜕𝜆𝜕𝑈𝐻⊤,

𝛿 = 𝐶⊤ 𝜕𝜆𝜕𝑈 ⊙ 𝜎′(𝑍).
• Calculate the partial derivatives𝜕𝜆𝜕𝑏1 = 𝛿,𝜕𝜆𝜕𝑊 = 𝛿𝑋⊤.
• Update the parameters 𝜃 = {𝐶, 𝑏2,𝑊, 𝑏1} with a stochastic gradient
descent step

𝐶𝑘+1 = 𝐶𝑘 − 𝜂𝑘 𝜕𝜆𝜕𝑈𝐻⊤,
𝑏2𝑘+1 = 𝑏2𝑘 − 𝜂𝑘 𝜕𝜆𝜕𝑈 ,𝑏1𝑘+1 = 𝑏1𝑘 − 𝜂𝑘𝛿,𝑊𝑘+1 = 𝑊𝑘 − 𝜂𝑘𝛿𝑋⊤,

where 𝜂𝑘 is the learning rate.
Remark 7.4. We remark here that oftentimes an alternative definition is given
in the literature for 𝛿, namely 𝛿 ∶= 𝜕𝜆𝜕𝐻 . The two definitions are equivalent. In
the latter case, one would instead arrive at the equations

𝛿 = 𝜕𝜆𝜕𝐻 = 𝐶⊤ 𝜕𝜆𝜕𝑈 ,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.4. Applications to Shallow Neural Networks 119

𝜕𝜆𝜕𝑏1 = 𝛿 ⊙ 𝜎′(𝑍),𝜕𝜆𝜕𝑊 = (𝛿 ⊙ 𝜎′(𝑍))𝑋⊤,
and the parameters 𝜃 = {𝐶, 𝑏2,𝑊, 𝑏1} are updated with a stochastic gradient
descent step

𝐶𝑘+1 = 𝐶𝑘 − 𝜂𝑘 𝜕𝜆𝜕𝑈𝐻⊤,
𝑏2𝑘+1 = 𝑏2𝑘 − 𝜂𝑘 𝜕𝜆𝜕𝑈 ,𝑏1𝑘+1 = 𝑏1𝑘 − 𝜂𝑘𝛿 ⊙ 𝜎′(𝑍),
𝑊𝑘+1 = 𝑊𝑘 − 𝜂𝑘(𝛿 ⊙ 𝜎′(𝑍))𝑋⊤.

Both formulations are equivalent. The difference in the case of a shallow
neural network model is only whether 𝜎′(𝑍) appears in the formula for 𝛿 or in
the subsequent formulas which are used to update the parameters via stochas-
tic gradient descent. In the multilayer case that we study in Chapter 8 we will
present this latter point of view instead, for completeness.

As we have already discussed, the stochastic gradient descent algorithm
described above is frequently referred to as the backpropagation algorithm. It
is composed of a forward step and a backward step. In the forward step, the
output 𝔪(𝑋; 𝜃) and the intermediary network values (𝑍,𝐻, and 𝑈) are calcu-
lated. In the backward step, the gradient of the loss function with respect to the
parameter 𝜃 is calculated. The backward step relies upon the values calculated
in the forward step.

The backward step is constructed in an efficient manner. For example,
when calculating the gradient with respect to 𝑊 , it reuses some of the cal-
culations from the gradients for 𝐶 and 𝑏1. Essentially, a large number of the
steps in the chain rule are shared across the different parameters, which avoids
costly recalculations. In particular, the calculation for gradients of parameters
in lower layers reuses portions of the chain rule which have already been eval-
uated for parameters in higher layers. We will discuss this again in more detail
when multi-layer neural networks are presented.

A numerical implementation of the backpropagation algorithm can be ver-
ified by using finite differences. That is, for Δ > 0 small enough, one can nu-
merically estimate the gradient𝜕𝔪𝜕𝜃𝑖 (𝑥; 𝜃𝑖, 𝜃𝑗≠𝑖) ≈ 𝔪(𝑥; 𝜃𝑖 + Δ, 𝜃𝑗≠𝑖) − 𝔪(𝑥; 𝜃𝑖 − Δ, 𝜃𝑗≠𝑖)2Δ ,
and compare this against the result from the backpropagation algorithm.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

120 7. Basics of Stochastic Gradient Descent

The neural network architecture requires selecting a number of hyperpa-
rameters such as the number of hidden units, the type of activation function
or the parameter initialization. Frequently, different choices of hyperparame-
ters have to be tested in order to find the most optimal configuration (i.e., the
network architecture which has the best performance); see Chapter 11.

The neural network becomes a more complex model as the number of hid-
den units is increased. That is, its approximation power will increase and it
will be able to fit more complex relationships. However, the model will also
become more likely to overfit as the number of hidden units increases.

7.5. Implementation Examples

In the previous section we went over the formulation of the stochastic gradi-
ent descent algorithm and the basics of neural networks and the backpropaga-
tion algorithm. In this section, we present a few coding examples in Python to
demonstrate how the algorithm is implemented in practice.

7.5.1. PyTorch and TensorFlow. PyTorch and TensorFlow are software libra-
ries which can perform automatic differentiation of deep learning models. In
summary, these libraries will automatically calculate the backpropagation al-
gorithm, even for complex models. This can significantly accelerate the devel-
opment and testing of deep learning models.

PyTorch has a define-by-run framework while TensorFlow is a define-and-
run framework. The define-by-run framework in PyTorch has certain mod-
eling advantages and, in general, PyTorch is more seamlessly integrated with
Python than TensorFlow. Both frameworks are widely used. Google developed
TensorFlow, while Facebook is the main developer behind PyTorch.

TensorFlow specifies the model and the computational graph before train-
ing begins. (The computational graph is the forward and backward chain of
relationships in the backpropagation algorithm.) Hence, it is called a define-
and-run framework. The model is static and cannot be easily changed during
training. By using a static model, in principle, TensorFlow can achieve certain
computational efficiencies by a priori optimizing some of the procedures. Since
themodel does not change during training, the backpropagation algorithmalso
remains the same throughout training. In practice, certainworkarounds can be
used to modify the model during training; however, these are not necessarily
straightforward to implement.

PyTorch allows the model and loss function to dynamically change dur-
ing training and testing. PyTorch builds the computational graph on the fly.
Hence, it is called a define-by-run framework. Thus, changes to the model

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.5. Implementation Examples 121

which in turn cause changes to the backpropagation algorithm can be effort-
lessly handled, even when they occur during the training process. This pro-
duces a highly flexible computational framework for training and testing deep
learning models. PyTorch’s seamless integration with Python is also not to be
underestimated. Typical applications will use Python for data preprocessing
purposes, and better integration with the deep learning framework allows for
a faster (and easier) development process.

Section 7.5.2 presents an example of PyTorch code for training a neural net-
work on theMNISTdataset [LBBH98]. TheMNISTdataset is a standard image
recognition dataset of handwritten numbers (more details follow below) and is
available from https://yann.lecun.com/exdb/mnist/. For the code examples in
this chapter as well as in Chapters 8 and 23, the original dataset was down-
loaded and stored in an hdf5 file. The input data was normalized by the maxi-
mum value of a pixel (255). Section 7.5.3 provides an example to demonstrate
the flexibility of PyTorch’s define-by-run framework.

7.5.2. PyTorch Implementation for a Neural Network on the MNIST
Dataset. PyTorch code is provided below for training a one-layer neural net-
work on the MNIST dataset [LBBH98]. The MNIST dataset contains images
of handwritten numbers 0, 1, . . . , 9. Each data sample is a pair (𝑋, 𝑌) where𝑋 ∈ ℝ784 (the image is 28 × 28, and therefore there are 784 pixels which are
inputs to the model) and 𝑌 ∈ 𝒴 = {0, 1, . . . , 9} (typically modeled through a
one-hot vector encoding). The goal is to train a model𝔪(𝑥; 𝜃) to correctly clas-
sify an image given only the pixel data 𝑋 .

Note that the training is divided into a sequence of epochs, where in each
epoch the model is trained on the data from the entire training set. At the
beginning of each epoch, the dataset is randomly shuffled so that the model is
trained on a sequence of i.i.d. data samples.

Load the data:
import numpy as np
import to r ch
import to r ch . nn as nn
import to r ch . nn . f u n c t i o n a l as F
import to r ch . optim as optim
from to r ch . autograd import V a r i a b l e

import h5py
import t ime

load MNIST data
MNIST_data = h5py . F i l e (' MNISTdata . hdf5 ' , ' r ')
x _ t r a i n = np . f l o a t 3 2 (MNIST_data [' x _ t r a i n '] [:])
y _ t r a i n = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t r a i n '] [: , 0]))
x _ t e s t = np . f l o a t 3 2 (MNIST_data [' x _ t e s t '] [:])
y _ t e s t = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t e s t '] [: , 0]))

MNIST_data . c l o s e ()

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://yann.lecun.com/exdb/mnist/

122 7. Basics of Stochastic Gradient Descent

Define the model:
#number o f h idden u n i t s
N = 100

#Model a r c h i t e c t u r e
c l a s s MnistModel (nn . Module) :

def _ _ i n i t _ _ (s e l f) :
super (MnistModel , s e l f) . _ _ i n i t _ _ ()
i npu t i s 28x28
These v a r i a b l e s s t o r e the model parameters .

s e l f . f c 1 = nn . L i nea r (28 * 28 , N)
s e l f . f c 2 = nn . L i nea r (N , 10)

def forward (s e l f , x) :

#Here i s where the network i s s p e c i f i e d .

x = F . tanh (s e l f . f c 1 (x))
x = s e l f . f c 2 (x)

return F . log_so f tmax (x , dim=1)

model = MnistModel ()

Define the optimization algorithm and training:
S t o c h a s t i c g r ad i e n t descen t o p t im i z e r
op t im i z e r = optim . SGD (model . parameters () , l r =0 . 1)

ba t ch_ s i z e = 100
num_epochs = 100
L_ Y_ t r a i n = len (y _ t r a i n)
model . t r a i n ()
t r a i n _ l o s s = []

T ra i n Model
for epoch in range (num_epochs) :

#Randomly s h u f f l e data eve r y epoch
I _pe rmuta t ion = np . random . permutat ion (L _ Y_ t r a i n)
x _ t r a i n = x _ t r a i n [I_permutat ion , :]
y _ t r a i n = y _ t r a i n [I _permuta t ion]
t r a i n _a c cu = []

fo r i in range (0 , L_Y_ t r a in , ba t ch_ s i z e) :
x _ t r a i n_ba t ch = to rch . F loa tTenso r (x _ t r a i n [i : i + ba tch_s i ze , :])
y _ t r a i n_ba t ch = to rch . LongTensor (y _ t r a i n [i : i + ba t ch_ s i z e])
data , t a r g e t = V a r i a b l e (x _ t r a i n_ba t ch) , V a r i a b l e (y _ t r a i n_ba t ch)

PyTorch " accumulates g r ad i e n t s " , so we need to s e t the s t o r ed
g r ad i e n t s to ze ro when t he r e ' s a new batch o f data .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.5. Implementation Examples 123

op t im i z e r . ze ro_grad ()

Forward propagat ion o f the model , i . e . c a l c u l a t e the hidden
u n i t s and the output .

output = model (data)

#The o b j e c t i v e f u n c t i o n i s the nega t i v e log - l i k e l i h o o d f u n c t i o n .
l o s s = F . n l l _ l o s s (output , t a r g e t)

Th i s c a l c u l a t e s the g r ad i e n t s (v i a backpropagat ion)
l o s s . backward ()
t r a i n _ l o s s . append (l o s s . data)

#The model parameters are updated us ing SGD .
op t im i z e r . s tep ()

Ca l c u l a t e accuracy on the t r a i n i n g s e t .
p r ed i c t i o n = output . data . max (1) [1] # f i r s t column has a c t ua l

prob .
accuracy = (f l o a t (p r e d i c t i o n . eq (t a r g e t . data) . sum ())
/ f l o a t (ba t ch_ s i z e)) * 100 . 0
t r a i n _a c cu . append (accuracy)

accuracy_epoch = np .mean (t r a i n _ac cu)
pr in t (epoch , accuracy_epoch)

Accuracy of the trained model:

Ca l c u l a t e accuracy o f t r a i n e d model on the Te s t Se t
model . eval ()
t e s t _accu = []
for i in range (0 , l en (y _ t e s t) , ba t ch_ s i z e) :

x _ t e s t _ba t ch = to rch . F loa tTenso r (x _ t e s t [i : i + ba tch_s i ze , :])
y _ t e s t _ba t ch = to rch . LongTensor (y _ t e s t [i : i + ba t ch_ s i z e])
data , t a r g e t = V a r i a b l e (x_ t e s t _ba t ch) , V a r i a b l e (y_ te s t _ba t ch)
op t im i z e r . ze ro_grad ()
output = model (data)
l o s s = F . n l l _ l o s s (output , t a r g e t)
p r e d i c t i o n = output . data . max (1) [1] # f i r s t column has a c t ua l prob .
accuracy = (f l o a t (p r e d i c t i o n . eq (t a r g e t . data) . sum ()) / f l o a t (ba t ch_ s i z e

)) * 100 . 0
t e s t _accu . append (accuracy)

a c cu r a c y_ t e s t = np .mean (t e s t _accu)
pr in t (a c cu r a c y_ t e s t)

7.5.3. An Example Illustrating PyTorch’s Define-by-Run Framework.
PyTorch’s define-by-run framework allows significant flexibility when training
models. The model architecture and data input can be dynamically changed
during training. A simple example is provided below to illustrate this. The
number of layers in the neural network is increased during training if certain
criterion, which are only known during training, are satisfied.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

124 7. Basics of Stochastic Gradient Descent

Load the dataset:
import numpy as np
import to r ch
import to r ch . nn as nn
import to r ch . nn . f u n c t i o n a l as F
import to r ch . optim as optim
from t o r c h v i s i o n impor t da tase t s , t r an s f o rms
from to r ch . autograd import V a r i a b l e

import h5py
import t ime

load MNIST data
MNIST_data = h5py . F i l e (' MNISTdata . hdf5 ' , ' r ')
x _ t r a i n = np . f l o a t 3 2 (MNIST_data [' x _ t r a i n '] [:])
y _ t r a i n = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t r a i n '] [: , 0]))
x _ t e s t = np . f l o a t 3 2 (MNIST_data [' x _ t e s t '] [:])
y _ t e s t = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t e s t '] [: , 0]))

MNIST_data . c l o s e ()

Define the model:
#number o f h idden u n i t s
H = 50

ba t ch_ s i z e = 100
num_epochs = 100
L_ Y_ t r a i n = len (y _ t r a i n)
epoch_ac cu r a c y_ l i s t = []
epoch_ac cu r a c y_ l i s t . append (0 . 0)

l e a r n i n g r a t e
LR0 = 0 . 1

W_ l i s t = []
W0 = to rch . autograd . V a r i a b l e (to r ch . randn ((H , 28 * 28)) , r equ i r e s_g r ad =True)
W_ l i s t . append (W0)

C = to rch . autograd . V a r i a b l e (to r ch . randn ((10 ,H)) , r equ i r e s_g r ad =True)

Number_of_ layers = 1
Max_Number_of_Layers = 3

Train the model:
T ra i n Model
for epoch in range (num_epochs) :

LR = LR0 / f l o a t (Number_of_ layers)
Se t g r ad i e n t s to ze ro
#W0 . grad [:] = W0 . grad [:] * 0 . 0

#Randomly s h u f f l e data eve r y epoch
I _pe rmuta t ion = np . random . permutat ion (L _ Y_ t r a i n)
x _ t r a i n = x _ t r a i n [I_permutat ion , :]

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.5. Implementation Examples 125

y _ t r a i n = y _ t r a i n [I _permuta t ion]
t r a i n _a c cu = []

fo r i in range (0 , L_Y_ t r a in , ba t ch_ s i z e) :
x _ t r a i n_ba t ch = to rch . F loa tTenso r (x _ t r a i n [i : i + ba tch_s i ze , :])
y _ t r a i n_ba t ch = to rch . LongTensor (y _ t r a i n [i : i + ba t ch_ s i z e])
#data , t a r g e t = V a r i a b l e (x _ t r a i n _ba t c h) . cuda () ,
V a r i a b l e (y _ t r a i n_ba t ch) . cuda ()
data , t a r g e t = V a r i a b l e (x _ t r a i n_ba t ch) , V a r i a b l e (y _ t r a i n_ba t ch)

Z = to rch . t (data)

for i in range (l en (W_ l i s t)) :
Z = to rch . tanh (to r ch .mm(W_ l i s t [i] , Z))

V = to rch .mm(C , Z)

output = F . log_so f tmax (to r ch . t (V) , dim=1)
l o s s = F . n l l _ l o s s (output , t a r g e t)

l o s s . backward () # c a l c u l a t e g r ad i e n t s

with to rch . no_grad () :
fo r i in range (l en (W_ l i s t)) :

W_ l i s t [i] - = LR * W_ l i s t [i] . grad
C - = LR * C . grad

Se t the g r ad i e n t s to ze ro
for i in range (l en (W_ l i s t)) :

W_ l i s t [i] . grad . zero_ ()
C . grad . zero_ ()

Calculate accuracy:
c a l c u l a t e accuracy
p r ed i c t i o n = output . data . max (1) [1] # f i r s t column has a c t ua l

prob .
accuracy = (f l o a t (p r e d i c t i o n . eq (t a r g e t . data) . sum ())
/ f l o a t (ba t ch_ s i z e)) * 100 . 0
t r a i n _a c cu . append (accuracy)

accuracy_epoch = np .mean (t r a i n _ac cu)

epoch_ac cu r a c y_ l i s t . append (accuracy_epoch)

Increase the number of layers if need be on the fly:
I n c r e a s e the number o f l a y e r s i n the neu ra l network model
i f c e r t a i n c r i t e r i a are s a t i s f i e d .

i f ((epoch > 1) & (epoch_ac cu r a c y_ l i s t [- 1] < epoch_ac cu r a c y_ l i s t [- 2] +0 . 1
)

& (Number_of_ layers < Max_Number_of_Layers) & (epoch > 20)) :
W_ l i s t . append (to rch . autograd . V a r i a b l e (to r ch . randn ((H ,H)) ,

r equ i r e s_g r ad =True))
Number_of_ layers = len (W_ l i s t)

pr in t (epoch , accuracy_epoch , Number_of_ layers)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

126 7. Basics of Stochastic Gradient Descent

7.5.4. Accelerating Computations on Graphics Processing Units. The
backpropagation algorithm for training neural networks is composed of a series
of (large) matrix multiplications that can be efficiently parallelized on graph-
ics processing units (GPUs). GPUs have thousands of cores which allows for
highly parallelized computations. A drawback is that GPUs have significantly
lower memory than CPUs. They can also be slower for sequential tasks. GPUs
can provide up to a 10× speedup versus CPUs for deep learning, although per-
formance can of course vary.

It is straightforward to trainmodels onGPUswith PyTorch. It only requires
a couple of modifications of the code from Section 7.5.3 as we observe below.

Load the data:
model = MnistModel ()
@model . cuda ()@

op t im i z e r = optim . SGD (model . parameters () , l r =0 . 1)

ba t ch_ s i z e = 100
num_epochs = 100
L_ Y_ t r a i n = len (y _ t r a i n)
model . t r a i n ()
t r a i n _ l o s s = []

Train the model:
T ra i n Model
for epoch in range (num_epochs) :

I _pe rmuta t ion = np . random . permutat ion (L _ Y_ t r a i n)
x _ t r a i n = x _ t r a i n [I_permutat ion , :]
y _ t r a i n = y _ t r a i n [I _permuta t ion]
t r a i n _a c cu = []

fo r i in range (0 , L_Y_ t r a in , ba t ch_ s i z e) :
x _ t r a i n_ba t ch = to rch . F loa tTenso r (x _ t r a i n [i : i + ba tch_s i ze , :])
y _ t r a i n_ba t ch = to rch . LongTensor (y _ t r a i n [i : i + ba t ch_ s i z e])

@data , t a r g e t = V a r i a b l e (x _ t r a i n_ba t ch) . cuda () ,
V a r i a b l e (y _ t r a i n_ba t ch) . cuda ()@

op t im i z e r . ze ro_grad ()

output = model (data)

l o s s = F . n l l _ l o s s (output , t a r g e t)

l o s s . backward ()
t r a i n _ l o s s . append (l o s s . data [0])

op t im i z e r . s tep ()

p r e d i c t i o n = output . data . max (1) [1]
accuracy = (f l o a t (p r e d i c t i o n . eq (t a r g e t . data) . sum ()) / f l o a t (

ba t ch_ s i z e)) * 100 . 0

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

7.7. Exercises 127

t r a i n _a c cu . append (accuracy)

accuracy_epoch = np .mean (t r a i n _ac cu)
pr in t (epoch , accuracy_epoch)

7.6. Brief Concluding Remarks

In the chapter we investigated aspects of the stochastic gradient descent algo-
rithm and the associated backpropagation with an eye towards shallow neural
networks. In Chapter 8 we generalize our investigations to cover multi-layer
neural networks and we also discuss the vanishing gradient problem.

Condition (7.8) on the learning rate was introduced in the stochastic ap-
proximation algorithm of [RM51] in 1951 and oftentimes it goes by the name
of the Robins-Monroe condition. Soon thereafter [KW52] proposed a similar
stochastic approximation algorithm for estimating themaximumof a function.
It was later proven by [BT00] in 2000 that under this condition and certain as-
sumptions on the loss function, the SGD algorithm (7.4) converges to a critical
point of the loss function. The paper [BCN18] contains related results as well.
The book [KY03] has a detailed exposition on stochastic approximation theory.

Convergence theory results for gradient descent will be presented in Chap-
ter 17 and for the stochastic gradient descent algorithm (7.4) in Chapter 18. In
Chapter 18 we will also study some of the more advanced variants of the clas-
sical stochastic gradient descent algorithms, such as SGD with momentum,
AdaGrad, RMSprop, ADAM, and AdaMax.

7.7. Exercises

Exercise 7.1. Consider a dataset {(𝑥𝑚, 𝑦𝑚)𝑀𝑚=1} where 𝑥 ∈ ℝ𝑑 and 𝑦 ∈ ℝ.
Recall the least-squares objective functionΛ(𝜃) = 1𝑀 ∑𝑀𝑚=1(𝑦𝑚−𝜃⊤𝑥𝑚)2 for the
linear model𝔪(𝑥; 𝜃) = 𝜃⊤𝑥. Derive the stochastic gradient descent algorithm
for this linear regression model.

Exercise 7.2. Consider a nonlinear model𝔪(𝑥; 𝜃) = 𝑔(𝜃⊤𝑥)with an objective
function

Λ(𝜃) = 1𝑀 𝑀∑𝑚=1 ||𝑦𝑚 − 𝑔(𝜃⊤𝑥𝑚)||,
where 𝑔 is a nonlinear but sufficiently smooth function. Derive the stochastic
gradient descent algorithm for this model.

Exercise 7.3. Derive the minibatch stochastic gradient descent algorithm for
the logistic regression model.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

128 7. Basics of Stochastic Gradient Descent

Exercise 7.4. Use minibatch stochastic gradient descent to train a logistic re-
gressionmodel for classification of theMNIST dataset [LBBH98]. Analyze the
effect of different learning rates and different minibatch sizes.

Exercise 7.5. Show that the globalminimumof aneural network is not unique.

Exercise 7.6. Construct an example of a one-layer neural network which has
many local minima that are not global minima.

Exercise 7.7. Consider the shallow neural network𝑍 = 𝑊𝑥 + 𝑏1,𝐻𝑖 = 𝜎(𝑍𝑖), 𝑖 = 0, . . . , 𝑑𝐻 − 1,𝔪(𝑥; 𝜃) = 𝐶𝐻 + 𝑏2,
with the activation function 𝜎(𝑧) being the clipped ReLU unit𝜎(𝑧) = min (max(𝑧, 0), 𝑡),
where 𝑡 is a hyperparameter. Consider the dataset 𝒟 = {(𝑥𝑚, 𝑦𝑚)𝑀𝑚=1} where𝑥𝑚 ∈ ℝ𝑑 and 𝑦𝑚 ∈ ℝ𝐾 . The loss function isΛ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃), where 𝜆(𝑥,𝑦)(𝜃) = |𝑦 − 𝔪(𝑥; 𝜃)|.
Derive the backpropagation algorithm and the stochastic gradient descent al-
gorithm to minimize this loss function for a neural network with clipped ReLU
units.

Exercise 7.8. Show that the gradient (with respect to the parameters 𝜃 ∈ Θ)
of the objective function for a one-layer neural network with ℓ𝑦(𝑧) = (𝑦 − 𝑧)2
is not necessarily globally Lipschitz.

Exercise 7.9. Show that neural networks𝔪(𝑥; 𝜃) are nonconvex functions of
the unknown parameters 𝜃 ∈ Θ.
Exercise 7.10. Prove that there exists a constant learning rate 𝜂 > 0 such that
gradient descent always decreases the loss function Λ(𝜃) ∶ ℝ𝑑 ↦ ℝ at every
iteration if the second derivatives of Λ(𝜃) are uniformly bounded.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 8

Stochastic Gradient
Descent for Multi-layer
Networks

8.1. Introduction

In this chapterwe consider amulti-layer feed forwardneural network, see (8.1).
As in Chapter 7, we develop the backpropagation stochastic gradient descent
algorithm for this case. In addition, we revisit the vanishing gradient descent
problem (which can becomemore profound in the case of multiple layers). We
include an implementation example in PyTorch demonstrating the similarity
to the shallow neural network case presented in Chapter 7.

8.2. Multi-layer Neural Networks

A fully connected, multi-layer neural network has multiple layers, where in
each layer an elementwise nonlinearity is applied to the linear combination of
the output from the previous layer.𝑍1 = 𝑊1𝑥 + 𝑏1,𝐻1 = 𝜎(𝑍1),𝑍ℓ = 𝑊ℓ𝐻ℓ−1 + 𝑏ℓ, ℓ = 2, . . . , 𝐿,𝐻ℓ = 𝜎(𝑍ℓ), ℓ = 2, . . . , 𝐿,𝑈 = 𝑊𝐿+1𝐻𝐿 + 𝑏𝐿+1,𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈).(8.1)

129

10.1090/gsm/252/08

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

130 8. Stochastic Gradient Descent for Multi-layer Networks

The neural network has 𝐿 hidden layers followed by a softmax function.
Each layer of the neural network has 𝑑𝐻 hidden units. The ℓth hidden layer
is 𝐻ℓ ∈ ℝ𝑑𝐻 . 𝐻ℓ is produced by applying an elementwise nonlinearity to the
input 𝑍ℓ ∈ ℝ𝑑𝐻 . Using a slight abuse of notation,

𝜎(𝑍ℓ) = (𝜎(𝑍ℓ0), 𝜎(𝑍ℓ1), . . . , 𝜎(𝑍ℓ𝑑𝐻−1)).
The parameters are 𝜃 = {𝑊1, . . . ,𝑊𝐿+1, 𝑏1, . . . , 𝑏𝐿+1}. The input is 𝑥 ∈ ℝ𝑑

and the input layer has parameters𝑊1 ∈ ℝ𝑑𝐻×𝑑 and 𝑏1 ∈ ℝ𝑑𝐻 . The parameters
in the layers ℓ = 2, . . . , 𝐿 have dimensions𝑊ℓ ∈ ℝ𝑑𝐻×𝑑𝐻 and 𝑏ℓ ∈ ℝ𝑑𝐻 . The
softmax layer has parameters𝑊𝐿+1 ∈ ℝ𝐾×𝑑𝐻 and 𝑏𝐿+1 ∈ ℝ𝐾 .

Similar to the situation studied in Chapter 7, the error (sometimes called
the loss) for a data sample (𝑥, 𝑦) is given by

𝜆(𝑥,𝑦)(𝜃) = − 𝐽∑𝑗=1 𝟏𝑦=𝑙𝑗 log (𝔪(𝑥; 𝜃))𝑗.
Let 𝜆 ∶= 𝜆(𝑋,𝑌)(𝜃) and define

𝛿ℓ ∶= 𝜕𝜆𝜕𝐻ℓ .
Note that here we have defined 𝛿ℓ = 𝜕𝜆𝜕𝐻ℓ instead of 𝛿ℓ = 𝜕𝜆𝜕𝑍ℓ that we

essentially did in Chapter 7; see also Remark 8.1.
By the chain rule, for ℓ = 1, . . . , 𝐿 − 1,

𝛿ℓ𝑖 = 𝑑𝐻∑𝑗=1 𝛿ℓ+1𝑗 𝜕𝐻ℓ+1𝑗𝜕𝐻ℓ𝑖
= 𝑑𝐻∑𝑗=1 𝛿ℓ+1𝑗 𝜎′(𝑍ℓ+1𝑗)𝑊ℓ+1𝑗,𝑖
= (𝛿ℓ+1 ⊙𝜎′(𝑍ℓ+1))⊤𝑊ℓ+1∶,𝑖 .

Therefore, for ℓ = 1, . . . , 𝐿 − 1,𝛿ℓ = (𝑊ℓ+1)⊤(𝛿ℓ+1 ⊙𝜎′(𝑍ℓ+1)).
Consequently, for ℓ = 1, . . . , 𝐿 − 1,𝜕𝜆𝜕𝑏ℓ = 𝛿ℓ ⊙𝜎′(𝑍ℓ),𝜕𝜆𝜕𝑊ℓ = (𝛿ℓ ⊙𝜎′(𝑍ℓ))(𝐻ℓ−1)⊤,
where 𝐻0 ∶= 𝑥.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

8.2. Multi-layer Neural Networks 131

Finally, we have that

𝛿𝐿 = (𝑊𝐿+1)⊤ 𝜕𝜆𝜕𝑈 ,
and 𝜕𝜆𝜕𝑏𝐿+1 = 𝜕𝜆𝜕𝑈 ,𝜕𝜆𝜕𝑊𝐿+1 = 𝜕𝜆𝜕𝑈 (𝐻𝐿)⊤.

Collecting our results, the stochastic gradient descent algorithm for updat-
ing 𝜃 is:• Randomly select a new data sample (𝑋, 𝑌).• Compute the forward step 𝑍1, 𝐻1, . . . , 𝑍𝐿, 𝐻𝐿, 𝑈,𝔪(𝑋; 𝜃), and 𝜆 ∶=𝜆(𝑋,𝑌)(𝜃).• Calculate the partial derivative𝜕𝜆𝜕𝑈 = −(𝑒(𝑌) − 𝔪(𝑋; 𝜃)),

where 𝑒(𝑌) represents the one-hot encoding vector as in (7.11).• Calculate the partial derivatives 𝜕𝜆𝜕𝑏𝐿+1 , 𝜕𝜆𝜕𝑊𝐿+1 , and 𝛿𝐿.• For ℓ = 𝐿 − 1, . . . , 1:
– Calculate 𝛿ℓ via the formula

𝛿ℓ = (𝑊ℓ+1)⊤(𝛿ℓ+1 ⊙𝜎′(𝑍ℓ+1)).
– Calculate the partial derivatives with respect to𝑊ℓ and 𝑏ℓ.• Update the parameters 𝜃 with a stochastic gradient descent step.

The backpropagation algorithm is computationally efficient since it does
not recompute the chain rule for the parameters in different layers. Instead,
layer ℓ reuses the gradient computed in the previous layer ℓ+1 via the variable𝛿ℓ+1. Furthermore, only 𝛿ℓ and 𝛿ℓ+1 need to be retained in memory in order
to calculate the gradients for the parameters in layer ℓ.
Remark 8.1. Comparing to the backpropagation formulas that we derived in
the shallow neural network case of Chapter 7, we note that we chose for com-
pleteness here to define 𝛿ℓ ∶= 𝜕𝜆𝜕𝐻ℓ , instead of 𝛿ℓ ∶= 𝜕𝜆𝜕𝑍ℓ . As we remarked in
Remark 7.4, both formulations are equivalent. We shall visit the formulation
with the definition 𝛿ℓ ∶= 𝜕𝜆𝜕𝑍ℓ in Exercise 8.3.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

132 8. Stochastic Gradient Descent for Multi-layer Networks

8.3. Computational Cost

The computational cost of the backpropagation algorithm for multi-layer neu-
ral networks depends upon a number of factors, including the number of layers𝐿, the number of units in each layer 𝑑𝐻 , the size of the input 𝑑, and the number
of classes 𝐽. The number of arithmetic operations required for the forward step
(i.e., make a prediction) for the multi-layer neural network (8.1) is2(𝐿 − 1)(𝑑2𝐻 + 𝑑𝐻) + 2𝑑𝐻(1 + 𝑑 + 𝐽) + 2𝐽.
The cost increases linearly in the number of layers 𝐿 and quadratically in the
number of hidden units 𝑑𝐻 . The number of arithmetic operations required
for the backward step (i.e., a stochastic gradient descent step on a single data
sample) is (𝐿 − 1)(3𝑑2𝐻 + 𝑑𝐻) + 𝑑𝐻(2𝑑𝐻 + 𝑑 + 3𝐽 + 1) + 2𝐽.

The backpropagation step ismore costly than the forward step. Note that in
the cost estimate for the backpropagation step, we assume that we have stored
all of the relevant values from the forward step. The number of arithmetic
operations includes all addition, multiplication, and algebraic operations. If
one is using minibatch stochastic gradient descent with a batchsize of𝑀∘, each
backpropagation step has𝑀∘[(𝐿 − 1)(3𝑑2𝐻 + 𝑑𝐻) + 𝑑𝐻(2𝑑𝐻 + 𝑑 + 3𝐽 + 1) + 2𝐽]
arithmetic operations.

There is also a memory cost for the parameters 𝜃. Large neural network
models can require significant amounts of memory. The memory required to
store the parameters for the multi-layer network (8.1) is(𝐿 − 1)(𝑑2𝐻 + 𝑑𝐻) + 𝑑𝐻(𝑑 + 𝐽) + 𝐽.

The backpropagation algorithm also requires 𝛿ℓ and 𝛿ℓ+1, which has size2𝑀∘𝑑𝐻 if the batchsize is 𝑀∘. Therefore, the total memory required for back-
propagation is (𝐿 − 1)(𝑑2𝐻 + 𝑑𝐻) + 𝑑𝐻(𝑑 + 𝐽) + 𝐽 + 2𝑀∘𝑑𝐻 .

As an example, consider a neural network with five layers, 500 units per
layer, 100 classes, an input vector of size 1, 000, and a batchsize of 1, 000. Each
parameter is stored as a 32-bit floating point number. Thememory required for
such a neural network is approximately 0.08 GB, which is relatively small for
neural networks. More sophisticated models (such as convolution networks)
can require more memory. Since GPUs have smaller memory than CPUs, it
can become a challenge to train largemodels with large batchsizes on the GPU.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

8.4. Vanishing Gradient Problem 133

The batchsize can be reduced to address this. Alternatively, there are also ap-
proaches for distributing the storage of the model across multiple GPUs or ma-
chines.

8.4. Vanishing Gradient Problem

The neural network model (8.1) becomes more complex as more layers are in-
cluded. In principle, thismeans that the neural network canmore accurately fit
more complex nonlinear relationships. However, the numerical estimation of
the neural network with stochastic gradient descent suffers a limitation called
the vanishing gradient problem as the number of layers is increased.

As the number of layers 𝐿 increases, the magnitude of the gradient with re-
spect to the parameters in the lower layers becomes small (e.g., 𝜕𝜆𝜕𝑊ℓ for ℓ ≪ 𝐿).
This leads to the (stochastic) gradient descent algorithm converging extremely
slowly. Essentially, the lower layers take an impractically long amount of time
to train.

For a fixed 𝑘, the magnitude of the gradient 𝜕𝜆𝜕𝑊ℓ will decrease as the to-
tal number of layers 𝐿 increases. Thus, although increasing 𝐿 leads to a more
complex model, the numerical estimation of this model in practice becomes
increasingly difficult. Deep learning is interested in models and methods with
large numbers of layers 𝐿, i.e., very complexmodels, and has developed several
approaches for overcoming the challenge of the vanishing gradient problem.

Example 8.2. Let us consider a simple case where we can analytically study
the vanishing gradient problem. Consider the multi-layer network𝑍1 = 𝑊1𝑥 + 𝑏1,𝐻1 = 𝜎(𝑍1),𝑍ℓ = 𝑊ℓ𝐻ℓ−1 + 𝑏ℓ, ℓ = 2, . . . , 𝐿,𝐻ℓ = 𝜎(𝑍ℓ), ℓ = 2, . . . , 𝐿,𝔪(𝑥; 𝜃) = 𝑊𝐿+1𝐻𝐿 + 𝑏𝐿+1,
where each hidden layer has a single unit (i.e., 𝑑𝐻 = 1) and 𝜎(⋅) is a sigmoid
function. Let’s initialize 𝑏ℓ = 0 and𝑊ℓ = 12 . The input dimension 𝑑 = 1 and
the output is also one dimensional. Assume 𝑥 = 1 and let the loss function beℓ𝑦(𝑧) = (𝑦 − 𝑧)2.𝐻ℓ = 𝜎 (12𝐻ℓ−1) where we define 𝐻0 = 𝑥 = 1. Since 𝜎(⋅) is a sigmoid
function, 0 < 12𝐻ℓ ≤ 12 for ℓ = 0, . . . , 𝐿 − 1. Therefore, for ℓ = 1, . . . , 𝐿,

0 < 𝐻ℓ ≤ 𝜎(12) < 1,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

134 8. Stochastic Gradient Descent for Multi-layer Networks

since 𝜎(⋅) is a monotonically increasing function. Then, for 1 ≤ ℓ < 𝐿,
𝛿ℓ = 𝜕𝜆𝜕𝐻ℓ = 𝛿𝐿+1𝜎′(𝑍𝐿+1)𝑊𝐿+1

= −2(𝑦 −𝔪(𝑥; 𝜃))𝑊𝐿+1 𝐿∏𝑗=𝑘+1𝜎′(𝑍𝑗)𝑊 𝑗.
The derivative of a sigmoid function is𝜎′(𝑧) = 𝜎(𝑧)(1−𝜎(𝑧)), which implies

that |𝜎′(𝑧)| ≤ 1. Therefore, we have that||𝛿ℓ|| ≤ ||(𝑦 − 𝔪(𝑥; 𝜃))|| × 2−(𝐿−ℓ).
The gradient with respect to the parameter𝑊ℓ is𝜕𝜆𝜕𝑊ℓ = 𝜕𝜆𝜕𝐻ℓ 𝜕𝐻ℓ𝜕𝑊ℓ = 𝛿ℓ𝜎′(𝑍ℓ)𝐻ℓ−1.

Consequently, since 0 < 𝐻ℓ ≤ 1,|| 𝜕𝜆𝜕𝑊ℓ || ≤ ||𝛿ℓ|| ≤ 𝐶2−(𝐿−ℓ),(8.2)

where 𝐶 is a positive constant which may depend upon (𝑥, 𝑦).
The bound (8.2) shows that the gradient with respect to the parameters in

the ℓth layer decreases in magnitude as the total number of layers 𝐿 increases.
In fact, in this simple case, the magnitude decreases at an exponential rate in
the total number of layers 𝐿. For large 𝐿, the gradient is so small that the lower
layers in the network take an impractically long amount of time to train.

The vanishing gradient problem can also occur due to saturation. Satura-
tion occurs when the inputs to the hidden units have very large magnitudes.
For example, recall that if 𝜎(⋅) is a sigmoidal function, then its derivative is𝜎′(𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧)).
Since lim‖𝑧‖→∞𝜎(𝑧) → 0,

lim‖𝑧‖→∞𝜎′(𝑧) = 0.
Therefore, if the magnitudes of the inputs to the nonlinearities 𝜎(⋅) are very
large, the backpropagation rule will lead to very small gradients for parameters
in the lower layers.

8.5. Implementation Example

Let’s see now an implementation example for multi-layer neural networks. In
fact, a multi-layer network is easily implemented in PyTorch. It only requires
modifying the definition of the model in the code in Section 7.5.2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

8.6. Brief Concluding Remarks 135

We implement a multilayer neural network for the MNIST dataset; see
[LBBH98]. In Chapter 7 we also worked with the MNIST dataset, but we im-
plemented a shallow neural network instead.

Mu l t i - l a y e r model a r c h i t e c t u r e
#N i s the number o f u n i t s i n each hidden l a y e r
c l a s s MnistModel (nn . Module) :

def _ _ i n i t _ _ (s e l f) :
super (MnistModel , s e l f) . _ _ i n i t _ _ ()
i npu t i s 28x28
These v a r i a b l e s s t o r e the model parameters .

s e l f . f c 1 = nn . L i nea r (28 * 28 , N)
s e l f . f c 2 = nn . L i nea r (N , N)
s e l f . f c 3 = nn . L i nea r (N , N)
s e l f . f c 4 = nn . L i nea r (N , N)

s e l f . f c 5 = nn . L i nea r (N , 10)

def forward (s e l f , x) :

#Here i s where the network i s s p e c i f i e d .

x = F . r e l u (s e l f . f c 1 (x))
x = F . r e l u (s e l f . f c 2 (x))
x = F . r e l u (s e l f . f c 3 (x))
x = F . r e l u (s e l f . f c 4 (x))

x = s e l f . f c 5 (x)

return F . log_so f tmax (x , dim=1)

The remainder of the code remains exactly the same as in theMNIST exam-
ple of Chapter 7. That is, PyTorch is set up at a high level of abstraction where
the user only needs to define (a) the network architecture and (b) the objec-
tive function. Once these are defined, PyTorchwill automatically calculate the
backpropagation rule and train the model.

8.6. Brief Concluding Remarks

In Chapters 7 and 8we have explored the stochastic gradient descent algorithm
for shallow and multi-layer neural networks, respectively. In Chapters 17 and
18 of Part 2 we will discuss theoretical convergence properties of gradient de-
scent and stochastic gradient descent.

In Chapter 23 of Part 2, we elaborate on distributed training and on syn-
chronous and asynchronous training, which allows us to scale stochastic gra-
dient descent to high-dimensional problems and large datasets.

Overfitting is an important practical challenge that sometimes must be ad-
dreessedwhen implementing deep learning algorithms. Onemethod to reduce

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

136 8. Stochastic Gradient Descent for Multi-layer Networks

overfitting is to include regularization. We discuss two popular regularization
methods, regularization by penalty terms and dropout, in Chapter 9.

8.7. Exercises

Exercise 8.1. Prove that the gradient (with respect to the unknownparameters𝜃 ∈ Θ) of a multi-layer neural network is not globally Lipschitz and is not
bounded.

Exercise 8.2. Implement the backpropagation algorithm for amulti-layer neu-
ral network on the MNIST dataset [LBBH98] from scratch in Python.

Exercise 8.3. Derive the SGD formulas of Section 8.2 using the definition𝛿ℓ ∶= 𝜕𝜆𝜕𝑍ℓ instead of 𝛿ℓ ∶= 𝜕𝜆𝜕𝐻ℓ .
Exercise 8.4. Construct an example of amulti-layer neural networkwhich has
local minima that are not global minima.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 9

Regularization
and Dropout

9.1. Introduction

In this chapter we present two of the main regularization techniques used in
deep learning: regularization by penalty functions in Section 9.2 and dropout
in Section 9.3. Regularization by penalty functions is a classical regulariza-
tion method in statistics, and many classical textbooks cover this topic exten-
sively, see for example [HTF10] and [BD19]. In Section 9.2 wewill mainly pro-
vide definitions and go over some of the properties of regularization by penalty
terms that are more closely related to deep learning. In Section 9.3 we describe
in a greater detail dropout which is a regularization technique that is specific to
deep neural networks. In Sections 9.4 and 9.5 we present details on the imple-
mentation of dropout in the case of shallow and ofmulti-layer neural networks,
respectively. Dropout is very popular in deep learning due to its simplicity and
general effectiveness.

Regularization is used in practice to reduce overfitting andmodel complex-
ity. Both regularization methods that we will discuss (i.e., regularization by
adding penalty terms to the error function and dropout) have been shown to
generally lead to a reduction in overfitting.

9.2. Regularization by Penalty Terms

Let’s think of the situationwherewe fit a complexmodel andwe do not know if
the variance is going to be large. As we discussed in the bias-variance tradeoff
Section 1.6, one way to bring down the variance of a model is to collect more

137

10.1090/gsm/252/09

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

138 9. Regularization and Dropout

data. An alternative way is to potentially modify the loss function to encourage
(said otherwise, to gear) training to simplify complexity. One way of doing so,
is to redefine our loss function to beΛ̂(𝜃) = Λ(𝜃)⏟

Initial loss
+ Ω(𝜃)⏟

Regularization
.

The simplest regularization to add is weight decay, which amounts to
choosing Ω(𝜃) = 𝐶2 ‖𝜃‖22,
and is called the ℓ2 regularization, where if 𝜃 = (𝑝1, . . . , 𝑝𝑑) ∈ ℝ𝑑, then ‖𝜃‖22 =∑𝑑𝑖=1 |𝑝𝑖|2. Essentially, this regularized loss function penalizes for large values
of ‖𝜃‖2 but has small effect on Λ for not-too-large ‖𝜃‖2. We note that we have
already explored this point in some detail in the logistic regression case, Sec-
tion 3.6. There we showed that for perfect data, logistic regression diverges but
will be regularized if a penalty term is included. The penalty size 𝐶 is a hyper-
parameter that has to be tuned. The gradient of the penalized loss becomes∇Λ̂(𝜃) = ∇Λ(𝜃) + 𝐶𝜃,
and the stochastic gradient descent algorithm becomes𝜃𝑘+1 = 𝜃𝑘 − 𝜂 (∇Λ(𝜃𝑘) + 𝐶𝜃𝑘)= (1 − 𝜂𝐶)𝜃𝑘 − 𝜂∇Λ(𝜃𝑘).

Thus, the effect of the ℓ2 regularization is to make the weights smaller in
magnitude.
Example 9.1. As an example, consider the classical linear regression problem
augmented by the regularization term. LetΛ̂(𝜃) = 12‖𝑌 − 𝑋 ⋅ 𝜃‖2 + 𝐶2 ‖𝜃‖22.

This is called ridge regression and the estimator minimizing Λ̂(𝜃) can be
shown (see Exercise 9.1) to be𝜃∗(𝐶) = (𝑋⊤𝑋 + 𝐶𝐼)−1 𝑋𝑌.

Thus, the presence of 𝐶 makes the inverse smaller which subsequently
makes 𝜃∗(𝐶) smaller when compared to the case of 𝜃∗(0) which in turn cor-
responds to ordinary least squares.

Another popular regularization is the ℓ1 regularization Ω(𝜃) = 𝐶‖𝜃‖1,
where if 𝜃 = (𝑝1, . . . , 𝑝𝑑) ∈ ℝ𝑑, then ‖𝜃‖1 = ∑𝑑𝑖=1 |𝑝𝑖|. The gradient of the
penalized loss becomes ∇Λ̂(𝜃) = ∇Λ(𝜃) + 𝐶 sign(𝜃),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.2. Regularization by Penalty Terms 139

where sign(𝜃) acts componentwise on the vector 𝜃 = (𝑝1, . . . , 𝑝𝑑) ∈ ℝ𝑑, re-
turning the sign of each component of the vector 𝜃.

The effect of the ℓ1 regularization is to create sparsity in the weights and
as such this type of regularization is typical in signal processing for example.
It has also been used for feature selection purposes, because it leads to some of
the weights being zero or almost close to zero, suggesting that the correspond-
ing features are not as vital. We do mention here that in regards to regulariza-
tion by penalty terms, the ℓ2 regularization is somewhatmore common in deep
learning than the ℓ1 regularization.
9.2.1. Comparison Between the ℓ2 and the ℓ1 Regularization. As we
mentioned earlier, the effect of the ℓ2 regularization is to make the magnitude
of the weights smaller, whereas the effect of the ℓ1 regularization is to create
sparsity. Let us now demonstrate why this is the case. The argument presented
below is largely heuristic, but it is indicative of how one can think about the
effect of regularization on the learned optimal parameter.

Let us assume that the objective function Λ(𝜃) is convex and smooth
enough that we can apply a second-order Taylor expansion around the global
minimum 𝜃⋆. Since ∇Λ(𝜃⋆) = 0, we shall have for 𝜃 sufficiently close to 𝜃⋆,Λ(𝜃) ≈ Λ(𝜃⋆) + 12(𝜃 − 𝜃⋆)⊤𝐻(𝜃⋆)(𝜃 − 𝜃⋆),
where ≈ is there because we have not written the error term, and 𝐻(𝜃⋆) is the
Hessian of Λ(𝜃), i.e., the matrix with the second-order partial derivatives ofΛ(𝜃), evaluated at 𝜃 = 𝜃⋆.

Differentiating this formula with respect to 𝜃 gives∇Λ(𝜃) ≈ 𝐻(𝜃⋆)(𝜃 − 𝜃⋆).
Let us now bring in the regularization effects. Let ̂𝜃 be the optimal param-

eter for the regularized loss function (the ℓ2 loss) Λ̂(𝜃) = Λ(𝜃) + 𝐶2 ‖𝜃‖22. Let us
now further assume that ̂𝜃 is in the range of 𝜃⋆ so that the approximate formula
above still makes sense. Then, by manipulating the equation above (still ignor-
ing the error terms from the Taylor expansion), we will have approximately𝐻(𝜃⋆)(̂𝜃 − 𝜃⋆) + 𝐶 ̂𝜃 ≈ 0,
yielding ̂𝜃 ≈ (𝐻(𝜃⋆) + 𝐶𝐼)−1𝐻(𝜃⋆)𝜃⋆.

Hence, if𝐻(𝜃⋆) is positive definite, then 𝜃⋆ ≠ 0 implies ̂𝜃 ≠ 0. This heuris-
tic argument then immediately suggests that ℓ2 regularization does not induce
sparsity in the parameters, but it does induce weight decay as measured by the
coefficient 𝐶 > 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

140 9. Regularization and Dropout

On the other hand, the ℓ1 regularization, similarly gives the condition𝐻(𝜃⋆)(𝜃 − 𝜃⋆) + 𝐶 sign(𝜃) ≈ 0.
If, for simplification, we assume that𝐻(𝜃⋆) is a diagonal matrix with posi-

tive diagonal elements (i.e.,𝐻(𝜃⋆)=diag(𝐻11(𝜃⋆), . . . , 𝐻𝑑𝑑(𝜃⋆))with𝐻𝑖𝑖(𝜃⋆) >0), then we can solve this equation yielding (recall the notation in this section𝜃 = (𝑝1, . . . , 𝑝𝑑) ∈ ℝ𝑑) ̂𝑝𝑖 ≈ 𝑝⋆𝑖 − 𝐶𝐻𝑖𝑖(𝜃⋆) sign(̂𝑝𝑖)
for the optimal parameter for the new regularized loss function Λ̂(𝜃) = Λ(𝜃) +𝐶2 ‖𝜃‖1. Now letting 𝑝⋆𝑖 have the same sign as ̂𝑝𝑖, we can rewrite this equation
as ̂𝑝𝑖 ≈ 𝑝⋆𝑖 − 𝐶𝐻𝑖𝑖(𝜃⋆) sign(𝑝⋆𝑖) = sign(𝑝⋆𝑖) (||𝑝⋆𝑖 || − 𝐶𝐻𝑖𝑖(𝜃⋆)) .

Still, keeping in mind the hypothesis that 𝑝⋆𝑖 have the same sign as the ̂𝑝𝑖’s,
if we multiply both sides with sign(̂𝑝𝑖), we get(||𝑝⋆𝑖 || − 𝐶𝐻𝑖𝑖(𝜃⋆)) ≈ | ̂𝑝𝑖| ≥ 0.

This heuristic argument immediately shows that if 𝐶 is large enough, then
the ℓ1 regularization can induce sparsity.

For completeness, wemention that one can also consider other type of reg-
ularizations. An example is affine additive combinations of the ℓ1 and the ℓ2
regularization, leading to what is called in the literature the elastic net regular-
ization, and there are others too. We do not expand more on this topic here as
there are many excellent resources in the literature discussing it in depth, such
as [HTF10,BD19].

9.2.2. Effect of Overparametrization on Regularization. Let us now
briefly discuss the effect of the dimensionality of the vector 𝜃 ∈ Θ, and let
us set 𝑑 = dim(Θ). Let us denote by 𝑛 the dimension of 𝑌 . In deep learning
typically the dimension of 𝜃 is very large, oftentimes larger than the number of
datapoints.

Let us focus for the moment on the linear regression setting, Example 9.1.
In the setting of linear regression, 𝑋 is amatrix of dimension 𝑛×𝑑. When there
is no regularization, i.e., when 𝐶 = 0, then the ordinary least squares take the
form 𝜃∗(0) = (𝑋⊤𝑋)−1 𝑋𝑌,
which is an unbiased estimator of 𝜃 and has small variance when 𝑛 ≫ 𝑑. How-
ever, when 𝑑 ≫ 𝑛, then 𝑋⊤𝑋 becomes poorly conditioned which ultimately

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.3. Dropout and its Relation to Regularization 141

leads to overfitting. Introducing the ℓ2 regularization or otherwise doing ridge
regression ([HK70,Tik63]) leads to reduction of the error.

However, this does not necessarily mean that large models with little reg-
ularization do not generalize well, see [KLS20]. As a matter of fact as demon-
strated in [KLS20], when 𝑑 ≫ 𝑛, the limit 𝐶 → 0 can have good generalization
properties, and explicit ridge regression with 𝐶 > 0 can fail to provide further
improvements. This observation has also been pointed out (empirically) in the
case of deep neural networks, see [ZSBRV21] for more details.

9.3. Dropout and its Relation to Regularization

Dropout is another regularizationmethod that is very specific to deep learning.
Dropout was initially developed in [SHK+14] and has been extensively used
since then. Deep neural networks (with many connections) can end up be-
ing unnecessarily complicated (sometimes leading to overfitting). Importantly,
dropout takes the input features and zeros out a random subset of those. Drop-
out can be viewed as an implicit regularization method that manages to aver-
age among many approximate models without actually training many models
separately.

Let us be more specific now on how dropout works. Let us set

𝛾 = (𝛾1, . . . , 𝛾𝑑), with 𝛾𝑘 = {1, with probability 𝑝0, with probability 1 − 𝑝,
where 𝑝 ∈ (0, 1). Next, we define the dropout operator𝒟(ℎ) = 𝛾 ⊙ ℎ,(9.1)
wherewe recall that⊙ is an elementwise operation. Then for a given datapoint𝑥 in the dataset, the prediction using dropout for a shallow neural network
looks as follows:

̂𝑦 = 𝑁∑𝑛=1 𝑐𝑛𝒟(𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛)),
and analogously for a deep neural network. Dropout is a form of regularization
as it reduces the model complexity; see Section 9.4 for a detailed example.

A schematic representation of dropout implemented on a feed forwardneu-
ral network is shown in Figure 9.1. Notice that some of vertices (correspond-
ing to input features or subsequent hidden units) and related connections have
been dropped from further consideration and they do not affect the neural
network’s output anymore. At each implementation of the algorithm the ver-
tices (input features or subsequent hidden units) are randomly selected to be
dropped with probability 𝑝. Running the algorithm again would result in a
different set of vertices being dropped from the network.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

142 9. Regularization and Dropout

(a) Fully connected feed forward neural
network

(b) An instance of the feed forward net-
work on the left with dropout

Figure 9.1. Left: A fully connected feed forward neural network with two
hidden layers. Right: An instance of the feed forward neural network on the
left with dropout implemented. Themissing vertices (corresponding to input
features or hidden units) have been randomly selected to be dropped. Their
connections have been automatically dropped as well.

Remark 9.2. In practice a typical value is 𝑝 = 0.5, and as a matter of fact this
is the default value for PyTorch. This means that on average for a given input
point 𝑥, half of the activations are set to be zero. Of course, one typically exper-
iments a little bit to figure out what the best value for 𝑝 is in a given problem.
9.3.1. Dropout for Linear Regression. Let us now see how dropout works
in the simple case of linear regression. In fact as we shall see below, in the case
of linear regression, dropout effectively acts as ℓ2 regularization that we visited
in Section 9.2.

Define𝔪(𝑥; 𝜃) = 𝒟(𝑥) ⋅ 𝜃. Then, denoting 𝔼𝛾 to be the expectation under
the random variable 𝛾, we consider the problemmin𝜃 Λ(𝜃) = min𝜃 𝔼𝛾 |𝑌 − (𝛾 ⊙ 𝑋)𝜃|2 .

Since each entry of the vector 𝛾 = (𝛾1, . . . , 𝛾𝑑) is a Bernoulli(𝑝) random
variable, direct calculations show that𝔼𝛾(𝛾 ⊙ 𝑋) = 𝑝𝑋,

𝔼𝛾 ((𝛾 ⊙ 𝑋)⊤(𝛾 ⊙ 𝑋))𝑖,𝑗 = {𝑝2 (𝑋⊤𝑋)𝑖,𝑗 , for 𝑖 ≠ 𝑗𝑝 (𝑋⊤𝑋)𝑖,𝑗 , for 𝑖 = 𝑗.
Expanding the square and plugging in the formulas above, yield the follow-

ing expression for the loss function:

𝔼𝛾 |𝑌 − (𝛾 ⊙ 𝑋)𝜃|2 = |𝑌 − 𝑝𝑋𝜃|2 + 𝑝(1 − 𝑝)𝜃⊤ diag(𝑋⊤𝑋)𝜃.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.4. A Neural Network Example with Dropout Implemented 143

If we now set ̂𝜃 = 𝑝𝜃 and Ω(̂𝜃) = 1−𝑝𝑝 ̂𝜃⊤ diag(𝑋⊤𝑋) ̂𝜃, then we get
𝔼𝛾 |𝑌 − (𝛾 ⊙ 𝑋)𝜃|2 = ||𝑌 − 𝑋 ̂𝜃||2 +Ω(̂𝜃).

Thus indeed in the setting of linear regression, dropout acts as an ℓ2 regu-
larization and if a particular (𝑋⊤𝑋)𝑖,𝑗 is large, then dropout forces its weight to
be small.

9.4. A Neural Network Example with Dropout Implemented

Let us now implement by hand dropout on a simple neural network. As we
mentioned in the beginning of Section 9.3 deep networks with many connec-
tions can end up being unnecessarily complicated (sometimes leading to over-
fitting). Suppose (perhaps in some intermediate layer) we are trying to write a
map (𝑥1, 𝑥2) ↦ 𝑦 in terms of the features𝑥1, 𝑥2, 𝑥1 + 0.1𝑥2.

It is clear that the third feature has redundant information. As a matter of
fact linear maps of 𝑥1, 𝑥2, and 𝑥1 + 0.1𝑥2 can be simplified:

𝑊 (𝑥1𝑥2𝑥1 + 0.1𝑥2) = 𝑊 (1 00 11 0.1) (𝑥1𝑥2) .
As we discussed earlier in Section 9.3 the main idea of dropout is to ran-

domly remove (achieved by multiplying variables by zero) connections before
doing gradient descent.

Suppose that we want to use a three-layer neural network to predict a bi-
nary label based onℝ2-valued features. Denoting by 𝑆(⋅) the usual logistic func-
tion, we have the model𝔪(𝑥; 𝜃) = 𝑆 (𝑊 (3)𝑆 (𝑊 (2)𝑆 (𝑊 (1)𝑋 + 𝐵(1)) + 𝐵(2)) + 𝐵(3))
with the parameters being𝜃 = (𝑊 (1),𝑊 (2),𝑊 (3), 𝐵(1), 𝐵(2), 𝐵(3)) ∈ ℝ2×2 × ℝ2×2 × ℝ1×2 × ℝ2 × ℝ2 × ℝ1.

We note that the ideas below work equally well with any of the usual acti-
vation functions in place of the logistic function.

To train this model on a finite dataset𝒟 ⊂ ℝ2 × {0, 1}, we define𝜆(𝑥,𝑦)(𝜃) = 𝐻(𝑦,𝔪(𝑥; 𝜃)) with (𝑥, 𝑦) ∈ ℝ2 × {0, 1},
where𝐻(𝑦,𝑚) is a per-datapoint error function of our choice. Then our goal is
to minimize the loss functionΛ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

144 9. Regularization and Dropout

Gradient descent with learning rate 𝜂 for entire batch would be𝜃𝑘+1 = 𝜃𝑘 − 𝜂 1|𝒟| ∑(𝑥,𝑦)∈𝒟∇𝜆(𝑥,𝑦)(𝜃𝑘).
Let us now add dropout to the second and third layers. Let us set𝛾 = ((𝛾(2)1 , 𝛾(2)2) , (𝛾(3)1 , 𝛾(3)2)) ∈ [0, 1]2 × [0, 1]2.
Let us define the matrices

𝐷2 = (𝛾(2)1 00 𝛾(2)2) and 𝐷3 = (𝛾(3)1 00 𝛾(3)2) ,
and then define the model𝔪(𝑥; 𝜃, 𝛾) = 𝑆 (𝑊 (3)𝐷3𝑆 (𝑊 (2)𝐷2𝑆 (𝑊 (1)𝑋 + 𝐵(1)) + 𝐵(2)) + 𝐵(3)) ,
with the parameters being as before, i.e,𝜃 = (𝑊 (1),𝑊 (2),𝑊 (3), 𝐵(1), 𝐵(2), 𝐵(3)) ∈ ℝ2×2 × ℝ2×2 × ℝ1×2 × ℝ2 × ℝ2 × ℝ1.

Going now into the training phase, let us fix some 𝑝 ∈ (0, 1) (typical choice
is𝑝 = 0.5) and choose the elements of 𝛾 asBernoulli(𝑝). For instance, if it turns
out that 𝛾 = ((1, 1) , (0, 1)), then we shall have that

𝐷2 = (1 00 1) and 𝐷3 = (0 00 1) .
For 𝑧 ∈ ℝ2, we then have the dropout matrices

𝐷2 (𝑧1𝑧2) = (𝑧1𝑧2) and 𝐷3 (𝑧1𝑧2) = (0𝑧2) .
Note that 𝐷2 keeps both inputs, whereas 𝐷3 keeps only the second input.

Depending on the choice of elements of 𝛾, matrices 𝐷2 and 𝐷3 mask inputs to
the second and third layers in the model𝔪(𝑥; 𝜃, 𝛾).

In the training phase, with per-datapoint loss𝜆dropout(𝑥,𝑦),𝛾 (𝜃) = 𝐻(𝑦,𝔪(𝑥; 𝜃, 𝛾)),
we consider the minimization problemΛdropout(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝔼𝛾∼Bernoulli(𝑝) [𝜆dropout(𝑥,𝑦),𝛾 (𝜃)]

= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝔼𝛾∼Bernoulli(𝑝) [𝐻(𝑦,𝔪(𝑥; 𝜃, 𝛾))]≈ 1𝐽|𝒟| ∑(𝑥,𝑦)∈𝒟,1≤𝑗≤𝐽𝐻(𝑦,𝔪(𝑥; 𝜃, 𝛾𝑗)),
which is an average over all subneural networks to find the best parameter 𝜃∗.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.4. A Neural Network Example with Dropout Implemented 145

In the evaluation (testing) phase, we predict with

𝑥 ↦ 𝔪(𝑥; 𝜃∗, 𝔼𝛾∼Bernoulli(𝑝)[𝛾]).
In the case of the example above, we have

𝔼𝛾∼Bernoulli(𝑝)[𝛾] = ((𝑝, 𝑝), (𝑝, 𝑝)) ,
which means that in the testing phase we replace the randomly chosen matri-
ces 𝐷2 and 𝐷3 with their averages

𝔼𝛾∼Bernoulli(𝑝)[𝐷2] = 𝑝𝐼2 and 𝔼𝛾∼Bernoulli(𝑝)[𝐷3] = 𝑝𝐼2,
where,

𝑝𝐼2 = (𝑝 00 𝑝) and 𝑝𝐼2 = (𝑝 00 𝑝) .
This means that the model takes the form

𝔪(𝑥; 𝜃∗, 𝔼𝛾∼Bernoulli(𝑝)[𝛾]))= 𝑆 (𝑊 (3),∗𝑝𝐼2(𝑆 (𝑊 (2),∗𝑝𝐼2𝑆 (𝑊 (1),∗𝑋 + 𝐵(1),∗) + 𝐵(2),∗) + 𝐵(3),∗) .
To become evenmore detailed, let us investigate now the different possible

outcomes. For this purpose, let us define

𝑊 (1) = (𝑤(1)1,1 𝑤(1)1,2𝑤(1)2,1 𝑤(1)2,2) and 𝐵(1) = (𝑏(1)1𝑏(1)2) ,
𝑊 (2) = (𝑤(2)1,1 𝑤(2)1,2𝑤(2)2,1 𝑤(2)2,2) and 𝐵(2) = (𝑏(2)1𝑏(2)2) ,
𝑊 (3) = (𝑤(3)1 𝑤(3)2) and 𝐵(3) = 𝑏(3) ∈ ℝ,

𝑥 = (𝑥1𝑥2) ,
with different matrices 𝐷2 and 𝐷3.

We shall have that

𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) = 𝐻(𝑦, 𝑆 (𝑊 (3)𝐷3𝑆 (𝑊 (2)𝐷2𝑆 (𝑊 (1)𝑋 + 𝐵(1)) + 𝐵(2)) + 𝐵(3))).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

146 9. Regularization and Dropout

In the gradient descent step, −∇𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) is gradient descent in 𝜃 for
minimizing

𝑎𝑝,(1) = 𝑊 (1)𝑥 + 𝐵(1) = (𝑤(1)1,1𝑥1 + 𝑤(1)1,2𝑥2 + 𝑏(1)1𝑤(1)2,1𝑥1 + 𝑤(1)2,2𝑥2 + 𝑏(1)2) ,(9.2)

𝑎𝑝,(2) = 𝑊 (2)𝐷2𝑆(𝑎𝑝,(1)) + 𝐵(2)
= (𝑤(2)1,1𝛾(2)1 𝑆(𝑎𝑝,(1)1) + 𝑤(2)1,2𝛾(2)2 𝑆(𝑎𝑝,(1)2) + 𝑏(2)1𝑤(2)2,1𝛾(2)1 𝑆(𝑎𝑝,(1)1) + 𝑤(1)2,2𝛾(2)2 𝑆(𝑎𝑝,(1)2) + 𝑏(2)2) ,

𝑎𝑝,(3) = 𝑊 (3)𝐷3𝑆(𝑎𝑝,(2)) + 𝐵(3) = 𝑤(3)1 𝛾(3)1 𝑆(𝑎𝑝,(2)1) + 𝑤(3)2 𝛾(3)2 𝑆(𝑎𝑝,(2)2) + 𝑏(3),
𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) = 𝐻(𝑦, 𝑆(𝑎𝑝,(3))).

Then, depending on the choice for 𝛾 and the corresponding matrices 𝐷2
and 𝐷3, different scenarios emerge. In particular, here are some possibilities• If 𝛾 = ((1, 1), (0, 1)), then

𝐷2 = (1 00 1) and 𝐷3 = (0 00 1) .
Then in the model (9.2), 𝑤(3)1 , 𝑤(2)1,1 , 𝑤(2)1,2, 𝑏(2)1 are unused. Namely, the
gradients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities vanish. The dimension of
the network is effectively ℝ2 → ℝ2 → ℝ1 → ℝ1.• If 𝛾 = ((1, 1), (1, 0)), then

𝐷2 = (1 00 1) and 𝐷3 = (1 00 0) .
Then in the model (9.2), 𝑤(3)2 , 𝑤(2)2,1, 𝑤(2)2,2, 𝑏(2)2 are unused. Namely, the
gradients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities vanish. The dimension of
the network is effectively ℝ2 → ℝ2 → ℝ1 → ℝ1.• If 𝛾 = ((1, 1), (1, 1)), then

𝐷2 = (1 00 1) and 𝐷3 = (1 00 1) .
Then in themodel (9.2), all parameters are being used, i.e., the original𝜆 is being used. The dimension of the network is effectively ℝ2 →ℝ2 → ℝ2 → ℝ1.• If 𝛾 = ((1, 1), (0, 0)), then

𝐷2 = (1 00 1) and 𝐷3 = (0 00 0) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.5. Dropout on General Multi-layer Neural Networks 147

Then in the model (9.2), the final feature-label map does not depend
at all on any of the entries of𝑊 (1),𝑊 (2),𝑊 (3), 𝐵(1), or 𝐵(2). Namely,
the gradients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities vanish. In this case we
have a degenerate situation where 𝑎𝑝,(3) = 𝑏(3).• If 𝛾 = ((1, 0), (1, 1)), then

𝐷2 = (1 00 0) and 𝐷3 = (1 00 1) .
Then in the model (9.2), 𝑤(1)2,1, 𝑤(1)2,2, 𝑏(1)2 are unused. Namely, the gra-
dients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities vanish. The dimension of the
network is effectively ℝ2 → ℝ1 → ℝ2 → ℝ1.• If 𝛾 = ((0, 0), (1, 1)), then

𝐷2 = (0 00 0) and 𝐷3 = (1 00 1) .
Then in the model (9.2), all the entries of𝑊 (1), 𝐵(1), and𝑊 (2) are un-
used. Namely, the gradients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities vanish.
This means that 𝑎𝑝,(2) = (𝑏(2)1𝑏(2)2) does not depend on the input 𝑥 at all.

• If 𝛾 = ((1, 0), (0, 1)), then
𝐷2 = (1 00 0) and 𝐷3 = (0 00 1) .

Then in the model (9.2), 𝑤(1)2,1, 𝑤(1)2,2, 𝑏(1)2 , 𝑤(2)1,1 , 𝑤(2)1,2, 𝑏(2)1 , and 𝑤(3)1 are
unused. Namely, the gradients of 𝜆dropout(𝑥1,𝑥2),𝛾(𝜃) in those quantities van-
ish. The dimension of the network is effectivelyℝ2 → ℝ1 → ℝ1 → ℝ1.
We essentially have(𝑥1, 𝑥2) ⇒ 𝑎𝑝,(1)1 ⇒ 𝑎𝑝,(2)2 ⇒ 𝑎𝑝,(3) ⇒ label.

9.5. Dropout on General Multi-layer Neural Networks

In this section, we redo Section 9.4 in a more general manner. A general multi-
layer neural network with dropout can be realized as follows:𝑍1 = 𝑊1𝑥 + 𝑏1,𝑍ℓ = 𝑊ℓ𝐻ℓ−1 + 𝑏ℓ, ℓ = 1, . . . , 𝐿,𝐻ℓ = 𝛾ℓ ⊙𝜎(𝑍ℓ), ℓ = 1, . . . , 𝐿,𝑈 = 𝑊𝐿+1𝐻𝐿 + 𝑏𝐿+1,𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈).(9.3)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

148 9. Regularization and Dropout

The neural network has 𝐿 hidden layers followed by a softmax function.
Each layer of the neural network has 𝑑𝐻 hidden units. The ℓth hidden layer
is 𝐻ℓ ∈ ℝ𝑑𝐻 . 𝐻ℓ is produced by applying an elementwise nonlinearity to the
input 𝑍ℓ ∈ ℝ𝑑𝐻 . Here 𝛾ℓ is a vector of independent Bernoulli random variables
with parameter 𝑝.

Let us denote Γ = (𝛾1, . . . , 𝛾𝐿). Here Γ is typically called a mask. The role
of Γ is to remove random subset of the hidden units in layer ℓ from the model.
Hence, as we noted in Section 9.3, this is a form of regularization as it makes
the model simpler.

At each update, say at step 𝑘, a random data sample (𝑥𝑘, 𝑡𝑘) is drawn and a
mask Γ is generated. Recalling the notation

𝜆dropout(𝑥𝑘,𝑦𝑘),Γ(𝜃𝑘) = 𝐻(𝑦𝑘,𝔪(𝑥𝑘; 𝜃𝑘, Γ)),
stochastic gradient descent with learning rate 𝜂𝑘 for step 𝑘 would be

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃𝐻(𝑦𝑘,𝔪(𝑥𝑘; 𝜃𝑘, Γ𝑘)),(9.4)

where Γ𝑘 is a realization of Γ at the 𝑘th iteration.
The dropout algorithm seeks to minimize the objective function

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝔼Γ∼Bernoulli(𝑝) [𝜆dropout(𝑥,𝑦),Γ(𝜃)]
= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝔼Γ∼Bernoulli(𝑝) [𝐻(𝑦,𝔪(𝑥; 𝜃, Γ))] ,

and similar to (𝑥, 𝑦), the samples ofΓ are i.i.d. aswell. Therefore, under suitable
conditions, one expects convergence as in Theorem 7.3.

However, it is important to keep in mind that dropout minimizes the aver-
age loss from a collection of models. Combined with the observation that the
number of models grows exponentially with the total number of the hidden
units 𝐿 × 𝛾𝐻 , we soon realize that optimizing1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝔼Γ∼Bernoulli(𝑝) [𝜆dropout(𝑥,𝑦),Γ(𝜃)]
is not really feasible. Instead, in practice we apply stochastic gradient descent
to the collection of models. Namely, we sample one specific model at each
training step, hence the SGD (9.4) appears.

The next question we need to answer is what model to use for predictions,
i.e., for the test dataset. In practice, the random variable 𝛾ℓ in (9.3) is replaced

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

9.7. Exercises 149

by 𝔼(𝛾ℓ) = (𝑝, . . . , 𝑝). Namely, we have𝑍1 = 𝑊1𝑥 + 𝑏1,𝑍ℓ+1 = 𝑊ℓ𝐻ℓ + 𝑏ℓ, ℓ = 1, . . . , 𝐿 − 1,𝐻ℓ = 𝑝 ⋅ 𝜎(𝑍ℓ), ℓ = 2, . . . , 𝐿,𝑈 = 𝑊𝐿𝐻𝐿 + 𝑏𝐿,𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈).(9.5)

However, this is a heuristic, since it is equivalent to interchanging an expec-
tation and a nonlinear function. Thus, the prediction rule (9.5) we are actually
using corresponds to a different loss function:Λprediction(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐻(𝑦,𝔪(𝑥; 𝜃, 𝔼[Γ])).

Of course, neural networks are nonlinear functions, soΛprediction(𝜃) ≠ Λ(𝜃).
Nonetheless, the prediction network (9.5) has been proven effective in practice
for many applications.
Remark 9.3. In our current definition of dropout, we have set 𝐻ℓ = 𝛾ℓ ⊙𝜎(𝑍ℓ), ℓ = 1, . . . , 𝐿, during training in (9.3) and 𝐻ℓ = 𝑝 ⋅ 𝜎(𝑍ℓ), ℓ = 2, . . . , 𝐿,
during the testing phase. An alternative and equivalent formulation (which is
how PyTorch actually implements dropout) is to set 𝐻ℓ = 1𝑝𝛾ℓ ⊙ 𝜎(𝑍ℓ), ℓ =1, . . . , 𝐿, during training in (9.3) and 𝐻ℓ = 𝜎(𝑍ℓ), ℓ = 2, . . . , 𝐿, during the
testing phase.

9.6. Brief Concluding Remarks

In this chapter we introduced the idea of regularization by penalty terms, cov-
ered in many other excellent textbooks such as [HTF10,BD19] for example.
We also discussed dropout, which is a particularly successful regularization
method in deep learning that was introduced in [SHK+14].

Inmany real data applications apart from including regularization, we also
normalize by centering with the mean and scaling by the standard deviation.
We discuss the essence of batch normalization in Chapter 10.

9.7. Exercises

Exercise 9.1. Prove that in the setting of ridge regression of Example 9.1, the
minimiser of the loss function Λ̂(𝜃) is indeed given by the formula𝜃∗(𝐶) = (𝑋⊤𝑋 + 𝐶𝐼)−1 𝑋𝑌.
Exercise 9.2. Prove that in the setting of ridge regression of Example 9.1 and
in the case 𝑝 ≫ 𝑛 that lim𝐶→0 𝜃∗(𝐶) = 𝜃∗(0).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

150 9. Regularization and Dropout

Exercise 9.3. In the context of the specific dropout example associated with
(9.2) study which connections are being dropped and what is the final model
in the cases of 𝛾 = ((0, 1), (1, 1)), 𝛾 = ((0, 1), (1, 0)), 𝛾 = ((0, 0), (1, 0)), 𝛾 =((0, 0), (0, 1)), and 𝛾 = ((0, 0), (0, 0)).
Exercise 9.4. Consider a fully connected feed forward neural network map-
pingℝ2 ↦ (0, 1) consisting of two internal three-dimensional layers. Introduce
dropout matrices into the internal (second) and last (third) layer of the form

𝐷2 = (1 0 00 0 00 0 1) and 𝐷3 = (1 0 00 0 00 0 0) .
Consider the dropout model (with logistic 𝑆 activation function)𝔪(𝑥; 𝜃, 𝐷2, 𝐷3) = 𝑆 (𝑊 (3)𝐷3𝑆 (𝑊 (2)𝐷2𝑆 (𝑊 (1)𝑋 + 𝐵(1)) + 𝐵(2)) + 𝐵(3)) ,

and the corresponding per-datapoint loss𝜆dropout(𝑥,𝑦),𝐷2,𝐷3(𝜃) = 𝐻(𝑦,𝔪(𝑥; 𝜃, 𝐷2, 𝐷3)),
with𝜃 = (𝑊 (3),𝑊 (2),𝑊 (1), 𝐵(3), 𝐵(2), 𝐵(1)) ∈ ℝ1×3 × ℝ3×3 × ℝ3×2 × ℝ × ℝ3 × ℝ3.
For which elements of 𝜃 is the gradient of 𝜆(𝑥,𝑦),𝐷2,𝐷3 zero? Namely, which are
the elements of𝑊 (𝑗) and 𝐵(𝑗) that are dropped out with this choice for 𝐷2 and𝐷3?
Exercise 9.5. Derive the stochastic gradient descent algorithm for a single-
layer fully connected neural network with dropout𝑍1 = 𝑊1𝑥 + 𝑏1,𝐻𝑖 = 𝛾𝑖 ⊙𝜎(𝑍1𝑖),𝑍2 = 𝑊2𝐻 + 𝑏2,

ℙ[𝑌 = 𝑚] = 𝑒𝑍𝑚𝑒𝑍0 + 𝑒𝑍1 ,
where 𝑥 ∈ ℝ𝑑,𝑊1 ∈ ℝ𝐿×𝑑, 𝑏1 ∈ ℝ𝐿, 𝐴 ∈ ℝ𝐿,𝑊2 ∈ ℝ2×𝐿, 𝑏2 ∈ ℝ2, 𝑍2 ∈ ℝ2,𝑌 ∈ {0, 1}, and 𝜎 ∶ ℝ ↦ ℝ. The loss function is cross-entropy loss (i.e., the
negative log-likelihood) and 𝛾𝑖 is a Bernoulli random variable.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 10

Batch Normalization

10.1. Introduction

Let’s return to some ideas from Chapters 2 and 3. In both of those chapters,
we normalized the feature data by centering (by the mean) and scaling (by the
standard deviation). This helped us in several ways:

• Generically, the inputs to each nonlinearity were likely to be where
the nonlinearity has most effect (see Figure 10.1).• It helped us to easily identify outlier training data.• Generically, the optimal various weights and coefficients in themodel𝔪 were of order 1. This in particular suggested that we start our gra-
dient descent algorithms to optimize coefficients in a neighborhood
of the origin of size 1.• Generically, the loss function was better behaved (see in particular
Figures 3.7 vs. 3.11.

“Generically” here means (imprecisely) in a “typical” problem. We would like
to adapt normalization to the inputs to each layer, hopefully allowing us to reap
similar benefits in the internal layers [IS15a].

Batch normalization, initially proposed in [IS15b], adapts these ideas to in-
puts for the internal layers. Similar to dropout, studied inChapter 9 the training
and evaluation algorithms for batch normalization are distinct. The mean and
standard deviation of the internal layers are computed in the training layer.
The evaluation step uses these in predicting the output of the model 𝔪 for a
new (out of sample) datapoint.

151

10.1090/gsm/252/10

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

152 10. Batch Normalization

Figure 10.1. Graphical representation of typical nonlinearities

10.2. Batch Normalization Through an Example

To explain things, let’s consider a simple example. Let’s assume• {𝜙(⋅, 𝜃(1))}𝜃(1) is a collection of maps from from feature spaceℝ𝐹 toℝ2,• 𝜓 is a fixed map from ℝ2 to label space ℝ.
Our original model is the composition of 𝜓 and 𝜙(⋅, 𝜃(1))’s which map ℝ𝐹 intoℝ; i.e.,

ℝ𝐹 𝜙(⋅,𝜃(1))⟶ ℝ2 𝜓⟶ℝ,
or alternately

𝔪(𝑥; 𝜃(1)) def= 𝜓 (𝜙 (𝑥, 𝜃(1))) .
We have a finite training dataset𝒟 ⊂ ℝ𝐹×ℝ and an error function {ℓ𝑦; 𝑦′ ∈ ℝ}
which quantifies error between true and predicted labels. We want to select𝜃(1) which minimizes

Λ(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ℓ𝑦 (𝔪(𝑥; 𝜃(1))) .
Let’s work through to batch normalize the input to the second layer, i.e.,

to 𝜓. This will help us understand how to normalize inputs to an activation
function when these inputs are themselves outputs of a prior layer.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

10.2. Batch Normalization Through an Example 153

Let’s (momentarily) fix 𝑝 = (𝜇1, 𝜇2, 𝜎1, 𝜎2) ∈ ℝ × ℝ × (0,∞) × (0,∞), and
consider a collection {𝑇𝑝(⋅, 𝜃(2))}𝜃(2) of parametrized maps from ℝ2 → ℝ2

(10.1) 𝑇𝑝(̂𝑥, 𝜃(2)) = ⎛⎜⎜⎝
𝑤1 (𝑥̂1−𝜇1𝜍1) + 𝑏1
𝑤2 (𝑥̂2−𝜇2𝜍2) + 𝑏2

⎞⎟⎟⎠ ̂𝑥 = (̂𝑥1̂𝑥2) , 𝜃(2) = ⎛⎜⎜⎝
𝑤1𝑤2𝑏1𝑏2
⎞⎟⎟⎠ ,

and insert 𝑇𝑝(⋅, 𝜃(2)) ∶ ℝ2 → ℝ2 between the 𝜙(⋅, 𝜃(1))’s and 𝜓; i.e.,
ℝ𝐹 𝜙(⋅,𝜃(1))⟶ ℝ2 𝑇𝑝(⋅,𝜃(2))⟶ ℝ2 𝜓⟶ℝ.

Namely, consider the model

(10.2) 𝔪̂𝑝(𝑥; 𝜃) = 𝜓 (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) , 𝑥 ∈ ℝ𝐹 , 𝜃 = (𝜃(1)𝜃(2)) ,
with corresponding loss function

Λ̂𝑝(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ℓ𝑦 (𝔪̂𝑝(𝑥; 𝜃)) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 (𝜓 (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2)))))
= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) , 𝜃 = (𝜃(1)𝜃(2)) .

The parameter vector 𝜃(2) could in principle be subsumed into any linear
transformation of the inputs of𝜓. We also note that straightforward normaliza-
tion of the input to𝜓would be given by setting the𝑤𝑖’s to 1 and the 𝑏𝑖’s to 0. The
definition (10.1) of 𝑇𝑝 gives extra degrees of freedom which contribute to nu-
merical stability. In the literature the success of batch normalization has been
explained from different angles, some examples of which are that (a) it often
leads to reduced internal covariate shift (see [IS15b]) and (b) that it results to
smoother gradients (see [STIM18]).

Let’s understand gradient descent in 𝜃. We will then combine this with
choosing 𝑝 to reflect actual means and variances.

Let’s start by differentiating the second expression of (10.2) with respect to𝜃(1). We get𝜕Λ̂𝑝𝜕𝜃(1)𝑖 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (𝑤1/𝜍1 00 𝑤2/𝜍2)
× (𝜕𝜙1𝜕𝜃(1)𝑖 (𝑥, 𝜃(1))𝜕𝜙2𝜕𝜃(1)𝑖 (𝑥, 𝜃(1))) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

154 10. Batch Normalization

Varying the 𝑤𝑖’s and then the 𝑏𝑖’s, we get𝜕Λ̂𝑝𝜕𝑤1 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (
𝜙1(𝑥,𝜃(1))−𝜇1𝜍10) ,

𝜕Λ̂𝑝𝜕𝑤2 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (, 0𝜙1(𝑥,𝜃(2))−𝜇2𝜍2) ,
𝜕Λ̂𝑝𝜕𝑏1 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (10) ,𝜕Λ̂𝑝𝜕𝑏2 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑝 (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (01) , .

Let’s now let 𝑝 be the desired means and variances of the image𝜙(𝒟, 𝜃(1)) def= {𝜙(𝑥, 𝜃(1)); (𝑥, 𝑦) ∈ 𝒟} ⊂ ℝ2
of 𝒟 through 𝜙(⋅, 𝜃(1)). For any 𝒮 ⊂ ℝ2, define (with small regularization pa-
rameter 𝜀 (PyTorch sets 𝜀 = 10−5) as its default value)𝜇1(𝒮) def= 1|𝒮| ∑(𝑥1,𝑥2)∈𝒮 𝑥1,𝜇2(𝒮) def= 1|𝒮| ∑(𝑥1,𝑥2)∈𝒮 𝑥2,

𝜎1,𝜀(𝒮) def= { 1|𝒮| ∑(𝑥1,𝑥2)∈𝒮 (𝑥1 − 𝜇1(𝒮))2 + 𝜀}1/2 ,
𝜎2,𝜀(𝒮) def= { 1|𝒮| ∑(𝑥1,𝑥2)∈𝒮 (𝑥2 − 𝜇2(𝒮))2 + 𝜀}1/2 ,
𝑃𝜀(𝒮) def= (𝜇1(𝒮), 𝜇2(𝒮), 𝜎1,𝜀(𝒮), 𝜎2,𝜀(𝒮)) .

Informally, we would like to optimize the model
(10.3) 𝜓 (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))) ,
where𝒟 is our training data. Let’s now define a loss function. SetΛ̃(𝜃) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 ℓ𝑦 (𝜓 (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))))= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))) ,
which should correspond to (10.3). We note here that 𝜃(1) now appears in 𝑃𝜀.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

10.2. Batch Normalization Through an Example 155

Let’s compute the derivatives of Λ̃. Derivatives with respect to the𝑤𝑖’s and𝑏𝑖’s (i.e., the components of 𝜃(2)) are similar to those of before. We have
𝜕Λ𝜕𝑤1 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2)))

× (𝜙1(𝑥,𝜃(1))−𝜇1(𝜙(𝒟,𝜃(1)))𝜍1,𝜀(𝜙(𝒟,𝜃(1)))0) ,
𝜕Λ𝜕𝑤2 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2)))

× (0𝜙2(𝑥,𝜃(1))−𝜇2(𝜙(𝒟,𝜃(1)))𝜍2,𝜀(𝜙(𝒟,𝜃(1)))) ,
𝜕Λ𝜕𝑏1 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (10) ,𝜕Λ𝜕𝑏2 (𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))) (01) .

For 𝑖 ∈ {1, 2},
𝜇𝑖(𝜙(𝒟, 𝜃(1))) def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜙𝑖(𝑥, 𝜃(1)),
𝜎𝑖,𝜀(𝜙(𝒟, 𝜃(1))) def= { 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝜙𝑖(𝑥, 𝜃(1)) − 𝜇𝑖(𝜙(𝒟, 𝜃(1))))2 + 𝜀}1/2 ,

so

𝜕𝜇𝑖(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗
def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟

𝜕𝜙𝑖(𝑥, 𝜃(1))𝜕𝜃(1)𝑗 ,
𝜕𝜎𝑖,𝜀(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗

def= { 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝜙𝑖(𝑥, 𝜃(1)) − 𝜇𝑖(𝜙(𝒟, 𝜃(1))))2 + 𝜀}−1/2
× { 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝜕𝜙𝑖(𝑥, 𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇𝑖(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗)} ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

156 10. Batch Normalization

𝜕𝜇𝑖(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗
def= 1|𝒟| ∑(𝑥,𝑦)∈𝒟

𝜕𝜙𝑖(𝑥, 𝜃(1))𝜕𝜃(1)𝑗 ,
𝜕𝜎𝑖,𝜀(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗

def= { 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝜙𝑖(𝑥, 𝜃(1)) − 𝜇𝑖(𝜙(𝒟, 𝜃(1))))2 + 𝜀}−1/2
× { 1|𝒟| ∑(𝑥,𝑦)∈𝒟 (𝜕𝜙𝑖(𝑥, 𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇𝑖(𝜙(𝒟, 𝜃(1)))𝜕𝜃(1)𝑗)} .

Explicitly,

𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2)) = ⎛⎜⎜⎝
𝑤1 (𝜙1(𝑥,𝜃(1))−𝜇1(𝜙(𝒟,𝜃(1)))𝜍1,𝜀(𝜙(𝒟,𝜃(1)))) + 𝑏1
𝑤2 (𝜙2(𝑥,𝜃(1))−𝜇2(𝜙(𝒟,𝜃(1)))𝜍2,𝜀(𝜙(𝒟,𝜃(1)))) + 𝑏2

⎞⎟⎟⎠ ,
so

𝜕𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2))𝜕𝜃(1)𝑗 =
⎛⎜⎜⎜⎜⎜⎝

𝑤1 (𝜕𝜙1(𝑥,𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇1(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝜍1,𝜀(𝜙(𝒟,𝜃(1))))
𝑤2 (𝜕𝜙2(𝑥,𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇2(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝜍2,𝜀(𝜙(𝒟,𝜃(1))))

⎞⎟⎟⎟⎟⎟⎠
− ⎛⎜⎜⎝

𝑤1 (𝜙1(𝑥,𝜃(1))−𝜇1(𝜙(𝒟,𝜃(1)))𝜍21,𝜀(𝜙(𝒟,𝜃(1)))) 𝜕𝜍1,𝜀(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝑤2 (𝜙2(𝑥,𝜃(1))−𝜇2(𝜙(𝒟,𝜃(1)))𝜍22,𝜀(𝜙(𝒟,𝜃(1)))) 𝜕𝜍2,𝜀(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗

⎞⎟⎟⎠
and thus𝜕Λ̃(𝜃)𝜕𝜃(1)𝑗 = 1|𝒟| ∑(𝑥,𝑦)∈𝒟𝐷 (ℓ𝑦 ∘ 𝜓) (𝑇𝑃𝜀(𝜙(𝒟,𝜃(1))) (𝜙(𝑥, 𝜃(1)), 𝜃(2)))

×
⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝

𝑤1 (𝜕𝜙1(𝑥,𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇1(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝜍1,𝜀(𝜙(𝒟,𝜃(1))))
𝑤2 (𝜕𝜙2(𝑥,𝜃(1))𝜕𝜃(1)𝑗 − 𝜕𝜇2(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝜍2,𝜀(𝜙(𝒟,𝜃(1))))

⎞⎟⎟⎟⎟⎟⎠
− ⎛⎜⎜⎝

𝑤1 (𝜙1(𝑥,𝜃(1))−𝜇1(𝜙(𝒟,𝜃(1)))𝜍21,𝜀(𝜙(𝒟,𝜃(1)))) 𝜕𝜍1,𝜀(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗𝑤2 (𝜙2(𝑥,𝜃(1))−𝜇2(𝜙(𝒟,𝜃(1)))𝜍22,𝜀(𝜙(𝒟,𝜃(1)))) 𝜕𝜍2,𝜀(𝜙(𝒟,𝜃(1)))𝜕𝜃(1)𝑗

⎞⎟⎟⎠
⎫⎬⎭ .

This gives us gradient descent for batch normalization.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

10.4. Brief Concluding Remarks 157

10.3. Batch Normalization andMinibatches

Finally, let’s connect our algorithm with minibatches. Directly, this would
mean iterating on 𝑃𝜀 (𝜙 (𝒟′, 𝜃(1))) for a sampled subset𝒟′ of𝒟. Recall from the
stochastic gradient Chapter 7 that we would in fact like to use sampled subsets
of our training data to update various quantities, rather than recompute them
entirely.

Let’s fix a momentum parameter 𝛽 ∈ (0, 1) (PyTorch takes 𝛽 = 0.1 and
Keras takes 𝛽 = 0.01 (but with a reversed definition of momentum)). For each𝑘, select a subset𝒟𝑘 of𝒟 and use stochastic gradient descent on𝒟𝑛 to update𝜃𝑘 to 𝜃𝑘+1, and define

𝑝𝑘+1 def= {(1 − 𝛽)𝑝𝑘 + 𝛽𝑃𝜀(𝜙(𝒟𝑘, 𝜃(1)𝑘)) if 𝑘 ≥ 1𝑃𝜀(𝜙(𝒟0, 𝜃(1)1)) if 𝑘 = 0.
After 𝑁 steps, let’s predict using the model𝜓 (𝑇𝑝𝑁 (𝜙(𝑥, 𝜃(1)𝑁), 𝜃(2)𝑁)) .
• Training involves large (mini) batches, giving a sequence ((𝜃(1)𝑘 ,𝜃(2)𝑘))∞𝑘=1
of values which decrease Λ̃ (perhaps minibatching is involved). 𝜃(1)𝑘 and𝜃(2)𝑘 should tend to a limit, so𝑃𝜀(𝜙(𝒟, 𝜃(1)𝑘)) should tend to a limit (perhaps𝒟 is a minibatch).• Evaluation involves using the model to predict a label for several (one
or few) new datapoints. Our goal is to estimate the limiting value of𝑃𝜀(𝜙(𝒟, 𝜃(1)𝑛)).

10.4. Brief Concluding Remarks

Batch normalization has become a standard method to transform and normal-
ize datasets in deep learning and was initially proposed in [IS15b]; see also
[STIM18]. Afterwe have formulated our dataset appropriately and defined our
model, the next step is to train the model and validate it. This usually happens
in three phases. In the training phase, we train the model. In the validation
phase we validate the model and choose the best hyperparameters and in the
test phase we see howwell we are doing. We investigate these issues in Chapter
11.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 11

Training, Validation,
and Testing

11.1. Introduction

At this point, we have a fairly good understanding of how to optimize param-
eters via (stochastic) gradient descent. Next, we need to understand how to
handle the dataset we seek to analyze. Some motivation here comes from clas-
sical statistics. As we discussed in Section 1.6, the bias-variance tradeoff is an
important phenomenon in statistics, but in order to quantify it, we would need
to consider multiple datasets. However, in many situations, we only have a
single dataset. The typical strategy is then to split the given dataset into three
parts

𝒟 = training set + validation set + test set.• Training: minimizing parameters via (stochastic) gradient descent.• Validation: optimizing over hyperparameters which characterize dif-
ferent architectures. The validation’s set purpose is to compare differ-
ent models.• Testing: reporting the results (of the search for the best deep learning
model). In order to avoid overfitting we test final accuracy on a test
set.

Some practical insights of this decomposition are as follows:• If we have low training error but high validation error, then we have
high variance. In this case, we should use a simpler model and/or
collect more data.

159

10.1090/gsm/252/11

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

160 11. Training, Validation, and Testing

Figure 11.1. Sample (training) data

• If we have large train and test errors, then we have large bias. In this
case, we can fit a more complex model.

Since the complexities of deep neural networks oftentimes do not yield the-
oretical guarantees of performance, well thought out training, testing, and val-
idation steps are crucial to defensible claims about deep learning.

11.2. Polynomials

To understand the basic issues, let’s consider a problemwhich is simple (in fact
a linear regression problem) but which forces us to think through most of the
relevant ideas. Let’s learn (i.e., train) a polynomial model,𝑦 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 +⋯+ 𝑐𝐷𝑥𝐷
on a finite training set 𝒟tr ⊂ ℝ × ℝ (ℝ × ℝ is the collection of (𝑥, 𝑦)-pairs) of
training data given in Figure 11.1. In this case, the machine learning part is
easy; polynomials are particularly simple models for data, and we can get the𝑐𝑑’s by regressing the label on (engineered) feature set
(11.1) {1, 𝑥, 𝑥2⋯𝑥𝐷}.

This allows us to focus on concepts of training, validation, and testing. We
can think of the degree𝐷 as amodel complexity hyperparameter. Furthermore,
the data in Figure 11.1 looks quadratic (and was so constructed); the optimum𝐷 should be 2. This allows us a simple check on a number of conclusions.

11.3. Training

For each non-negative integer 𝐷, let
𝒫𝐷 def= {𝑥 ↦ 𝐷∑𝑑=0 𝑐𝑑𝑥𝑑 ∶ (𝑐0, 𝑐2⋯𝑐𝐷) ∈ ℝ𝐷+1}

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

11.4. Validation 161

Figure 11.2. Polynomial approximations of training data. Low degrees
(blue) underfit and high degrees (red) overfit. Intermediate degrees (green)
show good approximation

be the collection of 𝐷-dimensional polynomials in 𝑥. We can use regression to
find coefficients; for each 𝐷 ∈ {0, 1 . . . }, let’s compute the polynomial

𝑃∗𝐷(𝑥) def= argmin𝑃∈𝒫𝐷 { 1|𝒟tr| ∑(𝑥,𝑦)∈𝒟tr

(𝑦 − 𝑃(𝑥))2}
which best fits the data𝒟tr. Rewriting this inmore standard notation, we want
to equivalently compute the coefficients

(11.2) (𝑐∗,(𝐷)𝑑)𝐷𝑑=0 = argmin { 1|𝒟tr| ∑(𝑥,𝑦)∈𝒟tr

(𝑦 − 𝐷∑𝑑=0 𝑐𝑑𝑥𝑑)
2} ,

minimizing the mean square error. We note that the minimization problem
(11.2) is linear in the 𝑐𝑑’s. Implicitly, we are trying to minimize a quadratic loss
function. We also note that• If 𝐷 is too small (i.e., 0 or 1), it underfits the data and doesn’t capture

variation.• If𝐷 is too large (larger than 2), it overfits the known data, but may not
fit new data.

See Figure 11.2.

11.4. Validation

Let’s assume that we have a new validation dataset 𝒟va (which is statistically
similar to the training dataset 𝒟tr) of feature-label examples. This should be
able to help us find the best hyperparameter (degree) 𝐷. See Figure 11.3. In
our case (which reflects what might generically happen), the validation data𝒟va fills in gaps in the training data 𝒟tr. Comparing our trained models (for
different hyperparameters) on these trained models allows us to optimize over
hyperparmeters.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

162 11. Training, Validation, and Testing

Figure 11.3. Scatter plot of training and validation data.

In carrying out validation, let’s use the absolute value (not the square er-
ror) as a metric to compare predicted and ground-truth labels. Namely, let’s
minimize 1|𝒟va| ∑(𝑥,𝑦)∈𝒟va

||𝑦 − 𝑃∗𝐷(𝑥)||
over 𝐷; our best hyperparameter is

𝐷∗ def= argmin { 1|𝒟va| ∑(𝑥,𝑦)∈𝒟va

||𝑦 − 𝑃∗𝐷(𝑥)|| ∶ 𝐷 ∈ ℕ} .
In our sample data, 𝐷∗ = 3; the best model is in fact cubic, although qua-

dratic and quartic curves also show low validation errors.
A validation curve as in Figure 11.4 captures bias-variance tradeoffs. If our

model is too simple (in our case, 𝐷 is too small), we can’t capture the impor-
tant structure (in this case, quadratic dependence) of the training data; i.e., we
underfit. If our model is too complex (in our case, 𝐷 is too large), we can fit the
training data, but the structure of our model (in this case, polynomials) forces
our trained models to do poorly on new data. This is mathematically natural
in our case; given 𝑁 (𝑥, 𝑦) points, where no two 𝑥’s are the same, we can find
an at most𝑁−1 degree polynomial [HJ20] which passes through these points.
This high-degree polynomial may, however, suffer significant oscillations else-
where.

Since the validation is over a discrete set of hyperparameters (degree𝐷 of a
polynomial), we use discrete minimization, allowing us to use more meaning-
ful and non-differential metrics (i.e., the absolute value function | ⋅ | as opposed
to the square error (⋅)2) (see also the discussion of metrics in linear and logistic

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

11.4. Validation 163

Figure 11.4. Validation curve

regression). By comparison, the loss function is used in training to minimize
over parameters.

Once we have found the optimum 𝐷∗, we can retrain our model
𝑃∗ argmin𝑃∈𝒫𝐷∗ { 1|𝒟tr ∪ 𝒟va| ∑(𝑥,𝑦)∈𝒟tr∪𝒟va

|𝑦 − 𝑃(𝑥)|}
with the entire training and validation dataset 𝒟tr ∪ 𝒟va; see Figure 11.5. For
our example data, we get

(11.3) 𝑃∗(𝑥) = 0.01𝑥3 + 0.23𝑥2 − 4.67𝑥 + 19.54.
Our validation step suggested that we use a cubic polynomial. The result is a
polynomial with in fact a small coefficient in the cubic terms. Roughly, this
agrees with our intuition that our data is quadratic. Recall that our goal is a
good approximation of the dependence of label on feature; the exact degree is
relatively unimportant.

Howdowe report the performance of our algorithm? Suppose that we have
a third (finite) test (holdout) dataset𝒟te ⊂ ℝ × ℝ; see Figure 11.6. Let’s again
use themetric to compare predicted and ground-truth labels. The performance
of our polynomial approximation is then1|𝒟te| ∑(𝑥,𝑦)∈𝒟te

|𝑦 − 𝑃∗(𝑥)| .
The performance in this case is

(11.4) performance = 1.69.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

164 11. Training, Validation, and Testing

Figure 11.5. Retrained model using optimal hyperparameters and training
and validation data. Training data gave us coefficients of polynomials. Vali-
dation data gave us degree of polynomial.

Figure 11.6. Test data

11.5. Cross-Validation

We were admittedly a bit careful in constructing our above datasets. Our 𝑥
values (the features) were sampled from a standard Gaussian distribution with
mean 0 and standard deviation 10. The 𝑦 values (labels) were constructed by
additive perturbing

(11.5) 𝑃true(𝑥) = 0.5𝑥2 − 6𝑥 + 20
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

11.5. Cross-Validation 165

with points sample from a standard Gaussian distribution. The fitted polyno-
mial (11.3) is reasonably close to (11.5). Polynomial regression is in fact statis-
tically more complicated than linear regression. We tried to adapt ideas from
linear regression to the engineered features of (11.1), but we should have added
some corrections to account for biases in higher powers of Gaussian noise.
However, there is similarly no firm statistical ground for multilevel feed for-
ward networks as inChapter 5. The complex feature-label relationswhich deep
neural networks try to model are often beyond what pure statistical theory can
address.

In constructing our training set, we were also a bit careful in selecting a
seed (for the randomization algorithm) which led to a gap in feature space near𝑥 = 2; that gap highlighted the need for a new (validation) dataset. Similarly,
our training dataset consisted of only 15 points; a larger sample sizewould have
started to fill in the gap near 𝑥 = 2.

In fact, our above example was built upon a remarkably small collection
of ground-truth datapoints; see Table 11.2. Our test dataset (Figure 11.6) was
in particular very small; it consisted of only five points. A commonly accepted
ratio of sizes of training, validation, and testing sets is 70-15-15; see Table 11.1.
The breakdown in our example is in Table 11.2.

Table 11.1. Training, validation, and testing breakdown

Training 70%
Validation 15%
Testing 15%

Table 11.2. Dataset sizes

Count Percent
Role
Training 15 60
Validation 5 20
Testing 5 20

Suppose that we are given a ground-truth dataset 𝒟. Building upon our
understanding of training, validation, and testing, let’s reverse our above dis-
cussion. Let’s first randomly select the test (holdout) dataset𝒟te used to report
our final performance. We want to use the remaining data,𝒟tr&va def= 𝒟 ⧵𝒟te,
for selecting parameters (training) and hyperparameters (validation); i.e, for
optimal model building. To make our training and validation steps as robust

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

166 11. Training, Validation, and Testing

Figure 11.7. Three-fold cross validation curves, training, and validation data

as possible, let’s average over ways to subselect training and validation sets. In
K-fold cross validation, let’s partition the non-testing data into 𝐾 folds (subsets){ℱ𝑘}𝐾𝑘=1. Let’s take 𝐾 = 3 in our example problem; see Figure 11.7. Let’s then
write

𝒟tr&va = 𝐾⋃𝑘=1ℱ𝑘.
For each 𝑘, we can then train on

𝒟tr&va ⧵ ℱ𝑘 = ⋃1≤𝑘′≤𝐾𝑘′≠𝑘
ℱ𝑘′

and find

𝑃(𝑘),∗𝐷 def= argmin𝑃∈𝒫𝐷 { 1|𝒟tr&va ⧵ ℱ𝑘| ∑(𝑥,𝑦)∈𝒟tr&va⧵ℱ𝑘
(𝑦 − 𝑃(𝑥))2} .

Then let’s construct a validation function

𝑚(𝑘)(𝐷) def= 1|ℱ𝑘| ∑(𝑥,𝑦)∈ℱ𝑘
||𝑦 − 𝑃(𝑘),∗𝐷 (𝑥)|| 𝐷 ∈ ℕ,

for each fold, and then minimize the average metric

𝐷∗𝐾-fold def= argmin { 1𝐾 𝐾∑𝑘=1𝑚(𝑘)(𝐷) ∶ 𝐷 ∈ ℕ} ,
over all hyperparameters 𝐷. Again, we get underfitting for low 𝐷 and overfit-
ting for high 𝐷 (see Figure 11.8), and in our example, we get 𝐷∗𝐾-fold = 2 with
best polynomial

(11.6) 𝑃∗(𝑥) = 0.43𝑥2 − 5.51𝑥 + 20.5.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

11.6. Brief Concluding Remarks 167

Figure 11.8. Three-fold cross validation curves

As before, once we have the best hyperparameter 𝐷∗𝐾-fold, we can retrain
our model using all of the available data𝒟tr&va;

𝑃∗ def= argmin𝑃∈𝒫𝐷∗𝐾-fold

{ 1|𝒟tr&va| ∑(𝑥,𝑦)∈𝒟tr&va

(𝑦 − 𝑃(𝑥))2} .
Again, we can measure performance using the metric on the test dataset𝒟te, 1|𝒟te| ∑(𝑥,𝑦)∈𝒟te

|𝑦 − 𝑃∗(𝑥)| .
In our example, we get

(11.7) performance = 0.72.
In our example, we get better performance (11.7) with three-fold validation

than we did in our original analysis (11.4). Similarly, the estimated polynomial
(11.6) from using four-fold validation is closer to the true polynomial (11.5)
than the original estimated polynomial (11.3). Averaging over the folds lessens
the effect of idiosyncrasies in training and validating over only one selection of𝒟tr and𝒟va.

11.6. Brief Concluding Remarks

In this chapter we saw that well thought out training, testing, and validation
steps are crucial to the development of robust and meaningful deep learning
algorithms.

In the next chapter we study feature importance. The usefulness of deep
learning is that it allows us to represent high-dimensional data. On the other
hand, the high-dimensionality of the data makes clearer the need to rank the
importance of the various features of the model. Hence, feature importance
becomes practically relevant. This is the content of Chapter 12.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 12

Feature Importance

12.1. Introduction

The appeal of deep neural networks is that they can easily represent high-
dimensional datasets. Given a deep neural network, we can explore feature
importance to rank how important various features are.

Let’s work through a problem we can easily understand and visualize. As-
sume that we have a collection of (𝑥, 𝑦) points in feature space ℝ2 with labelsℓ ∈ {0, 1} which, roughly, are• labeled 1 above the x-axis,• labeled 0 below the x-axis.

In a real problem,• the boundary will not be exactly horizontal.• there may be some noisy observations near the boundary.

Table 12.1 and Figure 12.1 shows a simulation of such points.

Table 12.1. Sample points

x y label
1.76 0.40 0
0.98 2.24 1
1.87 −0.98 0
0.95 −0.15 0−0.10 0.41 0

169

10.1090/gsm/252/12

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

170 12. Feature Importance

Figure 12.1. Scatter plot of labeled points

Nevertheless, since the boundary is horizontal-ish,

the 𝑦-feature is more important than the 𝑥-feature.
How can we quantify this?

We usually look at feature importance within the framework of some algo-
rithm that we have trained on some dataset 𝒟 ⊂ ℝ2 × {0, 1}. Let’s use logistic
regression in (𝑥, 𝑦) to construct a model𝔪 from feature spaceℝ2 to label space{0, 1}. For our dataset,

{choose 1 if 𝑦 > 0.37𝑥 + 0.28
choose 0 else.

Dividing by the coefficient of 𝑦 (and retaining the direction of the inequal-
ities, since this coefficient is positive), we can simplify this as

𝔪∗(𝑥, 𝑦) def= {1 if 𝑦 > 0.37𝑥 + 0.280 else.
(In fact, we constructed the points of Figure 12.1 by sampling 𝑁 = 100 points{(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 from a standard two-dimensional Gaussian distribution, and then
labeling the points 1 if and only if 𝑦𝑛 > 0.3𝑥𝑛 + 0.2 + 12𝜂𝑛, where the 𝜂𝑛 are
samples of a standard Gaussian distribution independent of the (𝑥𝑛, 𝑦𝑛)’s.)

The starting point of analyses of feature importance is typically some as-
sessment of performance of an algorithm. Namely if 𝔪 ∶ ℝ2 → {0, 1}, let’s

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12.2. Feature Permutation 171

Figure 12.2. Permutation of 𝑥 (left) and 𝑦 (right) data
define the accuracy of the model𝔪 applied to the dataset𝒟 as

(12.1) 𝒜𝒟(𝔪) def= 1 − 1|𝒟| ∑((𝑥,𝑦),ℓ)∈𝒟 |𝔪(𝑥, 𝑦) − ℓ| ,
which, in this case, is the relative number of correct classifications. Computing
the accuracy of our logistic regression model𝔪∗, we have
(12.2) 𝒜𝒟(𝔪∗) = 92.0%.

We want to think of (12.2) as baseline accuracy, and it reflects the feature-
label relationship for some fixedmodel (e.g.,𝔪∗). Informally, wewant to quan-
tify importance of 𝑥 vs. 𝑦 in our data by perturbing 𝑥 and 𝑦 in our model, and
seeing how much𝒜 deteriorates. From Figure 12.1, we expect that perturbing𝑦 will lead to a greater deterioration in performance than perturbing 𝑥; correct
classification depends more on 𝑦 than 𝑥, so 𝑦 is more important than 𝑥.
12.2. Feature Permutation

If 𝑥 is less important than 𝑦, rearrangements of 𝑥 should have less importance
than rearrangements of 𝑦. Namely, if we rearrange 𝑥, the accuracy should de-
crease less than if we rearrange 𝑦. Permutations in 𝑦 are more likely to move
points across the decision boundary, causing classification errors. See Figure
12.2.

Let’s define an 𝑥-shuffle of𝒟 as a copy of𝒟 where we have shuffled the 𝑥
values. Similarly, a 𝑦-shuffle of 𝒟 is a copy of 𝒟 where we have shuffled the𝑦-values. Fix an 𝑥-shuffle 𝒟̃𝑥 of𝒟 and a 𝑦-shuffle 𝒟̃𝑦 of𝒟; see Tables 12.2 and
12.3. Let’s then calculate the performance (accuracy) of 𝔪 (i.e., 𝒜𝒟̃𝑥(𝔪) and𝒜𝒟̃𝑦(𝔪)) on each of these test sets. See Table 12.4. As expected, the accuracy
has deteriorated much more on 𝒟𝑦 than on 𝒟𝑥; information about 𝑦 is more
important than information about 𝑥.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

172 12. Feature Importance

Table 12.2. Permutation of 𝑥
x y label−0.51 0.40 0

0.86 2.24 1
1.87 −0.98 0
1.87 −0.15 0−0.07 0.41 0

Table 12.3. Permutation of 𝑦
x y label

1.76 −1.18 0
0.98 −0.65 1
1.87 −0.98 0
0.95 0.91 0−0.10 1.71 0

Table 12.4. Accuracy of𝔪∗ for𝒟 and for an 𝑥-shuffle and a 𝑦-shuffle.
𝒜𝒟(𝔪∗) 92.0%𝒜𝒟𝑥(𝔪∗) 80.0%𝒜𝒟𝑦(𝔪∗) 55.0%

Table 12.5. Accuracy of𝔪∗ for𝒟 and average accuracy for its 𝑥-shuffles and𝑦-shuffles.
𝒜𝒟(𝔪∗) 92.0%̄𝒜𝑦-shuffles(𝔪∗) 82.9%̄𝒜𝑦-shuffles(𝔪∗) 54.3%

Of course Table 12.2 and 12.3 are only one way of shuffling 𝑥 and 𝑦. There
are in fact 𝑁! ways to shuffle 𝑥 and 𝑦. We should actually average over these
ways to shuffle 𝑥 and 𝑦 and computē𝒜𝑥-shuffles(𝔪∗) def= 𝑁!

number of 𝑥-shuffles 𝒟̃𝑥 𝒜𝒟̃𝑥(𝔪∗),
̄𝒜𝑦-shuffles(𝔪∗) def= 𝑁!

number of 𝑦-shuffles 𝒟̃𝑦𝒜𝒟̃𝑦(𝔪∗),
and compare them to𝒜𝒟(𝔪∗). As with Table 12.4, the larger the decrease from𝒜(𝔪∗) to ̄𝒜𝑥-shuffles(𝔪∗) or ̄𝒜𝑦-shuffles(𝔪∗), the more important the feature. By
Stirling’s formula, 𝑁!𝑁↗∞≈ √2𝜋𝑁 (𝑁𝑒)𝑁
is typically very large, so ̄𝒜𝑦-shuffles(𝔪∗) and ̄𝒜𝑦-shuffles(𝔪∗) are approximated by
sampling. Table 12.5 shows the results in our case (approximatinḡ𝒜𝑦-shuffles(𝔪∗) and ̄𝒜𝑦-shuffles(𝔪∗) with 100 samples). As with Table 12.5, 𝑦 is
more important.

Our specific formula (12.1) 𝒜𝒟(𝔪) of accuracy would have given an accu-
racy of 1 if𝔪∗ would have been able to perfectly classify𝒟. More generally,
accuracy of model𝔪 on dataset𝒟=constant−error of model𝔪 on dataset𝒟.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12.3. Shapley Value 173

Feature importance can thus be quantified as increases in error as various fea-
tures are shuffled.

12.3. Shapley Value

Our second way of understanding feature importance stems from [LL17], and
it quantifies how much a feature adds to all possible predictions.

Again, we startwith ourfixed trainedmodel,𝔪∗, whichmaps a pair (𝑥, 𝑦) ∈ℝ2 into a label ℓ ∈ {0, 1}, and our ground-truth dataset 𝒟 ⊂ ℝ2 × {0, 1}. Let’s
build off of ideas of conditional expectation and project 𝔪∗ onto maps from
lower-dimensional sets of features (using𝒟). Namely, let’s define

(12.3)

𝔪∗1,1(𝑥, 𝑦) def= 𝔪∗(𝑥, 𝑦),
𝔪∗1,0(𝑥) def= 1|𝒟| ∑((𝑥′,𝑦′),ℓ)∈𝒟𝔪∗(𝑥, 𝑦′),
𝔪∗0,1(𝑦) def= 1|𝒟| ∑((𝑥′,𝑦′),ℓ)∈𝒟𝔪∗(𝑥′, 𝑦),
𝔪∗0,0 def= 1|𝒟| ∑((𝑥′,𝑦′),ℓ)∈𝒟𝔪∗(𝑥′, 𝑦′).

The function𝔪∗1,1 is simply𝔪∗, and predicts a label based on both features.
At the other extreme, 𝔪∗0,0 can be thought of as predicting the label based on
neither feature (and is simply the average predicted label). The functions𝔪∗1,0
and𝔪∗0,1 (often called partial dependence functions) predict the label based on,
respectively, only 𝑥 or only 𝑦. In our case,

𝑚0,0 = 0.46,
and the plots of 𝔪∗1,0 and 𝔪∗0,1 are given in Figure 12.3 (sometimes called in
the literature partial dependence plot). Visually, for a given 𝑥 ∈ ℝ,𝔪∗1,0 aver-
ages𝔪∗ over a synthetic dataset of (𝑥, 𝑦′)where 𝑦′ is given by the ground-truth
dataset. As 𝑥moves to the right, the dataset in Figure 12.1 hasmore points with
label 0, so the average value decreases. This occurs fairly gradually, so the plot
of𝔪∗1,0 decreases fairly slowly. Conversely, for a given 𝑦 ∈ ℝ,𝔪∗0,1 averages𝔪∗
over a synthetic dataset of (𝑥′, 𝑦), where now 𝑥′ is given by the ground-truth
dataset. As 𝑦 moves up, the dataset in Figure 12.1 has more points with label1 so the average value increases. There is a fairly sharp transition for 𝑦 near 0,
so the plot of𝔪0,1 quickly increases near 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

174 12. Feature Importance

Figure 12.3. Partial dependence plots: plot of𝔪∗1,0 (left) and𝔪∗0,1 (right) data

We want to understand the accuracy of the models of (12.3) Borrowing
from ideas of computing, let’s now overload the𝔪∗𝑖,𝑗’s to againmake them func-
tions of both variables, so that we can apply 𝒜 of (12.1). Let’s define

𝔪∗1,0(𝑥, 𝑦) def= 𝔪∗1,0(𝑥),𝔪∗0,1(𝑥, 𝑦) def= 𝔪∗0,1(𝑦),𝔪∗0,0(𝑥, 𝑦) def= 𝔪∗0,0,
which means that𝔪∗𝑖,𝑗 is being evaluated as𝔪∗𝑖,𝑗 in the used features.

We can now define accuracies based on subsets of feature dimensions. De-
fine

𝛼({𝑥, 𝑦}) def= 𝒜𝒟(𝔪∗1,1),𝛼({𝑥}) def= 𝒜𝒟(𝔪∗1,0),𝛼({𝑦}) def= 𝒜𝒟(𝔪∗0,1),𝛼(∅) def= 𝒜𝒟(𝔪∗0,0).
We have

𝛼({𝑥, 𝑦}) = 0.92,𝛼({𝑥}) = 0.54,𝛼({𝑦}) = 0.83,𝛼(∅) = 0.50.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12.3. Shapley Value 175

We can now quantify how much each feature adds to various subsets of
feature dimensions (not already containing that feature):

𝛼({𝑥}) − 𝛼(∅) = 0.54 − 0.50 = 0.04,𝛼({𝑥, 𝑦}) − 𝛼({𝑦}) = 0.92 − 0.83 = 0.09,𝛼({𝑦}) − 𝛼(∅) = 0.83 − 0.50 = 0.32,𝛼({𝑥, 𝑦}) − 𝛼({𝑥}) = 0.92 − 0.54 = 0.38.
In line with our intuition, 𝑦 adds muchmore accuracy than 𝑥. The Shapley

value in our case averages these over each feature:

𝑆𝑥 def= 12 {{𝛼({𝑥}) − 𝛼(∅)} + {𝛼({𝑥, 𝑦}) − 𝛼({𝑦})}} ,
𝑆𝑦 def= 12 {{𝛼({𝑦}) − 𝛼(∅)} + {𝛼({𝑥, 𝑦}) − 𝛼({𝑥})}} .

In our case,

𝑆𝑥 = 12 {0.09 + 0.04} = 0.07,
𝑆𝑦 = 12 {0.38 + 0.32} = 0.35.

Namely, 𝑦 adds about 35% predictive power, while 𝑥 adds only about 7%,
𝑆𝑦 > 𝑆𝑥,

and we quantitatively have that 𝑦 is a more important feature than 𝑥.
Let’s start to convert our notation to problems involving more than 𝑁 = 2

features. Let’s write

𝑆𝑥 = 1𝑁 {𝛼({𝑥, 𝑦}) − 𝛼({𝑦})(𝑁−1|{𝑦}|) + 𝛼({𝑥}) − 𝛼(∅)(𝑁−1|∅|) }
with 𝑁 = 2,

(𝑁 − 1|∅|) = (10) = 1.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

176 12. Feature Importance

With 𝑁 = 3 predictive variables 𝑥, 𝑦, and 𝑧, the Shapley value would be
defined as

𝑆𝑥 = 1𝑁 {𝛼({𝑥, 𝑦, 𝑧}) − 𝛼({𝑦, 𝑧})(𝑁−1|{𝑦,𝑧}|) + 𝛼({𝑥, 𝑦}) − 𝛼({𝑦})(𝑁−1|{𝑦}|)
+𝛼({𝑥, 𝑧}) − 𝛼({𝑧})(𝑁−1|{𝑧}|) + 𝛼({𝑥}) − 𝛼(∅)(𝑁−1|∅|) }

= 13 {𝛼({𝑥, 𝑦, 𝑧}) − 𝛼({𝑦, 𝑧})(22) + 𝛼({𝑥, 𝑦}) − 𝛼({𝑦})(21)
+𝛼({𝑥, 𝑧}) − 𝛼({𝑧})(21) + 𝛼({𝑥}) − 𝛼(∅)(20) }

= 13 {𝛼({𝑥, 𝑦, 𝑧}) − 𝛼({𝑦, 𝑧})1 + 𝛼({𝑥, 𝑦}) − 𝛼({𝑦})2+𝛼({𝑥, 𝑧}) − 𝛼({𝑧})2 + 𝛼({𝑥}) − 𝛼(∅)1 } .
Generally, if ℱ is the collection of features, |ℱ| = 𝑁, and 𝑓 a feature,

𝑆𝑓 def= 1𝑁 ∑𝐹⊂ℱ⧵{𝑓}
𝛼(𝐹 ∪ {𝑥}) − 𝛼(𝐹)(𝑁−1|𝐹|)

= 1𝑁 𝑁−1∑𝑛=0 1(𝑁−1𝑛) ∑𝐹⊂ℱ⧵{𝑓}|𝐹|=𝑛
{𝛼(𝐹 ∪ {𝑥}) − 𝛼(𝐹)} ,

where the second sumhas been organized by |𝐹|; there are (𝑁−1𝑛)ways to choose
a subset of ℱ ⧵ {𝑓} of size 𝑛.

Let’s finally note that the Shapley value is bounded by the maximal accu-
racy. If 𝛼 ≤ 𝛼̄ (𝛼̄ = 1 in our calculation),

𝑆𝑓 ≤ 1𝑁 𝑁−1∑𝑛=0 1(𝑁−1𝑛) ∑𝐹⊂ℱ⧵{𝑓}|𝐹|=𝑛
𝛼̄ = 1𝑁 𝑁−1∑𝑛=0 1(𝑁−1𝑛)(𝑁 − 1𝑛)𝛼̄ = 1𝑁𝑁𝛼̄ = 𝛼̄.

12.4. Feature Permutation versus Shapley Value

Let us now discuss how feature permutation, explored in Section 12.2, and
Shapley value, explored in Section 12.3, compare with each other.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12.6. Exercises 177

Both methods measure feature importance. Their main difference is that
while feature permutation relies on the decrease in model performance, Shap-
ley value is based on how much a feature adds to all possible predictions. Fea-
ture permutation does not include a direction, whereas Shapley values can be
positive or negative depending on the influence on the predicted outcome.

Feature permutation is calculated on the entire dataset, whereas Shapley
value shows howmuch a feature influences the prediction relative to the aver-
age outcome in the dataset.

As a more practical guide, one could use feature permutation to decide
which features to keep and which ones are the most important to the accu-
racy of the model. Feature importance can also guide additional feature engi-
neering. On the other hand, Shapley value can be used to understand which
features influence predictions more, or how different values of a given feature
affect predictions.

12.5. Brief Concluding Remarks

Up to now we have seen the main ingredients in the formulation of a deep
learning algorithm. Namely, we have seen the basic formulation of a feed for-
ward neural network in Chapter 5, backpropagation in Chapter 6, stochastic
gradient descent algorithm in Chapter 7, and then themain principles in train-
ing, validation, and testing in Chapter 11, and feature selection in Chapter 12.
Another important component that has contributed tremendously in the suc-
cess of deep learning in practice is the realization that dependent and struc-
tured data require appropriate architectures. As such, in Chapter 13 we study
recurrent neural networks and transformers that arewidely used tomodel time
series and sequential data. In Chapter 14 we study convolution neural net-
works that are widely used in image recognition problems.

12.6. Exercises

Exercise 12.1. Suppose we are building a binary classifier on points in ℝ2.
Consider a test set of three datapoints:

𝑛 1 2 3𝑋𝑛 0.5 −2 1𝑌𝑛 1 3 5ℓ𝑛 1 0 0

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

178 12. Feature Importance

This tablemeans that the first datapoint in the set is (0.5, 1)with label 1. Define
the accuracy of the map𝔪 ∶ ℝ2 ↦ [0, 1] as

𝒜𝒟(𝔪) = 1 − 13 3∑𝑛=1 |𝔪(𝑋𝑛, 𝑌𝑛) − ℓ𝑛| .
Suppose we have the classifier

𝔪0(𝑥, 𝑦) = {1, if 𝑦 > 𝑥20, if 𝑦 ≤ 𝑥2.
In addition define

𝔪̂1,0(𝑥) = 13 3∑𝑛=1𝔪0(𝑥, 𝑌𝑛),
𝔪̂0,1(𝑦) = 13 3∑𝑛=1𝔪0(𝑋𝑛, 𝑦),
𝔪̂0,0 = 13 3∑𝑛=1𝔪0(𝑋𝑛, 𝑌𝑛).

With these definitions at hand do the following:
(1) Compute 𝔪̂0,0, 𝔪̂1,0(𝑥), and 𝔪̂0,1(𝑦) for each 𝑥 and 𝑦 in the available

dataset.
(2) Compute 𝒜𝒟(𝔪̂0,0), 𝒜𝒟(𝔪̂1,0), 𝒜𝒟(𝔪̂0,1), and 𝒜𝒟(𝔪0).
(3) Compute the Shapley value of 𝑥 and the Shapley value of 𝑦.

Exercise 12.2. Suppose we are building a binary classifier on points in ℝ2.
Consider a test set of three datapoints𝑛 1 2 3𝑋𝑛 0.5 −2 1𝑌𝑛 1 3 5ℓ𝑛 1 0 1

This table means that the first datapoint in the set is (0.5, 1) with label 1.
Define the accuracy of the map𝔪 ∶ ℝ2 ↦ [0, 1] as

𝒜𝒟(𝔪) = 1 − 13 3∑𝑛=1 |𝔪(𝑋𝑛, 𝑌𝑛) − ℓ𝑛| .
Suppose we have the classifier

𝔪0(𝑥, 𝑦) = {1, if 𝑦 > 𝑥20, if 𝑦 ≤ 𝑥2.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

12.6. Exercises 179

In addition define

𝔪̂1,0(𝑥) = 13 3∑𝑛=1𝔪0(𝑥, 𝑌𝑛),
𝔪̂0,1(𝑦) = 13 3∑𝑛=1𝔪0(𝑋𝑛, 𝑦),
𝔪̂0,0 = 13 3∑𝑛=1𝔪0(𝑋𝑛, 𝑌𝑛).

With these definitions in hand,
(1) Compute 𝔪̂0,0, 𝔪̂1,0(𝑥), and 𝔪̂0,1(𝑦) for each 𝑥 and 𝑦 in the available

dataset.
(2) Compute 𝒜𝒟(𝔪̂0,0), 𝒜𝒟(𝔪̂1,0), 𝒜𝒟(𝔪̂0,1), and 𝒜𝒟(𝔪0).
(3) Compute the Shapley value of 𝑥 and the Shapley value of 𝑦.
(4) Compare the results with those of Exercise 12.1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 13

Recurrent
Neural Networks
for Sequential Data

13.1. Introduction

We next turn to applications of deep neural networks to sequential data. For
example, sequential data may refer to data representing time series, text in lan-
guage, etc. Let us for a moment focus on time series data. We want to predict
a time series {𝑌𝑡}∞𝑡=1 of outputs (similar to labels) on the basis of a time series{𝑋𝑡}∞𝑡=1 of inputs (similar to features). We want to do so with two thoughts in
mind: • Wewant to respect time (or generally speaking order in the sequence)

as we cannot use future information in predicting present output.• Real systems have some sort of internal memory.

Again, let’s use an example dataset to motivate some thoughts. The first
few lines of some sample data (see github) are in Table 13.1. See also Figure
13.1.

In Section 13.2 we go over the plant-observer paradigm, which leads to the
basic recurrent neural networks: Jordan networks in Section 13.3 and Elman
networks in Section 13.4. In Section 13.5.1 we discuss how backpropagation
is applied to recurrent neural networks leading to the truncated backpropaga-
tion through time. Stability of recurrent neural networks is studied in Section
13.6 where we discuss conditions under which the basic recurrent neural net-
work is stable in the sense that the output does not saturate. This motivates the

181

10.1090/gsm/252/13

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

182 13. Recurrent Neural Networks for Sequential Data

Table 13.1. Sample sequential data (an example of a time series)

𝐗 𝐘
t
1 1.025 −0.041
2 0.893 −0.033
3 1.068 −0.029
4 1.035 −0.026
5 1.028 −0.024

Figure 13.1. Sample sequential data (a graphical example of a time series)

construction of more advanced recurrent neural network architectures, such
as gated recurrent networks (GRU), long-short term memory models (LSTM),
and bidirectional recurrent neural networks, Section 13.7. Implementation de-
tails for recurrent neural networks (RNNs), such as dropout, batch normaliza-
tion, and layer normalization, are discussed in Section 13.8. In Section 13.9 we
change gears slightly and discuss the attentionmechanism and the basic trans-
former architecture that has been very successful in sequential data related to
large language models, and we discuss how it relates to the more advanced
recurrent neural networks such as the LSTM.

13.2. The Plant-Observer Paradigm

We can organize our discussion by the plant-observer paradigm of systems the-
ory. Suppose that the inputs drive a dynamical plant

(13.1) 𝑍𝑡 = 𝑓(𝑍𝑡−1, 𝑋𝑡).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.3. Jordan Networks 183

The observations are assumed to be some function of the state of the plant𝑌𝑡 = 𝑔(𝑍𝑡).
The plant 𝑍 may be very high-dimensional, reflecting the evolution of a

large amount of hidden (or latent) information. If the plant dynamics (13.1)
are linear, 𝑍 becomes an autoregressive process. The function 𝑔 collapses all of
this information to the observed values.

13.3. Jordan Networks

Let’s assume that 𝑔 is the identity map. Then 𝑌𝑡 = 𝑍𝑡 and the plant-observer
model reduces to 𝑌𝑡 = 𝑓(𝑌𝑡−1, 𝑋𝑡).

Explicitly, we are representing the current output as a combination of the
prior output and the current input:(feature𝑡, label𝑡) = ((𝑋𝑡, 𝑌𝑡−1), 𝑌𝑡) .

This becomes a standard deep learning problem with label 𝑌𝑡 and feature(𝑌𝑡−1, 𝑋𝑡); see Table 13.2. We note in Table 13.2 that 𝑌−1 does not exist, so we
do not have a ground-truth pair ((𝑋0, 𝑌−1), 𝑌0) in our ground-truth dataset.

Table 13.2. Feature-label data for Jordan networks

Feature Label𝐗 lagged 𝐘 𝐘
t
1 1.025 nan −0.041
2 0.893 −0.041 −0.033
3 1.068 −0.033 −0.029
4 1.035 −0.029 −0.026
5 1.028 −0.026 −0.024

As a point of comparison for more complicated models, let’s write out a
one-layer model for a Jordan network. We might consider

(13.2) 𝔪(𝑋𝑡, 𝑌𝑡−1; 𝜃) def= tanh(𝑤1𝑋𝑡 + 𝑤2𝑌𝑡−1 + 𝑏) ,
where 𝜃 ∈ ℝ × ℝ × ℝ is the parameter vector𝜃 = (𝑤1, 𝑤2, 𝑏) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

184 13. Recurrent Neural Networks for Sequential Data

Figure 13.2. Jordan network

In Figure 13.2we present schematically a Jordannetwork. Given (𝑋𝑡, 𝑌𝑡−1),𝔪(𝑋𝑡, 𝑌𝑡−1) would be our prediction of 𝑌𝑡. We can use the mean-square error
Λ(𝜃) def= 1𝑇 𝑇∑𝑡=1 (𝑌𝑡 −𝔪(𝑋𝑡, 𝑌𝑡−1; 𝜃))2 , 𝜃 = (𝑤1, 𝑤2, 𝑏) ,

to find the best such model. More layers can easily be added.

13.4. Elman Networks

Elman networks implement the full plant-observer paradigm. Let’s think
through the analogue of (13.2). Let’s consider models of the form

(13.3)
𝑍𝔪𝑡 (𝜃) = tanh(𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1(𝜃) + 𝑏𝑧)𝑌𝔪𝑡 (𝜃) = tanh(𝑤𝑜𝑍𝔪𝑡 (𝜃) + 𝑏𝑜) 𝑡 ∈ {1, 2, . . . },

where 𝜃 = (𝑤𝑧𝑖 𝑤𝑧𝑧 𝑏𝑧 𝑤𝑜 𝑏0)
is in ℝ5.

In Figure 13.3 we present schematically an Elman network.
Let’s assume that

(13.4) 𝑍𝔪0 (𝜃) = 0.1
to start the plant process 𝑍𝔪 at a specific nonzero value. Let’s also take 𝑇 = 3
as our time horizon; that will allow us to exactly write out several calculations.

Figure 13.3. Elman network

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.4. Elman Networks 185

Our loss function will be

(13.5) Λ(𝜃) def= 1𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 (𝜃) − 𝑌𝑡)2 .
As usual, we want to use gradient descent to minimize (13.5) over all 𝜃’s inℝ5. Let’s think through how this would work with a concrete example. Con-

sider

(13.6) 𝜃 = 𝑤𝑧𝑖 𝑤𝑧𝑧 𝑏𝑧 𝑤𝑜 𝑏𝑜()0.20 −0.25 0.30 0.10 −0.15 ,
and let’s compute ∇Λ(𝜃). A concrete example may help us keep track of what
is known and what needs to be calculated.

First, knowing the initial condition (13.4) and the parameters (13.6), we
can reconstruct the plant 𝑍 using 𝑤𝑧𝑖, 𝑤𝑧𝑧, and 𝑏𝑧 for 𝑡 ∈ {1, 2, 3}:
𝑍𝔪𝑡 (𝜃) = tanh(𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1(𝜃) + 𝑏𝑧) = tanh(0.2𝑋𝑡 − 0.25𝑍𝔪𝑡−1(𝜃) + 0.3)𝑍𝔪0 (𝜃) = 0.1.
Explicitly, we may compute

𝑍𝔪0 (𝜃) = 0.1,𝑍𝔪1 (𝜃) ≈ tanh((−0.25) × 0.1 + 0.2 × 1.025 + 0.3) ≈ tanh(0.48) ≈ 0.446,𝑌𝔪1 (𝜃) ≈ tanh(0.1 × 0.446 − 0.15) ≈ tanh(−0.105) ≈ −0.105,𝑍𝔪2 (𝜃) ≈ tanh((−0.25) × 0.446 + 0.2 × 0.893 + 0.3) ≈ tanh(0.367) ≈ 0.351,𝑌𝔪2 (𝜃) ≈ tanh(0.1 × 0.351 − 0.15) ≈ tanh(−0.115) ≈ −0.114,𝑍𝔪3 (𝜃) ≈ tanh((−0.25) × 0.351 + 0.2 × 1.068 + 0.3) ≈ tanh(0.426) ≈ 0.402,𝑌𝔪3 (𝜃) ≈ tanh(0.1 × 0.402 − 0.15) ≈ tanh(−0.11) ≈ −0.109.
See Table 13.3. As a point of reference, we then have, to three significant

digits, that

Λ(𝜃)≈ 13 {(−0.041 + 0.105)2+(−0.033 + 0.114)2+(−0.029 + 0.109)2}≈0.006.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

186 13. Recurrent Neural Networks for Sequential Data

Table 13.3. Given and constructed values

Ground Truth Model𝐗 𝐘 𝐙𝔪(𝜃) 𝐘𝔪(𝜃)
t
0 nan nan 0.100 nan
1 1.025 −0.041 0.446 −0.105
2 0.893 −0.033 0.351 −0.114
3 1.068 −0.029 0.402 −0.109

Differentiating with respect to 𝑤𝑜 and 𝑏𝑜, we then have𝜕Λ𝜕𝑤𝑜 (𝜃) = 2𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝑌𝔪𝑡𝜕𝑤0
= 2𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡) tanh′ (𝑤𝑜𝑍𝔪𝑡 + 𝑏𝑜) 𝑍𝔪𝑡 ,

𝜕Λ𝜕𝑏𝑜 (𝜃) = 2𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝑌𝔪𝑡𝜕𝑏0
= 2𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡) tanh′ (𝑤𝑜𝑍𝔪𝑡 + 𝑏𝑜) .

Explicitly,𝜕Λ𝜕𝑤𝑜 (𝜃) ≈ 13 {(−0.041 + 0.105) tanh′ (0.1 × 0.446 − 0.15) × 0.446
+ (−0.033 + 0.114) tanh′ (0.1 × 0.351 − 0.15) × 0.351+ (−0.029 + 0.109) tanh′ (0.1 × 0.402 − 0.15) × 0.402}≈ 13 {0.028 + 0.028 + 0.032} ,≈ 0.029,𝜕Λ𝜕𝑏𝑜 (𝜃) ≈ 13 {(−0.041 + 0.105) tanh′ (0.1 × 0.446 − 0.15)
+ (−0.033 + 0.114) tanh′ (0.1 × 0.351 − 0.15)+ (−0.029 + 0.109) tanh′ (0.1 × 0.402 − 0.15)}≈ 13 {0.063 + 0.08 + 0.079}≈ 0.074.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.4. Elman Networks 187

How do we take derivatives of Λ with respect to 𝑤𝑧𝑖, 𝑤𝑧𝑧, and 𝑏𝑖? Again
differentiating, we have

𝜕Λ𝜕𝑤𝑧𝑖 (𝜃) = 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝑌𝔪𝑡𝜕𝑤𝑧𝑖
= 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) tanh′ (𝑤𝑜𝑍𝔪𝑡 + 𝑏𝑜) 𝑤𝑜 𝜕𝑍𝔪𝑡𝜕𝑤𝑧𝑖 ,𝜕Λ𝜕𝑤𝑧𝑧 (𝜃) = 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝑌𝔪𝑡𝜕𝑤𝑧𝑧
= 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) tanh′ (𝑤𝑜𝑍𝔪𝑡 + 𝑏𝑜) 𝑤𝑜 𝜕𝑍𝔪𝑡𝜕𝑤𝑧𝑧 ,𝜕Λ𝜕𝑏𝑧 (𝜃) = 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝑌𝔪𝑡𝜕𝑏𝑧
= 23 𝑇∑𝑡=0 (𝑌𝔪𝑡 − 𝑌𝑡) tanh′ (𝑤𝑜𝑍𝔪𝑡 + 𝑏𝑜) 𝑤𝑜 𝜕𝑍𝔪𝑡𝜕𝑏𝑧 .

In turn,

𝜕𝑍𝔪𝑡𝜕𝑤𝑧𝑖 = tanh′ (𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1 + 𝑏𝑧) {𝑤𝑧𝑧 𝜕𝑍𝔪𝑡−1𝜕𝑤𝑧𝑖 + 𝑋𝑡} ,𝜕𝑍𝔪𝑡𝜕𝑤𝑧𝑧 = tanh′ (𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1 + 𝑏𝑧) {𝑤𝑧𝑧 𝜕𝑍𝔪𝑡−1𝜕𝑤𝑧𝑧 + 𝑍𝔪𝑡−1} ,𝜕𝑍𝔪𝑡𝜕𝑏𝑧 = tanh′ (𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1 + 𝑏𝑧) {𝑤𝑧𝑧 𝜕𝑍𝔪𝑡−1𝜕𝑏𝑧 + 1} ,
which can be organized as a matrix evolution

(𝜕𝑍𝔪𝑡 /𝜕𝑤𝑧𝑖𝜕𝑍𝔪𝑡 /𝜕𝑤𝑧𝑧𝜕𝑍𝔪𝑡 /𝜕𝑏𝑧) = tanh′ (𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1 + 𝑏𝑧) {𝑤𝑧𝑧 (𝜕𝑍𝔪𝑡−1/𝜕𝑤𝑧𝑖𝜕𝑍𝔪𝑡−1/𝜕𝑤𝑧𝑧𝜕𝑍𝔪𝑡−1/𝜕𝑏𝑧) + (𝑋𝑡𝑍𝔪𝑡−11)} ,
(𝜕𝑍𝔪−1/𝜕𝑤𝑧𝑖𝜕𝑍𝔪−1/𝜕𝑤𝑧𝑧𝜕𝑍𝔪−1/𝜕𝑏𝑧) = (000) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

188 13. Recurrent Neural Networks for Sequential Data

Explicitly,

(𝜕𝑍𝔪1 /𝜕𝑤𝑧𝑖𝜕𝑍𝔪1 /𝜕𝑤𝑧𝑧𝜕𝑍𝔪1 /𝜕𝑏𝑧) ≈ tanh(0.2 × 1.025 + (−0.25) × 0.1 + 0.3)
× {(0.0000.0000.000) × (−0.25) + (1.0250.1001.000)}

≈ tanh(0.48) (1.0250.1001.000)
≈ (0.8210.0800.801) ,

(𝜕𝑍𝔪2 /𝜕𝑤𝑧𝑖𝜕𝑍𝔪2 /𝜕𝑤𝑧𝑧𝜕𝑍𝔪2 /𝜕𝑏𝑧) ≈ tanh(0.2 × 0.893 + (−0.25) × 0.446 + 0.3)
× {(0.8210.0800.801) × (−0.25) + (0.8930.4461.000)}

≈ tanh(0.367) (0.8930.4461.000)
≈ (0.7830.3910.877) ,

(𝜕𝑍𝔪3 /𝜕𝑤𝑧𝑖𝜕𝑍𝔪3 /𝜕𝑤𝑧𝑧𝜕𝑍𝔪3 /𝜕𝑏𝑧) ≈ tanh(0.2 × 1.068 + (−0.25) × 0.351 + 0.3)
× {(0.7830.3910.877) × (−0.25) + (1.0680.3511.000)}

≈ tanh(0.426) (1.0680.3511.000)
≈ (0.8960.2950.839) ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.5. Training and Backpropagation for Recurrent Neural Networks 189

which then gives us

𝜕Λ𝜕𝑤𝑧𝑧 (𝜃) ≈ 13 {(−0.041 + 0.105) tanh′ (0.1 × 0.446 − 0.15) × 0.1 × 0.08
+ (−0.033 + 0.114) tanh′ (0.1 × 0.351 − 0.15) × 0.1 × 0.391+ (−0.029 + 0.109) tanh′ (0.1 × 0.402 − 0.15) × 0.1 × 0.295}≈ 13 {0.001 + 0.003 + 0.002}≈ 0.002,𝜕Λ𝜕𝑤𝑧𝑖 (𝜃) ≈ 13 {(−0.041 + 0.105) tanh′ (0.1 × 0.446 − 0.15) × 0.1 × 0.821
+ (−0.033 + 0.114) tanh′ (0.1 × 0.351 − 0.15) × 0.1 × 0.783+ (−0.029 + 0.109) tanh′ (0.1 × 0.402 − 0.15) × 0.1 × 0.896}≈ 13 {0.005 + 0.006 + 0.007}≈ 0.006,𝜕Λ𝜕𝑏𝑧 (𝜃) ≈ 13 {(−0.041 + 0.105) tanh′ (0.1 × 0.446 − 0.15) × 0.1 × 0.801
+ (−0.033 + 0.114) tanh′ (0.1 × 0.351 − 0.15) × 0.1 × 0.877+ (−0.029 + 0.109) tanh′ (0.1 × 0.402 − 0.15) × 0.1 × 0.839}≈ 13 {0.064 tanh′ (−0.105) × 0.1 × 0.801+0.081 tanh′ (−0.115) × 0.1 × 0.877+0.08 tanh′ (−0.11) × 0.1 × 0.839}≈ 13 {0.005 + 0.007 + 0.007}≈ 0.006.

13.5. Training and Backpropagation for Recurrent Neural
Networks

Let us recall the genericmean-square loss function introduced in (13.5). In Sec-
tion 13.4 we investigated in a concrete example how the derivatives of the loss
functionΛwith respect to how the parameters in 𝜃 look for the standard Elman
network. The goal of this section is to go over the idea behind the implemen-
tation of backpropagation for a generic recurrent neural network. Instead of
considering the specific model (13.3), let us generalize this slightly and instead

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

190 13. Recurrent Neural Networks for Sequential Data

consider

(13.7)
𝑍𝔪𝑡 = 𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡−1; 𝜃)𝑌𝔪𝑡 = 𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃) 𝑡 ∈ {1, 2, . . . , 𝑇}.

We first note that the parameters that are included in the vector 𝜃 are com-
mon across all times 𝑡 ∈ {1, 2, . . . , 𝑇}. As we shall now demonstrate, a recurrent
neural network such as (13.7) can be realized as a very deep neural network
with number of layers being 𝑇. Indeed, let us rewrite (13.7) in the form

𝑍𝔪𝑡 = 𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡−1; 𝜃𝑡) ,𝑌𝔪𝑡 = 𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡) ,(13.8)

Λ̃(𝜃1, . . . , 𝜃𝑇) = 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡)2 ,
𝜃𝑡 = 𝜃, 𝑡 ∈ {1, 2, . . . , 𝑇}.

Note that (13.8) is a multi-layer neural network, where 𝜃𝑡 is the parameter
vector for the 𝑡th layer. By the chain rule we have
∇𝜃Λ(𝜃) = ∇𝜃 1𝑇 𝑇∑𝑡=1 (𝑌𝔪𝑡 − 𝑌𝑡)2

= 1𝑇 𝑇∑𝑡=1∇𝜃𝑡Λ̃(𝜃1, . . . , 𝜃𝑇)
= 1𝑇 𝑇∑𝑡=1 [2 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃] + 1𝑇 𝑇−1∑𝑡=1 [∇𝑍𝔪𝑡 Λ̃(𝜃1, . . . , 𝜃𝑇)𝜕𝑍𝔪𝑡𝜕𝜃𝑡] .

(13.9)

Using the standard 𝛿 notation in backpropagation, if we now set

𝛿𝑡 = ∇𝑍𝔪𝑡 Λ̃(𝜃1, . . . , 𝜃𝑇),
we shall have for 𝑡 = 1, . . . , 𝑇 − 1, again by the chain rule, that
𝛿𝑡 = 2 (𝑌𝔪𝑡+1 − 𝑌𝑡+1) 𝜕𝔪𝑌 (𝑋𝑡+1, 𝑍𝔪𝑡+1; 𝜃𝑡+1)𝜕𝑍𝔪 + 𝜕𝔪𝑍 (𝑋𝑡+1, 𝑍𝔪𝑡+1; 𝜃𝑡+1)𝜕𝑍𝔪 𝛿𝑡+1,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.5. Training and Backpropagation for Recurrent Neural Networks 191

with 𝛿𝑇 = 0. Note also that using the 𝛿 notation, (13.9) can be written as
∇𝜃Λ(𝜃) = 1𝑇 𝑇∑𝑡=1 [2 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃] + 1𝑇 𝑇−1∑𝑡=1 𝛿𝑡 𝜕𝑍

𝔪𝑡𝜕𝜃𝑡
= 1𝑇 𝑇∑𝑡=1 [2 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃] + 1𝑇 𝑇−1∑𝑡=1 𝛿𝑡 𝜕𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃
= 1𝑇 [(2 (𝑌𝔪𝑇 − 𝑌𝑇) 𝜕𝔪𝑌 (𝑋𝑇 , 𝑍𝔪𝑇 ; 𝜃𝑇)𝜕𝜃)

+ 𝑇−1∑𝑡=1 (2 (𝑌𝔪𝑡 − 𝑌𝑡) 𝜕𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃 + 𝛿𝑡 𝜕𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑡)𝜕𝜃)] .(13.10)

Formula (13.10) gives the essence of the backpropagation algorithm in the
case of a recurrent neural network; see also Exercise 13.3. One can see that the
computational cost of this backpropagation algorithm, called backpropagation
through time (BPTT), is of the order of 𝑇. This computational cost can be too
costly to bear. For this reason, in typical applications the truncated backpropa-
gation through time (tBPTT) algorithm is used instead of the BPTT algorithm,
see Section 13.5.1.

13.5.1. Truncated backpropagation through time. As we just demonstra-
ted, typical computational cost of the backpropagation algorithm based on
(13.5) would be of order 𝑇, but if the sequence is long, then the computational
cost would be too large to afford. In practice, the algorithm being used is the
so-called truncated backpropagation through time, or tBPTT for short.

In particular, consider a truncation length 𝜏 ≪ 𝑇 (many times in practice𝜏 = 1) and set the objective function at the 𝑘th iteration to be
Λ𝑘(𝜃𝑘) = 1𝜏 𝜏𝑘∑𝑡=𝜏(𝑘−1)+1 (𝑌𝔪𝑡 − 𝑌𝑡)2 ,

where the normalization with 1𝜏 is many times omitted in practice (as it is also
the case for the 1𝑇 normalization in (13.5)). The update equations take the form𝑍𝔪𝑡 = 𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡−1; 𝜃𝑘)𝑌𝔪𝑡 = 𝔪𝑌 (𝑋𝑡, 𝑍𝔪𝑡 ; 𝜃𝑘) 𝑡 ∈ {𝜏(𝑘 − 1) + 1, . . . , 𝜏𝑘},
andwe remark that 𝑍𝔪𝜏(𝑘−1) = 𝜃𝑘−2. Then, the SGD update for themodel (13.3)
becomes 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇Λ𝑘(𝜃𝑘).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

192 13. Recurrent Neural Networks for Sequential Data

Compared to traditional SGD, the computational cost is now of order 𝜏.
Even though tBPTT based SGD is biased, it has proven to work well in practice.
Then, backpropagation is done similarly to (13.10) but bases the calculations
on Λ𝑘 rather than on Λ, which was the case for (13.10).

Next, we present the tBPTT algorithm, in pseudocode, in the case of trun-
cation length 𝜏 = 1, see Algorithm 1. Let us also consider the simplest case of
an Elman network with a shallow neural network, a generic activation func-
tion 𝜎 for the memory and affine activation function for the output, i.e., going
back to (13.3), we have the recurrent neural network model𝑍𝔪𝑡 = 𝜎 (𝑤𝑧𝑖𝑋𝑡 + 𝑤𝑧𝑧𝑍𝔪𝑡−1 + 𝑏𝑧)𝑌𝔪𝑡 = 𝑤𝑜 ⋅ 𝑍𝔪𝑡 + 𝑏𝑜 𝑡 ∈ {1, 2, . . . }.

Note that in general, 𝑋 ∈ ℝ𝑑 is a vector, 𝑤𝑧𝑖 ∈ ℝ𝑁×𝑑, 𝑤𝑧𝑧 ∈ ℝ𝑁×𝑁 would
be matrices, 𝑍𝔪⋅ , 𝑏𝑧, 𝑤𝑜 ∈ ℝ𝑁 would be vectors, and 𝑌𝔪⋅ , 𝑏𝑜 would be one di-
mensional. Here, the vector of parameters is 𝜃 = (𝑤𝑜, 𝑤𝑧𝑖, 𝑤𝑧𝑧, 𝑏𝑧, 𝑏𝑜). Let us
assume that we initialize the parameters based on some distribution 𝜆, i.e., at
iteration 𝑘 = 0 we have that 𝜃0 ∼ 𝜆.
Algorithm 1 Online SGD with tBPTT for truncation length 𝜏 = 1
1: procedure ▹ (Input parameters network size 𝑁, initial parameters distribution 𝜆,
running time 𝑇)

2: Initialize: initial parameters 𝜃0 ∼ 𝜆, initial memories ∀𝑖, 𝑍𝔪,𝑖0 = 0, step 𝑘 = 0
3: while 𝑘 ≤ 𝑇 do
4: for all 𝑖 ∈ {1, 2, . . . , 𝑁} do ▹ Truncated forward propagation
5: 𝑍𝔪,𝑖𝑘+1 ← 𝜎(∑𝑑𝑗=1𝑤𝑖,𝑗𝑧𝑖,𝑘𝑋𝑗𝑘 +∑𝑁ℓ=1𝑤𝑖,ℓ𝑧𝑧,𝑘𝑍𝔪,ℓ𝑘 + 𝑏𝑖𝑧,𝑘) ▹ Updating
memory

6: end for
7: 𝑌𝔪𝑘 ←∑𝑁𝑖=1𝑤𝑖𝑜,𝑘𝑍𝔪,𝑖𝑘+1 + 𝑏𝑜,𝑘 ▹ Updating output
8: Λ𝑘(𝜃𝑘) = 12 (𝑌𝔪𝑘 − 𝑌𝑘)2 ▹ Computing loss
9: for all 𝑖 ∈ {1, 2, . . . , 𝑁} do ▹ Truncated backward propagation on Λ𝑘(𝜃𝑘)
10: Δ𝑍𝔪,𝑖𝑘+1 ← 𝜎′ (∑𝑑𝑗=1𝑤𝑖,𝑗𝑧𝑖,𝑘𝑋𝑗𝑘 +∑𝑁ℓ=1𝑤𝑖,ℓ𝑧𝑧,𝑘𝑍𝔪,ℓ𝑘 + 𝑏𝑖𝑧,𝑘)
11: 𝑏𝑜,𝑘+1 = 𝑏𝑜,𝑘 − 𝜂𝑘2(𝑌𝔪𝑘 − 𝑌𝑘)
12: 𝑤𝑖𝑜,𝑘+1 = 𝑤𝑖𝑜,𝑘 − 𝜂𝑘2(𝑌𝔪𝑘 − 𝑌𝑘)𝑍𝔪,𝑖𝑘+1
13: 𝑤𝑖,𝑗𝑧𝑖,𝑘+1 = 𝑤𝑖,𝑗𝑧𝑖,𝑘 − 𝜂𝑘2(𝑌𝔪𝑘 − 𝑌𝑘)𝑤𝑖𝑜,𝑘Δ𝑍𝔪,𝑖𝑘+1𝑋𝑗𝑘, 𝑗 = 1, . . . , 𝑑
14: 𝑤𝑖,ℓ𝑧𝑧,𝑘+1 = 𝑤𝑖,ℓ𝑧𝑧,𝑘 − 𝜂𝑘2(𝑌𝔪𝑘 − 𝑌𝑘)𝑤𝑖𝑜,𝑘Δ𝑍𝔪,𝑖𝑘+1𝑍𝔪,ℓ𝑘 , ℓ = 1, . . . , 𝑁
15: 𝑏𝑖𝑧,𝑘+1 = 𝑏𝑖𝑧,𝑘 − 𝜂𝑘2(𝑌𝔪𝑘 − 𝑌𝑘)𝑤𝑖𝑜,𝑘Δ𝑍𝔪,𝑖𝑘+1
16: end for
17: end while
18: end procedure

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.6. Stability 193

Some bibliographical remarks are in order. In Algorithm 1 training is done
online, i.e., we update the parameters every time we observe a new step of our
sequences (𝑋𝑘, 𝑌𝑘). Convergence of algorithms like the online Algorithm 1,
after appropriate scalings and as a number of hidden units and training steps𝑁, 𝑘 → ∞, have been recently studied in [CHLSS23]. Scaling limits for recur-
rent neural networks when training is offline by continuous gradient descent
after observing a fixed number of steps of the sequence (𝑋𝑘)𝑘≥0 has been stud-
ied in [ALM23]. We will present detailed analysis of scaling limit results for
feed forward neural networks in Chapters 19, 20, and, in the context of rein-
forcement learning, in Chapter 21.

13.6. Stability

Let’s return to (13.3). Replacing tanh by the identity map, let’s consider the
linear evolution

(13.11) 𝑍𝐿𝑡 = 𝑤𝑧𝑧𝑍𝐿𝑡−1 + 𝑤𝑧𝑖𝑋𝑡 + 𝑏𝑜 𝑡 ∈ {1, 2 . . . }.
This is a reasonable approximation of the dynamics of (13.3) if 𝑍𝔪 ≈ 0.

Explicitly solving (13.11), we have that

𝑍𝐿𝑡 = 𝑤𝑡𝑧𝑧𝑍𝐿0 + 𝑡∑𝑡′=1𝑤𝑡−𝑡′𝑧𝑧 {𝑤𝑧𝑖𝑋𝑡′ + 𝑏𝑜} .
Thus• If |𝑤𝑧𝑧| < 1, then lim𝑛↗∞ |𝑤𝑛𝑧𝑧| = 0, and the effects of past become

negligible (and (13.11) is stable)• If |𝑤𝑧𝑧| > 1, then lim𝑛↗∞ |𝑤𝑛𝑧𝑧| = ∞, and the effects of past become
magnified (and (13.11) is unstable).

If |𝑤𝑧𝑧| > 1 and (13.11) is unstable, the tanh in the dynamics of 𝑍𝔪 of (13.3) is
likely to saturate.

To find𝑤𝑧𝑧, we use gradient descent, which involves sensitivities. By com-
parison, differentiating (13.11) with respect to 𝑤𝑧𝑧, we get

𝜕𝑍𝐿𝑡𝜕𝑤𝑧𝑧 = 𝑡𝑤𝑡𝑧𝑧𝑍𝐿0 + 𝑡∑𝑡′=1(𝑡 − 𝑡′)𝑤𝑡−𝑡′−1𝑧𝑧 {𝑤𝑧𝑖𝑋𝑡′ + 𝑏𝑧} .
Since

lim𝑡→∞ ||𝑡𝑤𝑡𝑧𝑧|| = {0 if |𝑤𝑧𝑧| < 1∞ if |𝑤𝑧𝑧| > 1,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

194 13. Recurrent Neural Networks for Sequential Data

Figure 13.4. Time horizon of |𝑤𝑧𝑧|𝑡
the gradient 𝜕𝑍𝐿𝑡 /𝜕𝑤𝑧𝑧 is likely to• explode as 𝑡 ↗ ∞ if |𝑤𝑧𝑧| > 1• vanish as 𝑡 ↗ ∞ if |𝑤𝑧𝑧| < 1.

This is a particular challenge if one simply uses gradient descent to update𝑤𝑧𝑧 to improve model fit. Even if |𝑤𝑧𝑧| < 1,𝑤𝑧𝑧 − 𝜂 𝜕Λ𝜕𝑤𝑧𝑧
may fail to be in (−1, 1).

If 𝑍𝔪 is multidimensional, we can replace 𝑤𝑧𝑧 by a square matrix. In that
case, we replace |𝑤𝑧𝑧| with spectral radius of 𝐴.

If |𝑤𝑧𝑧| < 1, writing|𝑤𝑧𝑧|𝑡 = (exp[ln |𝑤𝑧𝑧|])𝑡 = exp[𝑡 ln |𝑤𝑧𝑧|]= exp[−𝑡 ln 1/|𝑤𝑧𝑧|] = exp[− 𝑡𝑇𝑤𝑧𝑧] ,
where 𝑇𝑤𝑧𝑧 def= 1ln 1/|𝑤𝑧𝑧| ,
we can think of 𝑇𝑤𝑧𝑧 as a time horizon (see Figure 13.4); |𝑤𝑧𝑧|𝑡 ≪ 1 if and only
if 𝑡 ≫ 𝑇𝑤𝑧𝑧 .
13.7. Advanced Architectures

Standard recurrent neural networks are difficult to train in order to get a stable
time horizon of memory length; we want 𝑤𝑧𝑧 of (13.3) to be in (−1, 1). One
resolution for this is to replace 𝑤𝑧𝑧 with a logistic function 𝑆, which both take
values in (0, 1), and allows one to dynamically gatememory.

Let’s replace (13.3) with𝑍𝔪𝑡 = 𝑆(𝑊𝑋𝑡 + 𝐵) ⊙ 𝑍𝔪𝑡−1 + ̃𝑓(𝑋𝑡)
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.7. Advanced Architectures 195

Figure 13.5. GRU architecture

for 𝑡 ∈ {1, 2, . . . }. If𝑊𝑋𝑡 + 𝐵 ≫ 1, then𝑍𝔪𝑡 ≈ 𝑍𝔪𝑡−1 + ̃𝑓(𝑋𝑡),
and we have strong memory. On the other hand, if𝑊𝑋𝑡 + 𝐵 ≪ −1, then𝑍𝔪𝑡 ≈ ̃𝑓(𝑋𝑡),
and the plant forgets the prior state. Since the logistic function takes values in(0, 1), dependence on past should be close to stable.

𝑍𝔪𝑡 = { 𝑡∏𝑡′=1 𝑆 (𝑊𝑋𝑡′ + 𝐵)}𝑍𝔪0 + 𝑡∑𝑡′=1 {{
𝑡∏𝑡′′=𝑡′ 𝑆 (𝑊𝑋𝑡′′ + 𝐵)}} ̃𝑓(𝑋𝑡′).

13.7.1. Gated RecurrentUnits (GRU). In gated recurrent units (GRUs), we
set the observer map to the identity (𝑍𝔪𝑡 = 𝑌𝑡) and formally make 𝑍𝔪𝑡 a convex
combination of 𝑍𝔪𝑡−1 and the effect of the input. In particular, we write𝑌𝑡 = 𝛼 (𝑋𝑡) ⊙ 𝑌𝑡−1 + (1 − 𝛼 (𝑋𝑡)) ⊙ ̃𝑓GRU(𝑋𝑡, 𝑌𝑡−1).

In Figure 13.5 we present schematically a GRU architecture.
A typical realization of the GRU architecture amounts to setting𝛼 (𝑋𝑡) = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ,̃𝑓GRU(𝑋𝑡, 𝑌𝑡−1) = tanh(𝑊 (2)𝑋𝑡 +𝑊 (3)𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) 𝑌𝑡−1 + 𝐵(2)) ,

resulting in the architecture𝑌𝑡 = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ⊙ 𝑌𝑡−1 + (1 − 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)))⊙ tanh(𝑊 (2)𝑋𝑡 +𝑊 (3)𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) 𝑌𝑡−1 + 𝐵(2)) .
Motivated by the analysis before, we see that if 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ≈ 1, then𝑌𝑡 ≈ 𝑌𝑡−1,

and we have strong memory. On the other hand, if 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ≈ 0, then𝑌𝑡 ≈ tanh(𝑊 (2)𝑋𝑡 +𝑊 (3)𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) 𝑌𝑡−1 + 𝐵(2)) ,
and the plant depends less on the prior state.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

196 13. Recurrent Neural Networks for Sequential Data

Figure 13.6. LSTM architecture

By setting 𝑢𝑡 = 𝛼 (𝑋𝑡), one can write the GRU architecture in the following
equivalent manner𝑢𝑡 = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ,𝑣𝑡 = tanh(𝑊 (2)𝑋𝑡 +𝑊 (3)𝑟𝑡 ⊙𝑌𝑡−1 + 𝐵(2)) ,𝑟𝑡 = 𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) ,𝑌𝑡 = 𝑢𝑡 ⊙𝑌𝑡−1 + (1 − 𝑢𝑡) ⊙ 𝑣𝑡,
where, 𝑟𝑡 is called the reset gate, 𝑢𝑡 is called the update gate, and 𝑌𝑡 is the mem-
ory. Of course, one can replace the logistic 𝑆 and the tanh activation functions
by any other activation functions.

13.7.2. Long-Short-TermMemory (LSTM). Long-short-term memory net-
works, similar to Elman networks, have a nonlinear observer function. In par-
ticular, we write 𝑍𝔪𝑡 = 𝛼1 (𝑋𝑡) ⊙ 𝑍𝔪𝑡−1 + 𝛼2 (𝑋𝑡) ⊙ ̃𝑓LSTM(𝑋𝑡),𝑌𝔪𝑡 = 𝛼3 (𝑋𝑡) tanh(𝑍𝔪𝑡) .

In Figure 13.6 we present schematically the LSTM architecture.
A typical realization of the LSTM architecture amounts to setting𝛼1 (𝑋𝑡) = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ,𝛼2 (𝑋𝑡) = 𝑆 (𝑊 (2)𝑋𝑡 + 𝐵(2)) ,̃𝑓LSTM(𝑋𝑡) = tanh(𝑊 (3)𝑋𝑡 + 𝐵(3)) ,𝛼3 (𝑋𝑡) = 𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) ,

resulting in the architecture𝑍𝔪𝑡 = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ⊙ 𝑍𝔪𝑡−1 + 𝑆 (𝑊 (2)𝑋𝑡 + 𝐵(2)) tanh(𝑊 (3)𝑋𝑡 + 𝐵(3)) ,𝑌𝔪𝑡 = 𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) tanh(𝑍𝔪𝑡) .
Note that the functions𝛼𝑖 (𝑥) ∈ (0, 1) for 𝑖 = 1, 2, 3 are all logistic functions.

As such, and similarly to the GRU case, if 𝛼𝑖 (𝑥) ≈ 0, the corresponding com-
ponent will not be present in the model, or it will be fully present if 𝛼𝑖 (𝑥) ≈ 1.

The previous way of writing the LSTM architecture gives some intuition
on the role of the different components. By setting 𝑓𝑡 = 𝛼1 (𝑋𝑡), 𝑔𝑡 = 𝛼2 (𝑋𝑡),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.7. Advanced Architectures 197

and 𝑞𝑡 = 𝛼3 (𝑋𝑡), one can write the basic LSTM architecture in the following
equivalent form 𝑓𝑡 = 𝑆 (𝑊 (1)𝑋𝑡 + 𝐵(1)) ,𝑔𝑡 = 𝑆 (𝑊 (2)𝑋𝑡 + 𝐵(2)) ,𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ tanh(𝑊 (3)𝑋𝑡 + 𝐵(3)) ,𝑞𝑡 = 𝑆 (𝑊 (4)𝑋𝑡 + 𝐵(4)) ,𝑌𝔪𝑡 = 𝑞𝑡 ⊙ tanh(𝑍𝔪𝑡) ,
where 𝑓𝑡 is called the forget gate, 𝑔𝑡 is called the input gate, 𝑍𝔪𝑡 is the mem-
ory, and 𝑌𝔪𝑡 is the hidden state (sometimes called the output). Of course, one
can replace the logistic 𝑆 and the tanh activation functions by other activation
functions.

The LSTM in its most general form is written as𝑓𝑡 = 𝜎 (𝑊 (1)𝑋𝑡 + 𝑈(1)𝑌𝔪𝑡−1 + 𝐵(1)) ,𝑔𝑡 = 𝜎 (𝑊 (2)𝑋𝑡 + 𝑈(2)𝑌𝔪𝑡−1 + 𝐵(2)) ,𝑟𝑡 = tanh(𝑊 (3)𝑋𝑡 + 𝑈(3)𝑌𝔪𝑡−1 + 𝐵(3)) ,𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ 𝑟𝑡,(13.12) 𝑞𝑡 = 𝜎 (𝑊 (4)𝑋𝑡 + 𝑈(4)𝑌𝔪𝑡−1 + 𝐵(4)) ,𝑌𝔪𝑡 = 𝑞𝑡 ⊙ tanh(𝑍𝔪𝑡) ,
where the matrices 𝑈(1), 𝑈(2), 𝑈(3), 𝑈(4) are also part of the parameter of the
model 𝜃 that needs to be learned and 𝜎 can be a generic activation function.
Also compared to the GRU architecture, the LSTM’s forget gate and input gate
are replaced by a single update gate in the GRU.

Remark 13.1. It is interesting to iterate the formula for 𝑍𝔪𝑡 in (13.12). We
notice that we can write𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ 𝑟𝑡

= 𝑡∑𝑘=0 (𝑔𝑘 ⊙
𝑡∏ℓ=𝑘+1𝑓ℓ) ⊙ 𝑟𝑘

= 𝑡∑𝑘=0𝑀𝑘,𝑡 ⊙ 𝑟𝑘,(13.13)

where we have set 𝑀𝑘,𝑡 = 𝑔𝑘 ⊙∏𝑡ℓ=𝑘+1 𝑓ℓ. Formula (13.13) shows that an
LSTM memory state models long-distance context and it can be thought of as
an (elementwise) weighted sum of a standard RNN state 𝑟𝑘. The weights are
products of the input gate 𝑔𝑘 and every future forget gate 𝑓ℓ for ℓ ≥ 𝑘 + 1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

198 13. Recurrent Neural Networks for Sequential Data

We will return to this interpretation of the LSTM in Section 13.9.3 where we
compare the LSTM with the attention mechanism.

13.7.3. Bidirectional RNNs. In standard recurrent neural networks 𝑍𝑡 de-
pends in a nonlinear manner on the data sequence 𝑋𝑡, 𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋1, but
not upon 𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑇 . This structure ignores potential important depen-
dencies and data for a prediction at time 𝑡. In order to address this point, bidi-
rectional RNNs were developed in [SP97]. In bidirectional RNNs, there are
plants flowing in forward and backward time, both contributing to the obser-
vations: ׅ⃗𝑍𝑡 = 𝑓+(ׅ⃗𝑍𝑡−1, 𝑋𝑡), 𝑡 = 0, 1, . . . , 𝑇,ׅ⃖𝑍𝑡 = 𝑓−(ׅ⃖𝑍𝑡+1, 𝑋𝑡), 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . , 0,𝑌𝑡 = 𝑔(ׅ⃗𝑍𝑡, ׅ⃖𝑍𝑡, 𝑋𝑡), 𝑡 = 1, 2, . . . , 𝑇.

Here, ׅ⃗𝑍𝑡 is called the forward internal state and ׅ⃖𝑍𝑡 is called the backward
internal state. Typically, ׅ⃗𝑍0 and ׅ⃖𝑍𝑇 are initialized to be constants.

(Truncated) backpropagation through time is typically used to train bidi-
rectional RNNs which at a high level read as follows:• Calculate the forward in time direction ׅ⃗𝑍𝑡 for 𝑡 = 1, . . . , 𝑇.• Calculate the backward in time direction ׅ⃖𝑍𝑡 for 𝑡 = 𝑇 −1, 𝑇 −2, . . . , 0.• Calculate output layer 𝑌𝑡 for for 𝑡 = 0, 1, . . . , 𝑇.• In the backpropagation step we calculate the gradients with respect to

the model parameters.
Note that what makes the implementation feasible is that the forward internal
states ׅ⃗𝑍𝑡 and backward internal states ׅ⃖𝑍𝑡 are independent. The same way one
builds standard bidirectional RNNs one can also build a bidirectional GRU or
a bidirectional LSTM.

13.8. Implementation Aspects for Recurrent Neural Networks

In this section we discuss several implementation aspects of recurrent neural
networks, including the regularization method of dropout, Subsection 13.8.1,
that we explored in Chapter 9; batch-normalization, Subsection 13.8.2, that
we explored in Chapter 10; as well as layer-normalization, Subsection 13.8.3,
which is similar to batch normalization but instead of normalizing per batch,
we normalize per layer.

We mention here, without going into many details, that in recent years
a number of techniques have been developed to address problems of possi-
ble saturation and vanishing grading problems associated to recurrent neural
network architectures. Non-saturating recurrent neural networks proposed

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.8. Implementation Aspects for Recurrent Neural Networks 199

in [CSV+19] address the saturation problem by replacing saturating gates in
LSTM or GRU models by using ReLU nonlinearities for activation functions
(as opposed for example to the standard sigmoid and tanh activation functions
used in LSTMs). Highway networks (see [SGS15] for the original paper and
[ZSKS17] for its extension to recurrent neural network structures) combine
identity functions with gates (similar to LSTMs and GRUs) and can help with
addressing the vanishing gradient problembut also successfully build networks
with many layers. Highway networks have also been successfully applied to
numerically solving partial differential equations, see for example [SS18]. We
leave further reading on non-saturating RNNs and highway networks to the
interested reader.

13.8.1. Dropout in RNNs. As we discussed in Chapter 9 dropout is a regu-
larization method that is widely used in deep learning. This naturally includes
RNNs, see for instance [SSB16]. Let us recall that the memory state of a recur-
rent neural network reads as𝑍𝔪𝑡 = 𝔪𝑍 (𝑋𝑡, 𝑍𝔪𝑡−1; 𝜃) , 𝑡 ∈ {1, . . . , 𝑇}.

Recalling the dropout operator𝒟 from (9.1), the simplest, probably, way to
use dropout is to instead consider𝑍𝔪𝑡 = 𝔪𝑍 (𝑋𝑡, 𝒟(𝑍𝔪𝑡−1); 𝜃) , 𝑡 ∈ {1, . . . , 𝑇},
where we recall that𝒟(ℎ) = ℎ ⊙ 𝛾, where 𝛾 is a Bernoulli vector with success
probability (componentwise) 𝑝 ∈ (0, 1).

As we explored in Section 9.5 we would use 𝒟(𝑍𝔪𝑡−1) during training and
replace that by 𝑍𝔪𝑡−1 ⊙𝔼(𝛾) during testing.

A further question we need to answer is whether the Bernoulli random
vector 𝛾 would change with respect to 𝑡 or not and whether it would be the
same for all components of the memory state. This leads to the per-sequence
and the per-step sampling.

To have a concrete architecture in mind consider the LSTM architecture
(13.12). Per-sequence sampling is when sample dropout masks are applied
once and then used in for every step in the entire sequence. Specifically, let𝛾1, 𝛾2, 𝛾3, 𝛾4 be independent Bernoulli vectors and consider for 𝑡 = 1, . . . , 𝑇 the
architecture𝑓𝑡 = 𝜎 (𝑊 (1)𝑋𝑡 + 𝛾1 ⊙𝑈(1)𝑌𝔪𝑡−1 + 𝐵(1)) ,𝑔𝑡 = 𝜎 (𝑊 (2)𝑋𝑡 + 𝛾2 ⊙𝑈(2)𝑌𝔪𝑡−1 + 𝐵(2)) ,𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ tanh(𝑊 (3)𝑋𝑡 + 𝛾3 ⊙𝑈(3)𝑌𝔪𝑡−1 + 𝐵(3)) ,𝑞𝑡 = 𝜎 (𝑊 (4)𝑋𝑡 + 𝛾4 ⊙𝑈(4)𝑌𝔪𝑡−1 + 𝐵(4)) ,𝑌𝔪𝑡 = 𝑞𝑡 ⊙ tanh(𝑍𝔪𝑡) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

200 13. Recurrent Neural Networks for Sequential Data

Analogously, per-step sampling amounts to consider for 𝑡 = 1, . . . , 𝑇 inde-
pendent Bernoulli vectors 𝛾1,𝑡, 𝛾2,𝑡, 𝛾3,𝑡, 𝛾4,𝑡 and then consider for 𝑡 = 1, . . . , 𝑇
the architecture𝑓𝑡 = 𝜎 (𝑊 (1)𝑋𝑡 + 𝛾1,𝑡 ⊙𝑈(1)𝑌𝔪𝑡−1 + 𝐵(1))𝑔𝑡 = 𝜎 (𝑊 (2)𝑋𝑡 + 𝛾2,𝑡 ⊙𝑈(2)𝑌𝔪𝑡−1 + 𝐵(2))𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ tanh(𝑊 (3)𝑋𝑡 + 𝛾3,𝑡 ⊙𝑈(3)𝑌𝔪𝑡−1 + 𝐵(3))𝑞𝑡 = 𝜎 (𝑊 (4)𝑋𝑡 + 𝛾4,𝑡 ⊙𝑈(4)𝑌𝔪𝑡−1 + 𝐵(4))𝑌𝔪𝑡 = 𝑞𝑡 ⊙ tanh(𝑍𝔪𝑡) .

Another possibility is to apply dropout to the update gate. Namely replace
in the classical LSTMmodel (13.12) the equation for the cell memory 𝑍𝔪𝑡 by𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ 𝛾𝑡 ⊙ tanh(𝑊 (3)𝑋𝑡 + 𝑈(3)𝑌𝔪𝑡−1 + 𝐵(3)) ,
where 𝛾𝑡 for 𝑡 = 1, . . . , 𝑇 are independent Bernoulli random vectors. This for-
mulation has been shown to yield good results in practice, see [SSB16].

13.8.2. Batch-normalization in RNNs. As we have argued in Chapter 10,
batch normalization is a useful technique that is typically applied to neural
networks in order to accelerate training and improve accuracy. It is also applied
to recurrent neural networks, see [LPB+16].

Let us recall that for a minibatch 𝒟′ ⊂ 𝒟, we define (we set 𝜀 = 0 for
notational convenience)𝜇(𝒟′) = 1|𝒟′| ∑𝑥∈𝒟′ 𝑥,𝜎2(𝒟′) = 1|𝒟′| ∑𝑥∈𝒟′ (𝑥 − 𝜇(𝒟′))2 ,

̂𝑥 = 𝑥 − 𝜇(𝒟′)√𝜎2(𝒟′) , for 𝑥 ∈ 𝒟′.
Then for parameters 𝜃(2) = (𝑤, 𝑏) and for 𝑝 = (𝜇(𝒟′), 𝜎2(𝒟′)) let𝑇𝑝(𝑥, 𝜃(2)) = 𝑤 ̂𝑥 + 𝑏.
In a recurrent neural network one can set𝑍𝔪𝑡 = 𝜎 (𝑇𝑝(𝑊𝑋𝑡 + 𝑈𝑍𝔪𝑡−1 + 𝐵, 𝜃(2)),) ,

or 𝑍𝔪𝑡 = 𝜎 (𝑇𝑝(𝑊𝑋𝑡, 𝜃(2)) + 𝑈𝑍𝔪𝑡−1 + 𝐵) ,
while there is some empirical evidence that the latter works better in practice,
see [LPB+16].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.8. Implementation Aspects for Recurrent Neural Networks 201

When applied to LSTM for example, the resulting architecture becomes𝑓𝑡 = 𝜎 (𝑇𝑝(𝑊 (1)𝑋𝑡, 𝜃(2)) + 𝑈(1)𝑌𝔪𝑡−1 + 𝐵(1)) ,𝑔𝑡 = 𝜎 (𝑇𝑝(𝑊 (2)𝑋𝑡, 𝜃(2)) + 𝑈(2)𝑌𝔪𝑡−1 + 𝐵(2)) ,𝑍𝔪𝑡 = 𝑓𝑡 ⊙𝑍𝔪𝑡−1 + 𝑔𝑡 ⊙ tanh(𝑇𝑝(𝑊 (3)𝑋𝑡, 𝜃(2)) + 𝑈(3)𝑌𝔪𝑡−1 + 𝐵(3)) ,𝑞𝑡 = 𝜎 (𝑇𝑝(𝑊 (4)𝑋𝑡, 𝜃(2)) + 𝛾4,𝑡 ⊙𝑈(4)𝑌𝔪𝑡−1 + 𝐵(4)) ,𝑌𝔪𝑡 = 𝑞𝑡 ⊙ tanh(𝑍𝔪𝑡) .
Notice that in the architecture above the normalization parameters 𝜃(2) and

the normalization statistics are shared across times 𝑡. If we wanted to have dif-
ferent normalization statistics for each time 𝑡, then it would be challenging
to address datasets with variable length sequences. This issue is partially ad-
dressed by the method of layer-normalization discussed in Section 13.8.3.

13.8.3. Layer-normalization in RNNs. As hinted in the end of Section
13.8.2, one of the advantages of layer-normalization is that it is easy to apply in
datasets with variable length sequences, see [BKH16].

In contrast to batch normalization, in layer normalization the mean and
variance used for normalization is computed from all of the summed inputs to
the neurons in a given layer during a single training case. In particular, let the
hidden layer at time 𝑡 be 𝛼𝑡 = 𝑊𝑋𝑡 + 𝑈𝑍𝔪𝑡−1,
and let the 𝑖th-hidden unit be 𝛼𝑖,𝑡 with 𝐻 the total number of hidden units.
Then, to perform layer normalization in recurrent neural networks we replace𝑍𝔪𝑡 by

𝑍𝔪𝑡 = 𝜎(𝑊𝜎𝑡 ⊙ (𝛼𝑡 − 𝜇𝑡) + 𝐵) ,
𝜇𝑡 = 1𝐻 𝐻∑𝑖=1𝛼𝑖,𝑡,
𝜎𝑡 =√√√√ 1𝐻 𝐻∑𝑖=1 (𝛼𝑖,𝑡 − 𝜇𝑡)2,

where𝑊 is an additional parameter.
Apart from the easiness in implementation, layer normalization is invari-

ant to rescalings of the input 𝑋𝑡 and 𝑍𝔪𝑡−1. This would typically result in more
stable internal state dynamics and can be useful for out-of-sample data with
different lengths.

Let us conclude this subsection by demonstrating the claimed invariance.
Let 𝜁 be a scalar and let us set 𝑋𝜁𝑡 = 𝜁𝑋𝑡 and 𝑍𝜁,𝔪𝑡−1 = 𝜁𝑍𝔪𝑡−1. Then, define 𝛼𝜁𝑡 ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

202 13. Recurrent Neural Networks for Sequential Data

𝜇𝜁𝑡 , and 𝜎𝜁𝑡 analogously to 𝛼𝑡, 𝜇𝑡, and 𝜎𝑡 with (𝑋𝜁𝑡 , 𝑍𝜁,𝔪𝑡−1) replacing (𝑋𝑡, 𝑍𝔪𝑡−1). A
simple calculation shows that𝜇𝜁𝑡 = 𝜁𝜇𝑡, and 𝜎𝜁𝑡 = 𝜁𝜎𝑡.

Hence, we directly get that

𝑍𝜁,𝔪𝑡 = 𝜎(𝑊𝜎𝜁𝑡 ⊙ (𝛼𝜁𝑡 − 𝜇𝜁𝑡) + 𝐵)
= 𝜎 (𝑊𝜎𝑡 ⊙ (𝛼𝑡 − 𝜇𝑡) + 𝐵)= 𝑍𝔪𝑡 ,

proving the invariance claim.

13.9. Attention Mechanism and Transformers

So far in this chapter we have studied the basic recurrent neural network and
its more advanced architectures, such as GRU and LSTM. Recurrent neural
networks are designed to model sequential data, that may be time series data
(e.g., energy prices), language translation, music composition, etc.

When it comes to certain applications though, such as language models,
the basic RNN has certain shortcomings. The next hidden state 𝑍𝑡 is a function
of the previous hidden state 𝑍𝑡−1 and the input for the current position 𝑋𝑡. In
the context of language models, the current position amounts to the current
word in the text. That way the network learns to use information fromprevious
words in the sequence. However, due to theway that the basic RNN is built, the
effect of previous words goes down as we move within the text in the forward
direction. We saw a glimpse of this in the stability analysis of Section 13.6.
However, language is more complicated. Specific words in the early part of the
text can be very meaningful for understanding the context of later parts of the
text.

This issue is alleviated to some extent with the use of more advanced RNN
architectures such as GRUor LSTM.Aswe saw in Section 13.7, a GRUor LSTM
neural network introduces additionalmemory cell states. The gates control the
influence of the memory cells through the parameters that are being learned
via some version of SGD.

However, as with the basic RNN, GRU, and LSTM, we face the issue of
processing the data in a purely sequential manner. In order to apply the neural
network on a newword vector 𝑋𝑡 (typically given as a vector that appropriately
maps the alphabet), we also need to know the effect of the network on the
previous word vector 𝑋𝑡−1. That aspect hinders the ability to parallelize. This
shortcoming becomesmore evident in longer sequence lengths due tomemory

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.9. Attention Mechanism and Transformers 203

constraints across examples. We would like to not have to do things sequen-
tially (to an extent mimicking how actual language works) and to be able to
stack word vectors in a matrix and apply the appropriate neural network to the
whole matrix at once.

Essentially, we would like our model to be able to pay attention to words
that have appeared much earlier in the sequence (e.g., text). Some advances
in that direction were made in the mid-2010s with the concept of the atten-
tion mechanism, but the real breakthrough came with the paper [VSP+17],
where the authors recognized that the attention mechanism, if done correctly,
does not need to be embedded in a recurrent neural network structure, and
they proposed the transformer architecture which is a combination of atten-
tion mechanism and standard feed forward neural networks, Chapter 5, and
layer normalization, Section 13.8.3.

The goal of this section to present the basic architecture and compare it
with recurrent neural networks. In Section 13.9.1we discuss the building block
of the transformer architecture, which is the self-attention/attention mecha-
nism. In Section 13.9.2 we present the basic transformer architecture. In Sec-
tion 13.9.3 we discuss how the architectures of transformer and LSTM compare
with each other.

13.9.1. Self-Attention/AttentionMechanism. A central component of the
transformer architecture that we will present in Section 13.9.2 is the self-atten-
tion layer that we study in this section.

For the discussion that follows it will be useful to have language as an ap-
plication domain of interest. The framework is more generically applicable,
but having a concrete application domain will ease the presentation.

Consider a sequence of input word vectors 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑑. Oftentimes
in the literature, an element 𝑥𝑖 of the sequence {𝑥𝑖}𝑖∈{1,. . .,𝑛} is called a token
and the whole sequence {𝑥𝑖}𝑖∈{1,. . .,𝑛} is called a prompt. Tokenization refers
to the process of obtaining a sequence of tokens, and embedding is the vector
representation of a token.

Let 𝑋 be the matrix with rows 𝑥1, . . . , 𝑥𝑛. This means that 𝑋 ∈ ℝ𝑛×𝑑.
Consider now three matrices to be learned through training,𝑊ℎ,𝑞∈ℝ𝑑×𝑑𝑘 ,𝑊ℎ,𝑘 ∈ ℝ𝑑×𝑑𝑘 , 𝑊ℎ,𝑣 ∈ ℝ𝑑×𝑑𝑣 . Here ℎ = 1, . . . , 𝐻 is the ℎth attention layer or

head.
Let us then set𝑄ℎ(𝑋) = 𝑋𝑊ℎ,𝑞, 𝐾ℎ(𝑋) = 𝑋𝑊ℎ,𝑘, 𝑉ℎ(𝑥) = 𝑋𝑊ℎ,𝑣.
These linear operations correspond to queries, keys, and values, respec-

tively. The idea for these names is that a word-vector 𝑥𝑖 has a query that will
be tested with the key word-vector 𝑥𝑗. If they are compatible, then their inner

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

204 13. Recurrent Neural Networks for Sequential Data

product would be large, in which case we look up the value of 𝑥𝑗. As such, the
matrices𝑊ℎ,𝑞,𝑊ℎ,𝑘,𝑊ℎ,𝑣 are called query, key, and value, respectively.

Next, we define the matrix 𝐴ℎ = [𝑎ℎ,𝑖𝑗]𝑛𝑖,𝑗=1 where 𝑎ℎ,𝑖𝑗 are computed as a
softmax function applied to the rows of a matrix-matrix product

𝐴ℎ = 𝑆softmax (𝑄ℎ(𝑋)𝐾⊤ℎ (𝑋)√𝑑𝑘) .
We recall that the output of a softmax function can be interpreted as prob-

abilities. Let us now decipher what it means to apply the softmax function to
a matrix. If, with some abuse of notation, we write𝑄ℎ(𝑥𝑖) = 𝑥𝑖𝑊ℎ,𝑞, 𝐾ℎ(𝑥𝑖) = 𝑥𝑖𝑊ℎ,𝑘, 𝑉ℎ(𝑥𝑖) = 𝑥𝑖𝑊ℎ,𝑣,(13.14)

then 𝐴ℎ = [𝑎ℎ,𝑖𝑗]𝑛𝑖,𝑗=1 where 𝑎ℎ,𝑖𝑗
𝑎ℎ,𝑖𝑗 = 𝑆softmax (⟨𝑄ℎ(𝑥𝑖), 𝐾ℎ(𝑥𝑗)⟩√𝑑𝑘 ; 𝑖) = 𝑒 ⟨𝑄ℎ(𝑥𝑖),𝐾ℎ(𝑥𝑗)⟩√𝑑𝑘

∑𝑛𝑚=1 𝑒 ⟨𝑄ℎ(𝑥𝑖),𝐾ℎ(𝑥𝑚)⟩
√𝑑𝑘

.(13.15)

The scaling by 1√𝑑𝑘 is to avoid numerical overflow. The elements of the
matrix 𝐴, 𝑎ℎ,𝑖𝑗, are called self-attention weights and control how much 𝑥𝑖 at-
tends to 𝑥𝑗. Then, with 𝑊ℎ,𝑜 ∈ ℝ𝑑𝑘×𝑑, another matrix whose elements are to
be learned through training, we define

𝑧𝑖 = 𝐻∑ℎ=1𝑊⊤ℎ,𝑜
𝑛∑𝑗=1 𝑎ℎ,𝑖𝑗𝑉ℎ(𝑥𝑗), 𝑖 = 1, . . . , 𝑛.(13.16)

In the last display we sum up the value of each word-vector 𝑥𝑗, i.e., 𝑉ℎ(𝑥𝑗),
in a way that is proportional to the compatibility of 𝑥𝑖 and 𝑥𝑗 via 𝑎ℎ,𝑖𝑗. Since
we are interested in how much each element of the matrix 𝑋 attends to each
other, we call this the self-attention mechanism. We do this for all heads ℎ =1, . . . , 𝐻 to get the multihead self-attention 𝑧𝑖 for 𝑖 = 1, . . . , 𝑛. This process can
be parallelized. Equations (13.14)–(13.16) refer to the multihead self-attention
block. In Figures 13.7 and 13.8 we present schematic representations of the
self-attention block (or mechanism) and of the multihead self-attention block,
respectively.

One interesting property of the self-attention block is that it is permutation
equivariant. Let us first define what this is.

Definition 13.2. Let 𝑋 ∈ ℝ𝑛×𝑑 be a given matrix. Let 𝜋 be the permutation
operator of 𝑛 objects and the permutation matrix associated with 𝜋, 𝐿(𝜋) =(𝑒𝜋1 , . . . , 𝑒𝜋𝑛) ∈ ℝ𝑛×𝑛, where 𝑒𝜋𝑖 are one-hot vectors whose 𝜋𝑖 element is 1 and

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.9. Attention Mechanism and Transformers 205

Figure 13.7. A schematic representation of a self-attention block

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

206 13. Recurrent Neural Networks for Sequential Data

Figure 13.8. A schematic representation of a multihead self-attention block

the rest of the elements are 0. Wewill call the transformation𝑀(𝑋; 𝜋) = 𝐿(𝜋)𝑋
a permutation of 𝑋 .
Definition 13.3. An operator 𝒵 ∶ ℝ𝑛×𝑑 ↦ ℝ𝑛×𝑑 is called permutation equi-
variant if for any 𝑋 ∈ ℝ𝑛×𝑑 and for𝑀(𝑋; 𝜋) = 𝐿(𝜋)𝑋 a permutation operator,
we have 𝒵(𝑀(𝑋; 𝜋)) = [𝑀 (𝒵⊤(𝑋); 𝜋)]⊤. The operator 𝒵 is called permutation
invariant if for any 𝑋 ∈ ℝ𝑛×𝑑, 𝒵(𝑀(𝑋; 𝜋)) = 𝒵(𝑋).

We will now show that the self-attention block operator is permutation
equivariant. Consider for simplicity and without loss of generality the single-
head attention, i.e., the case of 𝐻 = ℎ = 1, and set

𝒵(𝑋) = 𝑊⊤𝑜 (𝑊𝑣)⊤𝑋⊤𝑆softmax (𝑋𝑊𝑞𝑊⊤𝑘 𝑋⊤√𝑑𝑘) .
Then, we have the following lemma.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.9. Attention Mechanism and Transformers 207

Lemma 13.4. We have that the self-attention block operator 𝒵 is permutation
equivariant.

Proof. We observe that𝒵(𝑀(𝑋; 𝜋))
= 𝑊⊤𝑜 (𝑊𝑣)⊤(𝑀(𝑋; 𝜋))⊤𝑆softmax ((𝑀(𝑋; 𝜋))𝑊𝑞𝑊⊤𝑘 (𝑀(𝑋; 𝜋))⊤√𝑑𝑘)
= 𝑊⊤𝑜 (𝑊𝑣)⊤𝑋⊤𝐿(𝜋)⊤𝑆softmax (𝐿(𝜋)𝑋𝑊𝑞𝑊⊤𝑘 𝑋⊤𝐿(𝜋)⊤√𝑑𝑘)
= 𝑊⊤𝑜 (𝑊𝑣)⊤𝑋⊤𝐿(𝜋)⊤𝐿(𝜋)𝑆softmax (𝑋𝑊𝑞𝑊⊤𝑘 𝑋⊤√𝑑𝑘) 𝐿(𝜋)⊤
= 𝑊⊤𝑜 (𝑊𝑣)⊤𝑋⊤𝑆softmax (𝑋𝑊𝑞𝑊⊤𝑘 𝑋⊤√𝑑𝑘) 𝐿(𝜋)⊤
= [𝑀 (𝒵⊤(𝑋); 𝜋)]⊤ .

To derive this, we used the fact that for the orthogonalmatrix, 𝐿(𝜋)wehave
that 𝐿(𝜋)⊤𝐿(𝜋) = 𝐼 and that for a given matrix 𝐴, we have𝑆softmax(𝐿(𝜋)𝐴𝐿(𝜋)⊤) = 𝐿(𝜋)𝑆softmax(𝐴)𝐿(𝜋)⊤. □

Lemma 13.4 says something important. It suggests that the order in which
we consider the input affects the output in the same way; for example the pre-
dictions change direction if we change the direction of the input. Said other-
wise, the output is permuted the same way as the input is permuted.

In Exercise 13.8 we will see that in the attention-block case (not self-atten-
tion) the property of permutation invariance is true. The difference between
attention and self-attention is that in the former we have the query 𝑄ℎ(𝑋) =𝑊ℎ,𝑞 instead of𝑄ℎ(𝑋) = 𝑋𝑊ℎ,𝑞; i.e., the query does not depend on the input 𝑋 ,
or said otherwise it is the same for all input instances.

13.9.2. Transformer architecture. The transformer architecture is com-
posed by transformer blocks. A transformer block gets an input 𝑋 ∈ ℝ𝑛×𝑑
and transforms it to another object, say 𝑌 ∈ ℝ𝑛×𝑑.

Before we give the definition of a transformer block, we recall the layer
normalization (LN) operation from Section 13.8.3. For a vector 𝑥 ∈ ℝ𝑑 and for
vectors 𝑤, 𝑏 ∈ ℝ𝑑, we define the layer normalization as in Section 13.8.3

𝐿𝑁(𝑥; (𝑤, 𝑏)) = 𝑤𝜎𝑥 ⊙ (𝑥 − 𝜇𝑥) + 𝑏,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

208 13. Recurrent Neural Networks for Sequential Data

Figure 13.9. A schematic representation of a transformer block

where the vectors 𝑤, 𝑏 are to be learned during the training process. For fixed𝑤, 𝑏, one can think of the layer normalization here as a constraint on 𝑥 being
on an ellipsoid.

Nowwe are in position to give the definition of the basic transformer block.
Let {𝑥𝑖}𝑖∈{1,. . .,𝑛} be an input sequence and let 𝑧𝑖 be the multihead self-attention
block from (13.16). The basic transformer block is given bŷ𝑧𝑖 = 𝐿𝑁(𝑥𝑖 + 𝑧𝑖; (𝑤1, 𝑏1)),̂𝑦𝑖 = 𝑊⊤3 ReLU(𝑊𝑇2 ̂𝑧𝑖 + 𝐵2)𝑦𝑖 = 𝐿𝑁(̂𝑦𝑖 + ̂𝑧𝑖; (𝑤4, 𝑏4)), 𝑖 = 1, . . . , 𝑛,(13.17)

where𝑊2 ∈ ℝ𝑑×𝑑𝑓 ,𝑊3 ∈ ℝ𝑑𝑓×𝑑 are matrices and 𝑤1, 𝑤4, 𝑏1, 𝑏2, 𝑏4 are vectors.
In fact the parameter to be learned during the training phase is𝜃 = (𝑤1, 𝑤4, 𝑏1, 𝑏2, 𝑏4,𝑊2,𝑊3, {(𝑊ℎ,𝑞,𝑊ℎ,𝑘,𝑊ℎ,𝑣,𝑊ℎ,𝑜), ℎ = 1, . . . , 𝐻}).

So, in the end, we have obtained the model for the transformer block 𝑌 =𝔪(𝑋; 𝜃). In Figure 13.9 we present a schematic representation of a transformer
block.

A transformer is then a combination of transformer blocks. Different ap-
plications may use different variations of combinations of transformer blocks.

Remark 13.5. Note also that the model is flexible enough to accommodate
different kind of neural network architectures. For example, referring back to

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.9. Attention Mechanism and Transformers 209

(13.17) one can generally set ̂𝑦𝑖 = 𝑚̃(̂𝑧𝑖),
where 𝑚̃ is any kind of deep neural network architecture that takes ̂𝑧𝑖 as its
input, and not necessarily the shallow neural network with 𝖱𝖾𝖫𝖴 activation
function that was considered in (13.17).

In [VSP+17] the problem of machine translation was studied and an enco-
der-decoder combination was used to define the transformer architecture. The
definition of the transformer block for an encoder is (13.16) with the attention
mechanism (13.15). For a decoder, the definition is slightly different and is
based on what is called a masked multihead self-attention. In particular, in
that case we still have (13.16), but with (13.15) replaced by

𝑎ℎ,𝑖𝑗 = ⎧⎪⎨⎪⎩
exp(⟨𝑄ℎ(𝑥𝑖),𝐾ℎ(𝑥𝑗)⟩√𝑑𝑘)

∑𝑖𝑚=1 exp(⟨𝑄ℎ(𝑥𝑖),𝐾ℎ(𝑥𝑚)⟩
√𝑑𝑘) , for 𝑗 ≤ 𝑖,

0, otherwise.(13.18)

Note that in an encoder, the output 𝑧𝑖 sees the whole sequence 𝑥1, . . . , 𝑥𝑛.
On the other hand, in a decoder, the output 𝑧𝑖 sees only 𝑥1, . . . , 𝑥𝑖 and it does
not see 𝑥1+1, . . . , 𝑥𝑛.

As a concrete example of a transformer let us describe the one presented
in [VSP+17]. This architecture is composed by an encoder, a decoder and po-
sitional encoding. The encoder is a composition of 𝐿 transformer blocks, each
one with each own parameters, i.e., the output of the encoder is𝔪(⋅; 𝜃𝐿) ∘ ⋯ ∘ 𝔪(⋅; 𝜃1) ∈ ℝ𝑛×𝑑.

The decoder is again a composition of 𝐿 transformer blocks, each one with
its own parameters. However, one difference with the encoder is that we mod-
ify the transformer block as follows. After we have computed the ̂𝑧𝑖 in (13.17),
we then apply amaskedmultihead self-attentionmechanism as in (13.18). The
output of this operation then goes through a layer normalization and then we
proceed as in (13.17), with a feed forward neural network followed by a subse-
quent layer normalization.

Lastly, we discuss what position encoding refers to. We note that up to now
in our description, the relative order of theword-vectors 𝑥𝑖 in a sentence did not
play any role. It would be good for themodel though to have some information
on the relative positions of the words in the sentence. To achieve this, we add
positional encoding to all inputs before feeding the encoder or the decoderwith
the information. Consider a sequence 𝑥𝑖 ∈ ℝ𝑑, 𝑖 ∈ {1, . . . , 𝑛}, of word embed-
dings and let 𝑞𝑖 ∈ ℝ𝑑 be the positional encoding of the 𝑥𝑖 word embedding for𝑖 ∈ {1, . . . , 𝑛}. While there are many different choices of position encoding in

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

210 13. Recurrent Neural Networks for Sequential Data

the literature (see for instance [VSP+17,GAG+17]), in [VSP+17] the authors
used the sinusoidal position encoding 𝑞 ∈ ℝ𝑛×𝑑 where𝑞𝑖(2𝑘) = sin(𝑖(104)2𝑘/𝑑) and 𝑞𝑖(2𝑘 + 1) = cos(𝑖(104)2𝑘/𝑑) ,
with 𝑘 ∈ {1, . . . , 𝑑/2 − 1} and then transform the data tõ𝑥 = FeedForward(𝑥) + 𝑞.

Then ̃𝑥 is input to the initial stage of the encoder and decoder, i.e., at time
zero of the algorithm. We lastly mention that in the original [VSP+17] paper,𝐿 = 6,𝐻 = 8, 𝑑𝑘 = 64, 𝑑 = 512, and 𝑑𝑓 = 2048 for the inner feed forward layer
of (13.17). Another way to do positional encoding is to let 𝑞𝑖 to be some ran-
dom vector (random positional encoding) or a transformation that is learned
through training.

13.9.3. Comparison of Transformer and LSTM. In this section we com-
pare the attention mechanism (consequently the Transformer architecture) to
the LSTM of Section 13.7. Let us recall the recursive formula for the memory
state of LSTM (13.13).

Let us focus the discussion within the context of language models.• The attention weights 𝑎ℎ,𝑖𝑗 are computed for all 𝑖, 𝑗 = 1, . . . , 𝑛. In the
LSTM network the weights 𝑀𝑘,𝑡 are computed only for 𝑘 ≤ 𝑡. This
means that in the LSTM network an item of length 𝑡 only attends to
items of length 𝑘 ≤ 𝑡 and not to longer sequences.• The recursive formula for the memory state of LSTM, (13.13), indeed
shows that an LSTM tends to give more weight to recent words be-
cause the weights decay over time. Indeed, if the forget gate 𝑓ℓ < 1
for all ℓ ≤ 𝑡, then 𝑀𝑘1,𝑡 ≤ 𝑀𝑘2,𝑡 for 𝑘1 < 𝑘2. This is one difference
with the attention mechanism of Section 13.9. The attention mecha-
nism attends equally well to all items.• Attention has a probabilistic interpretation through the softmax func-
tion, which gives probabilities of how much a given word attends to
another word. In contrast, in LSTM theweights in the formula (13.13)
may grow up to the length of the sequence.

The observations above suggest that the attention mechanism may have
certain advantages in tasks such as text and language models over recurrent
architectures like the LSTM. Indeed, in recent years variants of the transformer
architecture have enjoyed many successes in large language models. For this
purpose, bidirectional LSTMs have also been used in large language models,
defined analogously to the bidirectional RNN structure of Section 13.7; two
LSTMs are considered, one moving in the forward direction in text and the
other one moving in the backward direction in text, effectively increasing the

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

13.11. Exercises 211

amount of information available to the network. We note that the attention
mechanism can also be considered in conjunction with LSTMs where a given
input datapoint is first processed by anLSTMbefore being fed into the attention
mechanism.

Even though transformers are indeed very effective in handling long-range
dependencies in data, they are also very costly in terms of memory usage and
computational resources. Typically, transformers needmorememory and com-
putation powerwhen compared to RNNbased architectures, which stems from
the fact that they extensively use the self-attention mechanism. Despite atten-
tion-basedmodels and transformer architectures having advantages, RNNs and
the related advanced architectures like GRU, LSTM, and bidirectional RNNs
are a very powerful class of models for time-series data and generally sequen-
tial data analysis.

13.10. Brief Concluding Remarks

In this chapter we studied recurrent neural networks and transformers that are
widely used to model time series and sequential data.

The attention mechanism was popularized with the paper [VSP+17],
and since then, modifications of the basic Transformer architecture have
found many applications in music generation [HVU+19], image generation
[PVU+18], and more. Both LSTM based recurrent neural networks and var-
ious variants of the transformer architecture have found many applications
in large language models, see for example [DCLT19,RNSS18,RWC+19],and
[BMR+20]. LSTM such as recurrent neural network architectures have also
found applications in solution of high-dimensional partial differential equa-
tions, see for example [SS18]. [LLFZ18] includes a discussion on the analogy
between LSTM and the transformer’s attention weights.

In Chapter 14, we study convolution neural networks that are widely used
in image recognition problems.

13.11. Exercises

Exercise 13.1. Consider the one-dimensional dynamical system with system
updates 𝑍𝑛 = 𝑓(𝑍𝑛−1, 𝜃). For the following choices for 𝑓, find the hidden state
of the system in the long run, lim𝑛→∞ 𝑍𝑛.

(1) 𝑓(𝑧, 𝜃) = tanh(𝜃𝑧) with |𝜃| < 1.
(2) 𝑓(𝑧, 𝜃) = 𝜎(𝜃 ⋅ 𝑧), where 𝜎 is the logistic function.
(3) 𝑓(𝑧, 𝜃) = sin(𝜃 ⋅ 𝑧).

Exercise 13.2. In the context of Section 13.5 prove that tBPTT based SGD is a
biased algorithm.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

212 13. Recurrent Neural Networks for Sequential Data

Exercise 13.3. Fill in the missing details in the chain rule derivations in Sec-
tion 13.5 together with the details of the resulting backpropagation algorithm.

Exercise 13.4. Consider the recurrent neural network𝐻𝑡 = 𝑤ℎ𝐻𝑡−1𝑍𝑡 = 𝑤𝑧𝐻𝑡,
with initial condition 𝐻−1 = 1. Provide formulas for

(1) 𝑍3,
(2) 𝜕𝑍3𝜕𝑤𝑧 ,
(3) 𝜕𝑍3𝜕𝑤ℎ ,

in terms of 𝑤ℎ and 𝑤𝑧.
Exercise 13.5. Consider the single layer recurrent neural network𝐻𝑡 = tanh (𝑤ℎℎ𝐻𝑡−1 + 𝑤𝑖ℎ𝑋𝑡 + 𝑏ℎ)𝐻−1 = ℎ0.
Compute the partial derivative 𝜕𝐻𝑡𝜕ℎ0 for 𝑡 ∈ {1, 2, . . . }.
Exercise 13.6. Consider a simple RNN with parameters 𝜃 = (𝑎, 𝑏, 𝑐) ∈ ℝ3:𝑍𝑡+1 = 𝑎𝜎(𝑏𝑍𝑡 + 𝑐𝑋𝑡),
where 𝜎(𝑧) = 𝑒𝑧1+𝑒𝑧 . Suppose that initially 𝑎 = 𝑏 = 12 . What is 𝜕𝑍𝑇𝜕𝑍𝑡 where 𝑇 >𝑡? What happens when 𝑇 → ∞ and why is this an example of the vanishing
gradient problem?

Exercise 13.7. Prove that for a permutation matrix 𝐿(𝜋) as in Definition 13.2
and 𝐴 ∈ 𝑅𝑛×𝑛 a matrix, we have𝑆softmax(𝐿(𝜋)𝐴𝐿(𝜋)⊤) = 𝐿(𝜋)𝑆softmax(𝐴)𝐿(𝜋)⊤.
Exercise 13.8. Consider the attention block operator

𝒵(𝑋) = 𝑊⊤𝑜 (𝑊𝑣)⊤𝑋⊤𝑆softmax (𝑋𝑊𝑞𝑊⊤𝑘√𝑑𝑘) .
Prove that it is permutation invariant. Why is the permutation invariance prop-
erty useful for image classification problems?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 14

Convolution Neural
Networks

14.1. Introduction

Is there an umbrella in Figure 14.1? You have probably seen enough umbrellas
enough times to be able to recognize one! When you look at Figure 14.1, you
scan over it and try to find a part of the image that matches the pattern you
have in your mind for the umbrella.

Let’s see if we can understand a deep learning approach to this. We start
with a lot of training images, some of which contain (label 1) an umbrella, and
others of which don’t (label 0). We want to build a pattern representing the
umbrella, and move this pattern around to see if we get a match.

Although two-dimensional images are the common application of convolu-
tion neural networks (CNN), we shall develop the ideas within the framework
of one-dimensional signals. Almost all of the ideas can be developed, and the
notation is simpler.

We begin in Section 14.2 with the simpler task of detecting a known ref-
erence signal. In Section 14.3 we elaborate what to do when we do not really
know the reference signal. Auxiliary topics like stride and channels are pre-
sented in Section 14.4. Then, in Sections 14.5 and 14.6 we discuss details on
the implementation of stochastic gradient descent for the case of single and
multiple channels, respectively.

213

10.1090/gsm/252/14

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

214 14. Convolution Neural Networks

Figure 14.1. Sample image of an umbrella (photograph by the second author)

14.2. Detection of Known Signal

Let’s start by trying to detect a known reference signal 𝐑 = (𝑅𝑛)𝑁′−1𝑛=0 of Figure
14.2 (where𝑁′ = 7) in a larger observed signal of𝐗 = (𝑋𝑛)𝑁−1𝑛=0 (where𝑁 = 25).
See Figure 14.3.

R
n
0 4.0
1 4.5
2 5.0
3 5.5
4 6.0
5 6.0
6 6.0

Figure 14.2. Reference signal 𝑅
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.2. Detection of Known Signal 215

Figure 14.3. Typical observed signal 𝐗. The reference signal 𝐑 starts at 7.

Let’s think of this in feature-label space.• Feature space will beℝ𝑁 (i.e.,ℝ25); each element of feature space will
be a signal of length 25.• Label space will be {0, 1}
– label 1 will correspond to 𝐑 being present somewhere in the sig-
nal

– label 0 will correspond to absence of 𝐑 in the signal
Convolution allows us to efficiently search for the presence of the reference
signal at all starting points. In our introductory two-dimensional example of
Figure 14.1, convolution would have allowed us to search for all positions of
the umbrella in two dimensions.

Let’s formalize things a bitmore by considering some ground-truth training
data; more specifically, ten feature-label pairs as in Figure 14.4. The reference
signal,𝐑, when present, has been corrupted by noise. The reference signal can
also start anywhere. For simplicity we will restrict the start 𝑛 of the signal so
that 𝑛 + (𝑁′ − 1) ≤ (𝑁 − 1); i.e., 𝑛 ≤ 24 − 6 = 18, so that the entire signal is
either present or not in the observation.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

216 14. Convolution Neural Networks

Figure 14.4. ground-truth training data on observed and reference signals,𝐗 and 𝐑, respectively
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.2. Detection of Known Signal 217

A somewhat natural way to try to find the reference signal is to compute
correlations. For an observed signal 𝐗 ∈ ℝ25, define the Pearson correlation
(for the specific signal at hand)ℓ𝑛(𝐗)
def= 17 ∑6𝑛′=0 {𝑅𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′)} {𝑋𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)}

√ 17 ∑6𝑛′=0 {𝑅𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′)}2√ 17 ∑6𝑛′=0 {𝑋𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)}2
= 17 ∑6𝑛′=0 𝑅𝑛′𝑋𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′) (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)
√ 17 ∑6𝑛′=0 𝑅2𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′)2√ 17 ∑6𝑛′=0 𝑋2𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)2

between (𝑅𝑛′)6𝑛′=0 and (𝑋𝑛+𝑛′)6𝑛′=0. If there were no noise, then ℓ𝑛(𝐗) = 1 if𝑋𝑛′+𝑛 = 𝑅𝑛′ for 𝑛′ ∈ {0, 1, 2, . . . , 6}. We note, however, that the reverse is not
true; if ℓ𝑛 = 1, we only know that there are 𝑎 > 0 and 𝑏 ∈ ℝ such that𝑋𝑛+𝑛′ = 𝑎𝑅𝑛′ + 𝑏, 𝑛′ ∈ {0, 1, 2, . . . , 6}
(i.e., (𝑅𝑛′)6𝑛′=0 and (𝑋𝑛+𝑛′)6𝑛′=0 are colinear). See Figure 14.5. We do indeed
see that ℓ(𝐗) def= max {ℓ𝑛(𝐗) ∶ 𝑛 ∈ {0, 1, . . . , 18}
tends to be large when the signal is present and small when it isn’t. We might
try to detect 𝐑 in a signal 𝐗 by selecting a threshold ℓ and declaring• 𝐑 is present if ℓ(𝐗) > ℓ• 𝐑 is absent if ℓ(𝐗) < ℓ.

In other words, we can think of detecting 𝐑 by applying logistic regression
to ℓ(𝐗). This is an example of feature engineering.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

218 14. Convolution Neural Networks

Figure 14.5. Observed𝐗 and reference𝐑 signals and the associated Pearson
correlations

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.2. Detection of Known Signal 219

Let’s rewrite the correlation coefficient;
(14.1) ℓ𝑛(𝐗) = 𝑤𝑛(𝐗)(𝐑 ⋆ 𝐗)𝑛 − 𝑏𝑛(𝐗),
where𝑤𝑛(𝐗)

def= 17
√ 17 ∑6𝑛′=0 𝑅2𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′)2√ 17 ∑6𝑛′=0 𝑋2𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)2 ,𝑏𝑛(𝐗)

def= (17 ∑6𝑛′=0 𝑅𝑛′) (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)
√ 17 ∑6𝑛′=0 𝑅2𝑛′ − (17 ∑6𝑛′=0 𝑅𝑛′)2√ 17 ∑6𝑛′=0 𝑋2𝑛+𝑛′ − (17 ∑6𝑛′=0 𝑋𝑛+𝑛′)2 ,

and

(𝐑 ⋆ 𝐗)𝑛 def= 6∑𝑛′=0𝑅𝑛′𝑋𝑛+𝑛′ .
Instead of trying to detect 𝐑 in 𝐗 by using the engineered feature ℓ(𝐗),

(14.1) suggests that we might instead try to detect 𝐑 in 𝐗 by applying logistic
regression to the engineered feature (the correlation)max {(𝐑 ⋆ 𝐗)𝑛 ∶ 𝑛 ∈ {0, 1, . . . , 18}} .

Namely, let’s consider training a model

𝔪(𝐗, 𝜃) def= 𝑆 (𝑤max𝑛 (𝐑 ⋆ 𝐗)𝑛 + 𝑏)
(where, as usual, 𝑆 is the logistic function) for the probability that the reference
signal is present (and then voting to decide the label 1 or 0). As usual with
logistic regression, 𝜃 = (𝑤𝑏) .

The training data is 𝒟 ⊂ ℝ25 × {0, 1}
and per-datapoint losses are

(14.2) 𝜆(𝐗,𝑦)(𝜃) = ℓ𝑦 (𝑆 (𝑤max𝑛 (𝐑 ⋆ 𝐗)𝑛 + 𝑏)) , 𝜃 = (𝑤𝑏) ∈ ℝ2,
where, as in (3.7), ℓ𝑦(𝑦′) def= 𝑦 ln 𝑦𝑦′ + (1 − 𝑦) ln 1 − 𝑦1 − 𝑦′ .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

220 14. Convolution Neural Networks

As usual, the average loss is then

(14.3) Λ(𝜃) def= 1|𝒟| ∑(𝐗,𝑦)∈𝒟 𝜆(𝐗,𝑦)(𝜃), 𝜃 = (𝑤𝑏) ∈ ℝ2.
Several side issues are worth some attention. Firstly, we have restricted

the starting point of the signal 𝐑, if present, to be such that the entirety of the
signal is present (i.e., 𝑛 ≤ 18). We can easily extend (𝐑 ⋆ 𝐗)𝑛 to other 𝑛 by
zero-padding; for any 𝑛 ∈ ℤ, we can define

(𝐑 ⋆ 𝐗)𝑛 def= 6∑𝑛′=0𝑅𝑛′𝑋𝑛+𝑛′𝟏{0≤𝑛+𝑛′≤24}.
Secondly, the correlation (𝐑 ⋆ 𝐗) can be rewritten as
(14.4)

(𝐑 ⋆ 𝐗)𝑛 = 𝑁′−1∑𝑛′=0 𝑅𝑛′𝑋𝑛+𝑛′ =
0∑𝑚′=−𝑁′+1𝑅−𝑚′𝑋𝑛−𝑚′ = 𝑛+𝑁′−1∑𝑚′′=𝑛 𝑅𝑚′′−𝑛𝑋𝑚′′

= ∑𝑚′∈ℤ𝐾𝑚′𝑋𝑛−𝑚′ = ∑𝑚′′∈ℤ𝐾𝑛−𝑚′′𝑋𝑚′′
with 𝐾𝑚 = {𝑅−𝑚 if 0 ≤ −𝑚 ≤ 𝑁′ − 10 else.

The last expression in (14.4) is the convolution of 𝐗 with (𝐾𝑚)𝑚∈ℤ.
Let’s think through how we might minimize the average loss Λ of (14.3).

Reusing a number of calculations fromChapter 3, we can compute the gradient
of 𝜆 with respect to the vector 𝜃;
(14.5) ∇𝜆(𝐗,𝑦)(𝜃) = (ℓ𝑦 ∘ 𝑆)′ (𝑤max𝑛 (𝐑 ⋆ 𝐗)𝑛 + 𝑏) (max𝑛(𝐑 ⋆ 𝐗)𝑛1) .
14.3. Detection of Unknown Signal

Of course, in reality, we don’t know the reference signal 𝐑. Thinking back to
Figure 14.1, wementally have built a reference signal from experience. In other
words, we can think of 𝐑 as part of the parameter vector.

Let’s work through this. Let’s modify (14.2) to include 𝐫 = (𝑟𝑛)𝑁′−1𝑛=0 as a
parameter. Define

𝜆(𝐗,𝑦)(𝜃) = ℓ𝑦 (𝑆 (𝑤max𝑛 (𝐫 ⋆ 𝐗)𝑛 + 𝑏)) , 𝜃 =
⎛⎜⎜⎜⎜⎝

𝑟0𝑟1⋮𝑟𝑁′−1𝑤𝑏

⎞⎟⎟⎟⎟⎠
∈ ℝ𝑁′+2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.3. Detection of Unknown Signal 221

The derivatives of 𝜆(𝐗,𝑦) of (14.5) with respect to𝑤 and 𝑏 are given in (14.5).
To fully implement gradient descent, we need to work through the derivatives
ofmax𝑛(𝐫 ⋆ 𝐗)𝑛 with respect to the 𝑟𝑛’s.

Let’s first of all understand derivatives of themaxpool function

𝖬(𝑥1, 𝑥2, 𝑥3) def= max{𝑥1, 𝑥2, 𝑥3}, (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3.
For specificity, let’s take the derivatives at (𝑥1, 𝑥2, 𝑥3) = (−1, 5, 7). Explic-

itly, 𝖬(−1, 5, 7) = 7
and argmax(−1, 5, 7) = 3,
i.e., 𝑥3 > max{𝑥1, 𝑥2}. For small 𝜀,𝖬(−1 + 𝜀, 5, 7) = 7,𝖬(−1, 5 + 𝜀, 7) = 7,𝖬(−1, 5, 7 + 𝜀) = 7 + 𝜀,
implying that 𝜕𝖬𝜕𝑥1 (−1, 5, 7) = 0,𝜕 𝖬𝜕𝑥2 (−1, 5, 7) = 0,𝜕 𝖬𝜕𝑥3 (−1, 5, 7) = 1.

More generally,𝜕𝖬𝜕𝑥𝑛 (𝑥1, 𝑥2, 𝑥3) = {1 if 𝑛 = argmax(𝑥)0 if 𝑛 ≠ argmax(𝑥) = 𝟏argmax(𝑥)(𝑛).
The gradient of 𝖬 is of course not defined at places where argmax is not

unique:

𝑀(−1, 7, 7 + 𝜀) = {7 + 𝜀 if 𝜀 > 07 if 𝜀 < 0
so 𝜕𝖬𝜕𝑥3 (−1, 7, 7) doesn’t exist. Generically, a floating point computation is un-
likely to encounter such a case.

Secondly, let’s compute derivatives of the correlation operator. For 𝐫,
(𝐫 ⋆ 𝐗)𝑛 def= 𝑁′−1∑𝑛′=0 𝑟𝑛′𝑋𝑛+𝑛′ = 𝑟0𝑋𝑛 + 𝑟1𝑋𝑛+1⋯𝑟𝑁′−1𝑋𝑛+𝑁′−1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

222 14. Convolution Neural Networks

Thus 𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟0 = 𝑋𝑛𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟1 = 𝑋𝑛+1⋮𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟𝑛′ = 𝑋𝑛+𝑛′ .
Let’s collect things together. We have

∇𝜆(𝐗,𝑦)(𝜃) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜆(𝐗,𝑦)𝜕𝑟0 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑟1 (𝜃)⋮𝜕𝜆(𝐗,𝑦)𝜕𝑟𝑁′−1 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑚 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑏 (𝜃)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (ℓ𝑦 ∘ 𝑆)′ (𝑚𝖬(𝐫 ⋆ 𝐗) + 𝑏)

⎛⎜⎜⎜⎜⎜⎜⎝

𝑚𝜕𝖬(𝐫⋆𝐗)𝜕𝑟0𝑚𝜕𝖬(𝐫⋆𝐗)𝜕𝑟1⋮𝑤 𝜕𝖬(𝐫⋆𝐗)𝜕𝑟𝑁′−1𝖬(𝐫 ⋆ 𝐗)1

⎞⎟⎟⎟⎟⎟⎟⎠
for

𝜃 =
⎛⎜⎜⎜⎜⎝

𝑟0𝑟1⋮𝑟𝑁′−1𝑤𝑏

⎞⎟⎟⎟⎟⎠
∈ ℝ𝑁′+2.

Explicitly,𝜕𝖬(𝐫 ⋆ 𝐗)𝜕𝑟0 = ∑𝑛′ 𝜕𝖬𝜕𝑥𝑛′ (𝐫 ⋆ 𝐗)𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟0
= 𝜕(𝐫 ⋆ 𝐗)argmax(𝐫⋆𝐗)𝜕𝑟0 = 𝑋argmax(𝐫⋆𝐗)𝜕𝖬(𝐫 ⋆ 𝐗)𝜕𝑟1 = ∑𝑛′ 𝜕𝖬𝜕𝑥𝑛′ (𝐫 ⋆ 𝐗)𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟1
= 𝜕(𝐫 ⋆ 𝐗)argmax(𝐫⋆𝐗)𝜕𝑟1 = 𝑋argmax(𝐫⋆𝐗)+1⋮𝜕𝖬(𝐫 ⋆ 𝐗)𝜕𝑟𝑛 = ∑𝑛′ 𝜕𝖬𝜕𝑥𝑛′ (𝐫 ⋆ 𝐗)𝜕(𝐫 ⋆ 𝐗)𝑛𝜕𝑟𝑛
= 𝜕(𝐫 ⋆ 𝐗)argmax(𝐫⋆𝐗)𝜕𝑟𝑛 = 𝑋argmax(𝐫⋆𝐗)+𝑛.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.4. Auxiliary Thoughts 223

Combining things together,
(14.6)

∇𝜆(𝐗,𝑦)(𝜃) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝜆(𝐗,𝑦)𝜕𝑟0 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑟1 (𝜃)⋮𝜕𝜆(𝐗,𝑦)𝜕𝑟𝑁′−1 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑤 (𝜃)𝜕𝜆(𝐗,𝑦)𝜕𝑏 (𝜃)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (ℓ𝑦 ∘ 𝑆)′ (𝑤𝖬(𝐫 ⋆ 𝐗) + 𝑏)

⎛⎜⎜⎜⎜⎝

𝑤𝑋argmax(𝐫⋆𝐗)𝑤𝑋argmax(𝐫⋆𝐗)+1⋮𝑤𝑋argmax(𝐫⋆𝐗)+𝑁′−1𝖬(𝐫 ⋆ 𝐗)1

⎞⎟⎟⎟⎟⎠
.

We can in fact easily interpret (14.6). Gradient descent for CNN tries to
change reference patterns by the subpattern in the observations which is most
likely the current estimate of the reference pattern. Of course, then this algo-
rithm may lock onto the wrong pattern if the argmax is wrong.

CNNs are trying to do two things at once:• Find the pattern of interest (add randomness to avoid locking into the
wrong pattern).• Find the map from observations to the label.

Note that it is reasonable to expect that longer patterns in shorter observa-
tions are typically better, because it is then easier to find the pattern of interest.

14.4. Auxiliary Thoughts

14.4.1. ReLU. Since in fact we are only interested in positive correlations, we
might add a 𝖱𝖾𝖫𝖴 function (see Figure 14.6) after the convolution, but before
the maxpool; 𝖬(𝖱𝖾𝖫𝖴(𝐫 ⋆ 𝐗)).

The networkwill only act on parts of𝐗which have positive correlationwith𝐫 (but will get stuck if all correlations are negative; we want enough random-
ness in training to avoid that).

14.4.2. Stride. Returning to Section 14.2, if the reference signal 𝐑 is (known
to be) continuous; 𝐑⋆𝐗 should also be continuous. In the case of Figure 14.3,
the explicit formula for 𝐑 was𝑅𝑛 = 6 + 12 min{𝑛 − 4, 0}, 𝑛 ∈ {0, 1, . . . , 6},
implying that

||𝑅𝑛1 − 𝑅𝑛2 || ≤ 12|𝑛1 − 𝑛2|, 𝑛1, 𝑛2 ∈ {0, 1, . . . , 6}.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

224 14. Convolution Neural Networks

Figure 14.6. 𝖱𝖾𝖫𝖴 function
For any 𝑛1 and 𝑛2 in ℤ, we then have that(𝐑 ⋆ 𝐗)𝑛1 − (𝐑 ⋆ 𝐗)𝑛2 = ∑𝑛′∈ℤ𝑅𝑛′𝑋𝑛1+𝑛′ −∑𝑛′ 𝑅𝑛′𝑋𝑛2+𝑛′= ∑𝑘∈ℤ𝑅𝑘−𝑛1𝑋𝑘 − ∑𝑘∈ℤ𝑅𝑘−𝑛2𝑋𝑘= ∑𝑘∈ℤ {𝑅𝑘−𝑛1 − 𝑅𝑘−𝑛2} 𝑋𝑘

and thus ||(𝐑 ⋆ 𝐗)𝑛1 − (𝐑 ⋆ 𝐗)𝑛2 || ≤ 12 |𝑛1 − 𝑛2| {∑𝑘 |𝑋𝑘|} .
If 𝐑 ⋆ 𝐗 is sufficiently continuous, we might be able to approximatemax𝑛 (𝐑 ⋆ 𝐗)𝑛 and argmax𝑛(𝐑 ⋆ 𝐗)𝑛

with (stride = 2 for example)max𝑛 even(𝐑 ⋆ 𝐗)𝑛 and argmax𝑛 even(𝐑 ⋆ 𝐗)𝑛.
Effectively, the stride parameter determines how many steps the calcula-

tion in the convolution operation shifts. For example, in the discussion above
we took the stride to be equal to 2. A stride of 2 means that at each step there
is a shift by two units (this could be a shift by two pixels if the object of study
is an image for example) in the calculation of the convolution operation. To
compare, a stride of 1 would mean that at each time step there is a shift by one
unit.

We define multilayer convolution networks with arbitrary values for stride
later on, in Section 14.7. The stride parameter is another hyperparameter that
the user is choosing and can affect the performance of the algorithm. Generally

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.4. Auxiliary Thoughts 225

channel 0 channel 1
n
0 4.0 1
1 4.5 3
2 5.0 5
3 5.5 7
4 6.0 7
5 6.0 7
6 6.0 7

Figure 14.7. Reference signal with two channels

speaking, longer strides decrease computational time because they involve a
smaller output dimension, but may also decrease accuracy.

Lastly, we mention that, in practice, we do not know 𝐑, and we need to
adaptively find it, i.e., set 𝐫 in place of 𝐑 as was done in Section 14.3.

14.4.3. Channels. In practice, there may be several (i.e., 𝐾) channels (pat-
terns) corresponding to the desired label;• red, green, blue in images.• voice ranges: bass, baritone, tenor, alto, mezzo-soprano, and soprano.

An example with 𝐾 = 2 channels is in Figure 14.7.
Denoting the channels of pattern as (𝐫(𝑘))𝐾𝑘=1 and observation as (𝐗(𝑘))𝐾𝑘=1,

we can construct the correlations

(𝐫 ⋆ 𝐗)𝑘,𝑛 = 𝑁′−1∑𝑛=0 𝑟𝑘,𝑛𝑋𝑛.
For each channel 𝑛 ∈ ℕ and 𝑘 ∈ {1, 2, . . . , 𝐾}, where 𝐫(𝑘) = (𝑟𝑘,𝑛)𝑁′−1𝑛=0 and𝐗(𝑘) = (𝑋𝑘,𝑛)𝑛∈ℕ. The argmaxargmax𝑛∈ℕ ∑1≤𝑘≤𝐾 ||(𝐫 ⋆ 𝐗)𝑘,𝑛||

will find the index 𝑛 ∈ ℕ at which the channel-averaged cross-correlation1𝐾 ∑1≤𝑘≤𝐾 ||(𝐫 ⋆ 𝐗)𝑘,𝑛||
is maximum. The setting of multiple channels in convolution neural networks
will be studied in more detail in Section 14.6.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

226 14. Convolution Neural Networks

14.5. SGD for Convolution Neural Networks with a Single
Channel

We now generalize the motivational examples and setting studied in the previ-
ous sections. We investigate how stochastic gradient descent looks for a convo-
lution neural networkwith a single hidden layer in amultidimensional setting.
Let the input image be 𝐗 ∈ ℝ𝑑×𝑑 and an unknown signal (often also called fil-
ter) 𝐫 ∈ ℝ𝑘𝑦×𝑘𝑥 . Convolutions will be taken with a stride of 𝑠 = 1 and there
will only be a single channel. Generalizations to the case of stride size 𝑠 > 1,
multiple channels, andmultiple hidden layers will be considered later. We also
do not include the bias term, to further simplify calculations.

We define a convolution of the matrix𝐗with the filter 𝐫 as the map 𝐫⋆𝐗 ∶ℝ𝑘𝑦×𝑘𝑥 × ℝ𝑑×𝑑 → ℝ(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1) where
(𝐫 ⋆ 𝐗)𝑖,𝑞 = 𝑘𝑦−1∑𝑚=0

𝑘𝑥−1∑𝑛=0 𝑟𝑚,𝑛𝑋𝑖+𝑚,𝑞+𝑛.
The hidden layer applies an elementwise nonlinearity 𝜎 ∶ ℝ → ℝ to each

element of the matrix 𝐫 ⋆ 𝐗. We define the variable 𝑍 ∈ ℝ(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1)
and the hidden layer 𝐻 ∈ ℝ(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1) where𝐻𝑖,𝑞 = 𝜎((𝑍)𝑖,𝑞),𝑍 = 𝐫 ⋆ 𝐗.𝑌 is the label for the image𝐗 and takes values in the set𝒴 = {0, 1, . . . , 𝐽−1}.
The output of the network is simply the softmax function applied to a linear
function of the hidden layer 𝐻:𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈),𝑈𝑗 = 𝑊𝑗,∶,∶ ⋅ 𝐻 + 𝑏𝑗,
where𝑊 ∈ ℝ𝐽×(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1), 𝑏 ∈ ℝ𝐽 , 𝑈 ∈ ℝ𝐽 , and𝑊𝑗,∶,∶ ⋅ 𝐻 = ∑𝑖,𝑞 𝑊𝑗,𝑖,𝑞𝐻𝑖,𝑞.
Recall that the ∶ notation in the place of an index signals summation with re-
spect to that index.

The collection of parameters is 𝜃 = {𝐫,𝑊, 𝑏}. The cross-entropy error for a
single data sample (𝐗, 𝑌) is

ℓ ∶= ℓ𝑌 (𝔪(𝐗; 𝜃)) = − log (𝔪𝑌 (𝐗; 𝜃)).
In order to implement the stochastic gradient descent algorithm, we must

calculate ∇𝜃ℓ. We will next derive the backpropagation rule for single-layer
convolution networks.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.5. SGD for Convolution Neural Networks with a Single Channel 227

First, define

𝛿𝑖,𝑞 ∶= 𝜕ℓ𝜕𝐻𝑖,𝑞 = 𝐽−1∑𝑗=0 𝜕ℓ𝜕𝑈𝑗𝑊𝑗,𝑖,𝑞 = 𝜕ℓ𝜕𝑈 ⋅ 𝑊∶,𝑖,𝑞.
Recall that 𝜕ℓ𝜕𝑈 = −(𝑒(𝑌) − 𝔪(𝐗; 𝜃)),𝑒(𝑦) = (𝟏𝑦=0, . . . , 𝟏𝑦=𝐽−1).
This of course immediately yields𝜕ℓ𝜕𝑊𝑗,∶,∶ = 𝜕ℓ𝜕𝑈𝑗𝐻,𝜕ℓ𝜕𝑏 = 𝜕ℓ𝜕𝑈 .
We must next derive the gradient with respect to the filter 𝐫. By the chain

rule, 𝜕ℓ𝜕𝑟𝑖,𝑞 =
𝑑−𝑘𝑦∑𝑚=0

𝑑−𝑘𝑥∑𝑛=0 𝛿𝑚,𝑛 𝜕𝐻𝑚,𝑛𝜕𝑟𝑖,𝑞
= 𝑑−𝑘𝑦∑𝑚=0

𝑑−𝑘𝑥∑𝑛=0 𝛿𝑚,𝑛𝜎′(𝑍𝑚,𝑛)𝑋𝑖+𝑚,𝑞+𝑛
= 𝑋𝑖∶𝑖+𝑑−𝑘𝑦,𝑞∶𝑞+𝑑−𝑘𝑥 ⋅ (𝜎′(𝑍) ⊙ 𝛿),

where, with a slight abuse of notation, 𝜎′(𝑍) is the elementwise application of
the nonlinearity 𝜎(⋅), i.e.

𝜎′(𝑍) = ⎡⎢⎢⎢⎣
𝜎′(𝑍0,0) 𝜎′(𝑍0,1) . . . 𝜎′(𝑍0,𝑑−𝑘𝑥)𝜎′(𝑍1,0) 𝜎′(𝑍1,1) . . . 𝜎′(𝑍1,𝑑−𝑘𝑥)⋮ ⋮ ⋱ ⋮𝜎′(𝑍𝑑−𝑘𝑦,0) 𝜎′(𝑍𝑑−𝑘𝑦,1) . . . 𝜎′(𝑍𝑑−𝑘𝑦,𝑑−𝑘𝑥)

⎤⎥⎥⎥⎦ .
In particular, we have that

(𝐗 ⋆ (𝜎′(𝑍) ⊙ 𝛿))𝑖,𝑞 =
𝑑−𝑘𝑦∑𝑚=0

𝑑−𝑘𝑥∑𝑛=0 (𝜎′(𝑍) ⊙ 𝛿)𝑚,𝑛𝑋𝑖+𝑚,𝑞+𝑛 = 𝜕ℓ𝜕𝑟𝑖,𝑞 .
Therefore, from the definition of a convolution,𝜕ℓ𝜕𝐫 = 𝐗 ⋆ (𝜎′(𝑍) ⊙ 𝛿).
This is a very nice result since the gradient with respect to the parameters

also involves a convolution. That is, both the backward and forward steps in
the backpropagation algorithm can be written in terms of a convolution.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

228 14. Convolution Neural Networks

Collecting our results, the stochastic gradient descent algorithm for updat-
ing 𝜃 is:• Randomly select a new data sample (𝐗, 𝑌).• Compute the forward step (𝑍,𝐻,𝑈, ℓ).• Calculate the partial derivatives (𝜕ℓ𝜕𝑈 , 𝛿, 𝜕ℓ𝜕𝐫).• Update the parameters 𝜃 = {𝐫,𝑊, 𝑏}with a stochastic gradient descent

step: 𝑏𝑘+1 = 𝑏𝑘 − 𝜂𝑘 𝜕ℓ𝜕𝑈 ,
𝑊𝑗,⋅,⋅;𝑘+1 = 𝑊𝑗,⋅,⋅;𝑘 − 𝜂𝑘 𝜕ℓ𝜕𝑈𝑗𝐻, 𝑗 = 0, . . . , 𝐽,

𝐫𝑘+1 = 𝐫𝑘 − 𝜂𝑘(𝐗 ⋆ (𝜎′(𝑍) ⊙ 𝛿)),
where 𝜂𝑘 is the learning rate used at iteration 𝑘.

14.6. On Convolution Neural Networks with Multiple Channels

Now we study convolution neural networks with multiple channels, and for
nowwe focus on the single layer case. The hidden layer now contains𝐾 feature
maps. The number of feature maps 𝐾 is often called the number of channels.
By having multiple feature maps (instead of a single feature map), the network
will be able to represent more complex relationships in the data.

The feature maps for the hidden layer are represented by a variable 𝐻 ∈ℝ(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1)×𝐾 . Each of the feature maps is produced by a convolution
with a filter. The convolution layer has an array (or stack) of 𝐾 filters where
each filter is of size 𝑘𝑦 × 𝑘𝑥. The filters are given by the variable 𝐫 ∈ ℝ𝑑𝑦×𝑑𝑥×𝐾 .

The hidden layer 𝐻 is given by

𝐻𝑖,𝑞,𝑘 = 𝜎(𝑘𝑦−1∑𝑚=0
𝑘𝑥−1∑𝑛=0 𝑟𝑚,𝑛,𝑘𝑋𝑖+𝑚,𝑞+𝑛).

Therefore, 𝐻∶,∶,𝑘 = 𝜎(𝑍∶,∶,𝑘),𝑍∶,∶,𝑘 = 𝐗∶,∶ ⋆ 𝐫∶,∶,𝑘.
The output of the network is simply the softmax function applied to a linear
function of the hidden layer 𝐻:𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈),𝑈𝑗 = 𝑊𝑗,∶,∶,∶ ⋅ 𝐻 + 𝑏𝑗,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.6. On Convolution Neural Networks with Multiple Channels 229

where 𝑊 ∈ ℝ𝐽×(𝑑−𝑘𝑦+1)×(𝑑−𝑘𝑥+1)×𝐾 , 𝑏 ∈ ℝ𝐽 , 𝑈 ∈ ℝ𝐽 , and 𝑊𝑗,∶,∶,∶ ⋅ 𝐻 =∑𝑖,𝑞,𝑘𝑊𝑗,𝑖,𝑞,𝑘𝐻𝑖,𝑞,𝑘 (the ∶ notation in the place of an index signals summation
with respect to that index). The collection of parameters is 𝜃 = {𝐫,𝑊, 𝑏}.

Define 𝛿𝑖,𝑞,𝑘 ∶= 𝜕ℓ𝜕𝐻𝑖,𝑞,𝑘 = 𝜕ℓ𝜕𝑈 ⋅ 𝑊∶,𝑖,𝑞,𝑘.
The backpropagation algorithm is essentially the same as before, with∇𝐫∶,∶,𝑘ℓ = 𝑋 ⋆ (𝜎′(𝑍∶,∶,𝑘) ⊙ 𝛿∶,∶,𝑘),

and 𝜕ℓ𝜕𝑏 = 𝜕ℓ𝜕𝑈 ,𝜕ℓ𝜕𝑊𝑗,∶,∶,∶ = 𝜕ℓ𝜕𝑈𝑗𝐻.
Let us now briefly discuss multi-layer convolution networks with multiple

channels. The setting is that the input image 𝐗 ∈ ℝ𝑑×𝑑×𝐾0 and that the ℓth
convolution network contains 𝐾ℓ channels (often called feature maps).

The first feature map is taken to be 𝐻0 = 𝐗. The ℓth hidden layer is 𝐻ℓ ∈ℝ𝑑ℓ𝑦×𝑑ℓ𝑥×𝐾ℓ and is given by

𝐻ℓ𝑖,𝑞,𝑘 = 𝜎(𝐾ℓ−1−1∑𝑘′=0
𝑘ℓ𝑦−1∑𝑚=0

𝑘ℓ𝑥−1∑𝑛=0 𝑟ℓ𝑚,𝑛,𝑘,𝑘′𝐻ℓ−1𝑖+𝑚,𝑞+𝑛,𝑘′) .
The height 𝑑ℓ𝑦 and width 𝑑ℓ𝑥 of the feature maps in the ℓth layer depend on

the height 𝑑ℓ−1𝑦 and width 𝑑ℓ−1𝑥 of the feature maps in the previous layer and
on the filters 𝑘ℓ𝑦 × 𝑘ℓ𝑥. In particular, we have𝑑ℓ𝑦 = 𝑑ℓ−1𝑦 − 𝑘ℓ𝑦 + 1,𝑑ℓ𝑥 = 𝑑ℓ−1𝑥 − 𝑘ℓ𝑥 + 1.

In this case zero-padding means that we expand the matrices 𝐻ℓ−1∶,∶,𝑘 by
adding 𝑃 zeros on all sides to form a larger tensor𝐻̂ℓ−1 ∈ ℝ(𝑑ℓ−1𝑦 +2𝑃)×(𝑑ℓ−1𝑥 +2𝑃)×𝐾ℓ−1
and we have

𝐻ℓ𝑖,𝑞,𝑘 = 𝜎(𝐾ℓ−1−1∑𝑘′=0
𝑘ℓ𝑦−1∑𝑚=0

𝑘ℓ𝑥−1∑𝑛=0 𝑟ℓ𝑚,𝑛,𝑘,𝑘′𝐻̂ℓ−1𝑖+𝑚,𝑞+𝑛,𝑘′) .
Now𝐻ℓ has dimensions (𝑑ℓ−1𝑦 −𝑘ℓ𝑦 + 2𝑃 + 1) × (𝑑ℓ−1𝑥 −𝑘ℓ𝑥 + 2𝑃 + 1) ×𝐾ℓ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

230 14. Convolution Neural Networks

Analogously, a convolution neural network with stride 𝑠 would be
𝐻ℓ𝑖,𝑞,𝑘 = 𝜎(𝐾ℓ−1−1∑𝑘′=0

𝑘ℓ𝑦−1∑𝑚=0
𝑘ℓ𝑥−1∑𝑛=0 𝑟ℓ𝑚,𝑛,𝑘,𝑘′𝐻ℓ−1𝑖𝑠+𝑚,𝑞𝑠+𝑛,𝑘′)(14.7)

and 𝐻ℓ has dimensions (⌊𝑑ℓ−1𝑦 −𝑘ℓ𝑦𝑠 ⌋ + 1) × (⌊𝑑ℓ−1𝑥 −𝑘ℓ𝑥𝑠 ⌋ + 1) × 𝐾ℓ.
Now that we have seen how convolution neural networks look in a gen-

eral setting, let us conclude this section with a discussion on why convolution
neural networks work well for image recognition problems. The first relevant
observation is that a CNN has shared weights across layers and sparse interac-
tions when compared to fully connected neural networks. Thus, it has much
fewer parameters that must be learned when compared to a fully connected
network; this naturally leads to potentially less overfitting. The second relevant
observation is that a CNN learns all weights irrespective of where the specific
object of interest is located in the image. The third relevant observation is that
CNNs are invariant to translations. This translation invariance is a desired fea-
ture: think for example of a chair that has been photographed from different
angles.

Let us now offer a short proof of why the latter statement of translation
invariance is true. Consider an image 𝐗 ∶ ℤ × ℤ ↦ 𝐫 and set

𝑍𝑖,𝑞 = (𝐫 ⋆ 𝐗)𝑖,𝑞 = 𝑘𝑦−1∑𝑚=0
𝑘𝑥−1∑𝑛=0 𝑟𝑚,𝑛𝑋𝑖+𝑚,𝑞+𝑛.

Consider the translation operator 𝑇 defined bȳ𝑋𝑖,𝑞 = 𝑇(𝐗)𝑖,𝑞 = 𝑋𝑖−𝑎,𝑞−𝑏.
We notice that

(𝐫 ⋆ 𝐗̄)𝑖,𝑞 = 𝑘𝑦−1∑𝑚=0
𝑘𝑥−1∑𝑛=0 𝑟𝑚,𝑛 ̄𝑋𝑖+𝑚,𝑞+𝑛

= 𝑘𝑦−1∑𝑚=0
𝑘𝑥−1∑𝑛=0 𝑟𝑚,𝑛𝑋𝑖+𝑚−𝑎,𝑞+𝑛−𝑏

= (𝐫 ⋆ 𝐗)𝑖−𝑎,𝑞−𝑏= 𝑍𝑖−𝑎,𝑞−𝑏= 𝑇(𝑍)𝑖,𝑞.
Therefore, we have indeed established that𝐫 ⋆ 𝑇(𝐗) = 𝑇(𝐫 ⋆ 𝐗),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

14.8. Exercises 231

which demonstrates that shifting the data does not change the output of the
convolution operator.

14.7. Brief Concluding Remarks

In this chapter we studied convolution neural networks. Convolutional neural
networks have been very successful in image recognition problems. In the next
chapter we discuss generative models, another very successful class of models
that are widely used when one’s goal is to generate data from a given distribu-
tion.

There is an increasingly wide range of applications of deep learning to
image processing (typically building on convolutional neural networks); see
[GBC16,KWRL17,RHK23] and the references therein.

14.8. Exercises

Exercise 14.1. For a reference signal 𝑅 we have
n 0 1𝑅𝑛 1 2

We want to calibrate a convolution neural network of the form𝔪(𝑥, 𝜃) = 𝑆 (𝑤 max𝑛∈{0,1,2}(𝐑 ⋆ 𝑥)(𝑛) + 𝑏) ,
where𝐑⋆𝑥 is the correlation between𝐑 and 𝑥, 𝜃 = (𝑤, 𝑏)⊤ and 𝑆 is the logistic
function. Fix an observation 𝑋

n 0 1 2 3𝑋𝑛 1.2 2.3 0 −1
which contains the reference signal and some noise. Our goal is to calibrate
the model𝔪 to this datapoint.

(1) Compute (𝐑 ⋆ 𝑋)(𝑛) for 𝑛 ∈ {0, 1, 2}.
(2) Compute𝔪(𝑋, (0.5, 0.1)).
(3) If we let 𝜆(𝜃) = 𝐻(1,𝔪(𝑋, 𝜃)), where 𝐻 is relative entropy, compute𝜕𝜆𝜕𝑤 (0.5, 0.1) and 𝜕𝜆𝜕𝑏 (0.5, 0.1).

Exercise 14.2. Fix an observation 𝑋
n 0 1 2 3𝑋𝑛 1.2 2.3 0 −1

and consider the function𝔪(𝑅0, 𝑅1) = max𝑛∈{0,1,2}{((𝑅0, 𝑅1) ⋆ 𝑋)(𝑛)}.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

232 14. Convolution Neural Networks

(1) Compute𝔪(1, 2).
(2) Compute 𝜕𝔪𝜕𝑅0 (1, 2) and 𝜕𝔪𝜕𝑅1 (1, 2).

Exercise 14.3. What would be the formula for a 3−𝑑 convolution with stride,
padding, and multiple output channels? The input is a 3 − 𝑑 image with 𝐾𝑖𝑛
input channels, i.e., 𝑋 ∈ ℝ𝑑𝑥×𝑑𝑦×𝑑𝑧×𝐾𝑖𝑛 .
Exercise 14.4. Consider the convolution network with bias parameter𝑍 = 𝐑 ⋆ 𝐗 + 𝑏1,𝐻 = 𝜎(𝑍),𝑈𝑗 = 𝑊𝑗,∶,∶ ⋅ 𝐻 + 𝑏2𝑗 , 𝑗 = 0, 1, . . . , 𝐽 − 1,𝔪(𝑥; 𝜃) = 𝑆softmax(𝑈).

For the cross-entropy error function, calculate 𝜕ℓ𝜕𝑏1 .
Exercise 14.5. Consider that the filter is given by𝐑 = {. . . , 𝑅−3, 𝑅−2, 𝑅−1, 𝑅0, 𝑅1, 𝑅2, 𝑅3, . . . }.
Let the result of the convolution between the data 𝐗 and the filter 𝐑 be

𝑍𝑛 = (𝐑 ⋆ 𝐗)𝑛 = ∞∑𝑛′=−∞𝑅𝑛′𝑋𝑛+𝑛′ .
What is 𝑍𝑛 in the case where the filter 𝐑 has 𝑅𝑗 = 0 for all 𝑗 ∉ {0, 1} and𝑅0 = 𝑅1 = 12? What about when the filter 𝐑 has 𝑅𝑗 = 0 for all 𝑗 ∉ {0, 1, 2, 3}

and 𝑅0 = 𝑅1 = 𝑅2 = 𝑅3 = 14? What do the signals resemble in both cases?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 15

Variational Inference
and Generative Models

15.1. Introduction

In the problems of regression and classification that we have seen, the goal is to
match the target data, which could be real-valued or categorical, respectively.
In this chapter, we change gears and we consider generative models where the
goal is to train models that create new data. Imagine for example that we have
image data and the goal is to create a model that outputs similar images.

This problem is inherently probabilistic and what we are after is the prob-
ability distribution that generates the data that we are interested in, say im-
ages for instance. One of the main ingredients that we need in order to do
so is a notion of distance between two probability distributions. In particular,
consider two probability distributions 𝜇 and 𝜈. There are many candidate op-
tions formeasuring how close 𝜇 and 𝜈 are, for example total variation distance,
Hellinger distance, integral probability metrics, Rényi divergence, Kullback-
Leibler divergence, Wasserstein metric, and more, each one of them having
their advantages and disadvantages. Two popular choices that we will use in
this chapter are:• Kullback-Leibler (KL) divergence defined by

KL(𝜇|𝜈) = ∫𝒳 log 𝜇(𝑑𝑥)𝜈(𝑑𝑥) 𝜇(𝑑𝑥).• Wasserstein 𝑟-metric defined by𝑊𝑟(𝜇, 𝜈) = inf𝛾∈Π(𝜇,𝜈)(𝔼|𝑋 − 𝑌|𝑟)1/𝑟,
233

10.1090/gsm/252/15

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

234 15. Variational Inference and Generative Models

where 𝛾 ∈ Π(𝜇, 𝜈) is any coupling with marginals 𝜇 and 𝜈, i.e. the𝑥−marginal of 𝛾 is the measure 𝜇 and the 𝑦-marginal of 𝛾 is the mea-
sure 𝜈, (𝑋, 𝑌) ∼ 𝛾 and 𝑟 ∈ [1,∞].

Given a fixed distribution 𝜈, a variational optimization problem with the
loss function being the KL-divergence for instance would be𝜇∗ = argmin𝜇∈ℳ KL(𝜇|𝜈),
and analogously for the Wasserstein metric. The choice for the setℳ is very
important. Ifℳ is too big, then the problem becomes too hard. If it is too small,
then it may not contain the distribution we would like to include.

With some abuse of notation, for probability distribution functions 𝜇(𝑑𝑥)
and 𝜈(𝑑𝑥) that have densities 𝑔(𝑥) and 𝑝(𝑥), we shall write KL(𝑔|𝑝) or𝑊𝑟(𝑔, 𝑝)
for KL-divergence and Wasserstein 𝑟-metric, respectively.

The rest of the chapter is organized as follows. In Section 15.2 we present
one characteristic way of estimating probability density functions that is based
on the Kullback-Leibler divergence and leads to the so-called Evidence Lower
Bound and to the encoder-decoder paradigm. In Section 15.3 we introduce
Generalized Adversarial Networks (GANs) that have been very influential gen-
erative models. In Section 15.4 we study optimization in GANs. In Section
15.5 we describeWasserstein GANs, which is a class of GANsmotivated by the
Wasserstein metric.

15.2. Estimating Densities and the Evidence Lower Bound

In this section, we present one of the main approaches in learning densities of
distributions generating the class of datawe are interested in. A key component
in such a consideration is the concept of a latent variable. Imagine, for exam-
ple, that we want to draw a new car. Before drawing the new car, we need to
decide its type (for example sedan/SUV/truck, etc.), its color, the background
(is it moving on the road or is it parked), etc. These variables are called latent
variables and will be denoted by 𝑧.

Then, after deciding on 𝑧, we will draw the car. However, two different
peoplewith the same choices for the latent variables 𝑧, will still draw two differ-
ent paintings with cars. Namely, the process is inherently random. Therefore,
what we are truly after is to obtain samples from the conditional distribution
given 𝑧, say 𝑝(𝑥|𝑧). Obtaining such samples is what is called the generative
process. Also, since we do not know 𝑧, we assume a prior distribution on 𝑧, say𝑝(𝑧).

We note that we are abusing terminology since both 𝑝(𝑥|𝑧) and 𝑝(𝑧) are
densities and not probability distribution functions. However, in this section

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.2. Estimating Densities and the Evidence Lower Bound 235

wewill do so without any further warning as working with densities makes the
presentation simpler.

In practice, we have access to training data 𝒟train = {𝑥𝑚}𝑀𝑚=1. We do not
know the posterior probability density function 𝑝(𝑧|𝑥) and we do not know the
true latent variables 𝑧. So, it makes sense to look into the problem

min𝑔∈𝒢 1𝑀 𝑀∑𝑚=1KL(𝑔(𝑧|𝑥𝑚)|𝑝(𝑧|𝑥𝑚)) ,(15.1)

where the set 𝒢 is the set that contains the possible probability densities
of interest and hopefully contains 𝑝 as well. Let us denote a minimizer
by 𝑔∗ (𝑧|{𝑥𝑚}𝑀𝑚=1) emphasizing the conditioning on the training data𝒟train = {𝑥𝑚}𝑀𝑚=1.

We have assumed that the probability distributions we are working with
have well-defined probability densities. Let us also assume momentarily for
convenience that 𝑧 and 𝑥𝑚 are univariate random variables; see Remark 15.1
for the generalization to the multivariate case.

In this section we shall develop the basic principles of variational inference
and its connection to neural networks using the encoder-decoder paradigm,
building towards variational auto-encoders.

15.2.1. The Evidence Lower Bound. Before continuing to explore the prop-
erties of the optimization problem (15.1), let us rewrite the KL divergence in a
more useful way. We notice that for any𝑚 ∈ {1, . . . ,𝑀}

KL(𝑔(𝑧|𝑥𝑚)|𝑝(𝑧|𝑥𝑚)) = 𝔼 [log 𝑔(𝑍|𝑥𝑚)𝑝(𝑍|𝑥𝑚)]= 𝔼 [log 𝑔(𝑍|𝑥𝑚)] − 𝔼 [log 𝑝(𝑍|𝑥𝑚)]= 𝔼 [log 𝑔(𝑍|𝑥𝑚)] − 𝔼 [log 𝑝(𝑍, 𝑥𝑚)] + log 𝑝(𝑥𝑚),
where 𝑍 ∼ 𝑔(𝑍|𝑥𝑚). However, by definition, we have thatKL(𝑔(𝑧|𝑥𝑚)|𝑝(𝑧|𝑥𝑚)) ≥ 0.

So, we obtain that

log 𝑝(𝑥𝑚) ≥ 𝔼 [log 𝑝(𝑍, 𝑥𝑚)] − 𝔼 [log 𝑔(𝑍|𝑥𝑚)] .(15.2)

The left-hand side of the last display is the true log probability density func-
tion log 𝑝(𝑥) that we are after when evaluated at the point 𝑥 = 𝑥𝑚; oftentimes
called the evidence. Thus, it makes sense to find a function 𝑔 that maximizes
the right-hand side of (15.2). The right-hand side of (15.2) is called the evidence

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

236 15. Variational Inference and Generative Models

lower bound (ELBO). In particular, we define

ELBO(𝑥𝑚|𝑔) = 𝔼 [log 𝑝(𝑍, 𝑥𝑚)𝑔(𝑍|𝑥𝑚)]= 𝔼 [log 𝑝(𝑍, 𝑥𝑚)] − 𝔼 [log 𝑔(𝑍|𝑥𝑚)] ,(15.3)

where we recall that 𝑍 ∼ 𝑔(𝑧|𝑥𝑚). Hence, instead of working with (15.1), we
work with the optimization problem

max𝑔∈𝒢 1𝑀 𝑀∑𝑚=1ELBO(𝑥𝑚|𝑔),
and let a candidate maximizer be denoted by 𝑔∗ (𝑧|{𝑥𝑚}𝑀𝑚=1).

Next, we observe that we can write

ELBO(𝑥𝑚|𝑔) = 𝔼 [log 𝑝(𝑍, 𝑥𝑚)𝑔(𝑍|𝑥𝑚)]= 𝔼 [log 𝑝(𝑍, 𝑥𝑚)] − 𝔼 [log 𝑔(𝑍|𝑥𝑚)]= 𝔼 [log 𝑝(𝑥𝑚|𝑍)] − (𝔼 [log 𝑔(𝑍|𝑥𝑚)] − 𝔼 [log 𝑝(𝑍)])= 𝔼 [log 𝑝(𝑥𝑚|𝑍)] − KL(𝑔(𝑍|𝑥𝑚)|𝑝(𝑍)) .
It is interesting to note that in the last display, log 𝑝(𝑥𝑚|𝑧) is the log-likeli-

hood of 𝑥𝑚 given the variable 𝑧, whereas KL(𝑔(𝑧|𝑥𝑚)|𝑝(𝑧)) is the error being
made by using 𝑔(𝑧|𝑥𝑚) as a proxy for the prior distribution 𝑝(𝑧). We have ar-
rived at the program

max𝑔∈𝒢 1𝑀 𝑀∑𝑚=1ELBO(𝑥𝑚|𝑔)
= max𝑔∈𝒢 1𝑀 𝑀∑𝑚=1 (𝔼 [log 𝑝(𝑥𝑚|𝑍)] − KL(𝑔(𝑍|𝑥𝑚)|𝑝(𝑍))) ,(15.4)

where we recall that 𝑍 ∼ 𝑔(𝑍|𝑥𝑚).
15.2.2. Theencoder-decoderparadigm. Let us next discuss how touse neu-
ral networks to solve (15.4). How do we choose the set 𝒢 over which the opti-
mization is performed?

This brings us to the so-called encoder-decoder paradigm. We will pa-
rametrize the probability density distributions 𝑔(𝑥|𝑧), 𝑝(𝑥|𝑧), and 𝑝(𝑧), view
them as neural networks, and optimize (15.4) over the parameters of these
neural networks. To simplify the discussion below, let us focus on parametriz-
ing 𝑔(𝑥|𝑧), 𝑝(𝑥|𝑧). Let 𝜃𝑒 and 𝜃𝑑 be parameters of neural networks and set𝑔(𝑥|𝑧) = 𝑔(𝑧|𝑥; 𝜃𝑒) and 𝑝(𝑥|𝑧) = 𝑝(𝑥|𝑧; 𝜃𝑑). Then the goal is to do gradient

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.2. Estimating Densities and the Evidence Lower Bound 237

descent or stochastic gradient descent on (15.4) in order to learn the unknown
parameters 𝜃𝑒 and 𝜃𝑑, namely

max(𝜃𝑒,𝜃𝑑)∈Θ 1𝑀 𝑀∑𝑚=1 (𝔼 [log 𝑝(𝑥𝑚|𝑍; 𝜃𝑑)] − KL(𝑔(𝑍|𝑥𝑚; 𝜃𝑒)|𝑝(𝑍))) ,(15.5)

where we recall that 𝑍 ∼ 𝑔(𝑍|𝑥𝑚; 𝜃𝑒). Denote by (𝜃∗𝑒 , 𝜃∗𝑑) a solution to this
optimization problem.

However, we immediately have another problem to solve. In doing SGD on
(15.4) or (15.5), we want to be able to compute quantities, such as ∇𝜃𝑒𝔼 [𝑓(𝑍)]
where𝑍 ∼ 𝑔(𝑍|𝑥; 𝜃𝑒) for some function 𝑓. Note that the parameter with respect
to which we want to differentiate also affects the distribution under which we
sample 𝑍, which is problematic.

To this end, notice first that, under smoothness assumptions on 𝑔, we can
write (its derivation is left as Exercise 15.2)∇𝜃𝑒𝔼 [𝑓(𝑍)] = 𝔼 [𝑓(𝑍)∇𝜃𝑒 log 𝑔(𝑍|𝑥; 𝜃𝑒)] .(15.6)

In the latter expression ∇𝜃𝑒 log 𝑔(𝑧|𝑥; 𝜃𝑒) is typically called the score func-
tion of the probability distribution 𝑔. Note that this identity reduces the calcu-
lation of the gradient of the expectation of a test function 𝑓, to the calculation
of expectation of 𝑓multiplied with the score function.

The score function formulation (15.6) allows us to compute what we want
because given a sample 𝑍 = 𝑧, we can get ∇𝜃𝑒 log 𝑔(𝑧|𝑥; 𝜃𝑒) by standard back-
propagation and then use Monte Carlo for the estimation of the expectation in
(15.6). Namely, we can approximate

∇𝜃𝑒𝔼 [𝑓(𝑍)] ≈ 1𝐾 𝐾∑𝑘=1𝑓(𝑧𝑘)∇𝜃𝑒 log 𝑔(𝑧𝑘|𝑥; 𝜃𝑒),(15.7)

where 𝑧𝑘 ∼ 𝑔(𝑧|𝑥; 𝜃𝑒). However, it is known in the literature that the usual
Monte Carlo gradient estimator of this quantity may have high variance, see
[PBJ12]. This issue typically originates from the fact that ∇𝜃𝑒 log 𝑔(𝑧|𝑥; 𝜃𝑒) =∇𝜃𝑒𝑔(𝑧|𝑥;𝜃𝑒)𝑔(𝑧|𝑥;𝜃𝑒) and the denominator can take very small values if the sample 𝑧 is in
the tail of the distribution (i.e., if it is rare).

This then brings us to an alternative way to solve this problem. In partic-
ular, let us directly assume that 𝑔(𝑧|𝑥; 𝜃𝑒) is the density of some distribution.
We then model its parameters (that will be functions of 𝑥) as neural networks
with parameter 𝜃𝑒. So, effectively, we model for example 𝑍 ∼ 𝑁(𝜇(𝑥), 𝜎2(𝑥))
and parametrize 𝜇(𝑥), 𝜎2(𝑥) to be neural networks with parameter 𝜃𝑒. In par-
ticular, for a given 𝑥 and 𝜃𝑒 we set for example 𝑍 = 𝜇(𝑥; 𝜃𝑒) + 𝜎(𝑥; 𝜃𝑒)𝜖 where𝜖 ∼ 𝑁(0, 1) which implies that the expectations are taken with respect to the

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

238 15. Variational Inference and Generative Models

standard normal distribution which does not involve the parameter 𝜃𝑒 of dif-
ferentiation. This then allows us to move the differentiation inside the expec-
tation. Namely, we now write

∇𝜃𝑒𝔼 [𝑓(𝑍)] = 𝔼 [∇𝜃𝑒𝑓(𝜇(𝑥; 𝜃𝑒) + 𝜎(𝑥; 𝜃𝑒)𝜖)] ,
where the expectation on the right is taken with respect to 𝜖 ∼ 𝑁(0, 1), and can
be evaluated via Monte Carlo estimation. This is usually called in the litera-
ture the reparametrization trick ([KW13]), and is used routinely in generative
modeling.

To be more precise, with 𝜃𝑒 being the parameter vector of the neural net-
works 𝜇(𝑥𝑚; 𝜃𝑒) and log 𝜎2(𝑥𝑚; 𝜃𝑒), we set𝑔(𝑧|𝑥𝑚) = density of Normal (𝜇(𝑥𝑚; 𝜃𝑒), 𝜎2(𝑥𝑚; 𝜃𝑒)) .(15.8)

This is called the encoder and it models 𝑔(𝑧|𝑥𝑚). How do we model𝑝(𝑥𝑚|𝑧)? We have data 𝒟train = {𝑥𝑚}𝑀𝑚=1 and {𝑧𝑚}𝑀𝑚=1 provided by the en-
coder. The decoder models 𝑝(𝑥𝑚|𝑧) as a neural network with parameters 𝜃𝑑.
For example, 𝑝(𝑥𝑚|𝑧; 𝜃𝑑) here could be Bernoulli (in case of binary data), i.e.,log 𝑝(𝑥𝑚|𝑧; 𝜃𝑑) = 𝑥𝑚 log𝔪(𝑧; 𝜃𝑑) + (1 − 𝑥𝑚) log(1 − 𝔪(𝑧; 𝜃𝑑))
with𝔪(𝑧; 𝜃𝑑) an appropriate neural network modeling probabilities. Alterna-
tively, 𝑝(𝑥𝑚|𝑧; 𝜃𝑑) could be Gaussian (in case of real-valued data),𝑝(𝑥𝑚|𝑧; 𝜃𝑑) = density of Normal (𝜇(𝑧; 𝜃𝑑), 𝜎2(𝑧; 𝜃𝑑)) ,
where 𝜇(𝑧; 𝜃𝑑) and log 𝜎2(𝑧; 𝜃𝑑) are neural networks.

In applications, one typically models the prior probability density function
of the latent variables 𝑝(𝑧) as the density of a Normal(0, 1) distribution (or a
product of standard normal densities if there aremore than one latent variable).
Note that 𝑝(𝑧) could be also parametrized as a neural network. We will not do
so here for simplicity but the framework allows us to do so.

So, effectively we have replaced (15.4) by

max(𝜃𝑒,𝜃𝑑)∈Θ 1𝑀 𝑀∑𝑚=1 (𝔼 [log 𝑝(𝑥𝑚|𝑍; 𝜃𝑑)] − KL(𝑔(𝑍|𝑥𝑚; 𝜃𝑒)|𝑝(𝜖))) ,(15.9)

where 𝑝(𝑥𝑚|𝑧; 𝜃𝑑) and 𝑔(𝑍|𝑥𝑚; 𝜃𝑒) are densities of random variables (from ap-
propriate desired distributions as discussed above) parametrized as neural net-
works with parameters 𝜃𝑑 and 𝜃𝑒, respectively. 𝑍 is generated based on (15.8)
and 𝑝(𝜖) is the density of a Normal(0, 1) distribution. This is an example of a
variational auto-encoder [KW13].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.3. Generative Adversarial Networks 239

Note that (15.9) can be simplified further. For example, by direct compu-
tation, we have that (see Exercise 15.1)

KL(𝑁(𝜇, 𝜎2)|𝑁(0, 1)) = 𝜎2 + 𝜇2 − 1 − 2 log 𝜎22 ,
which means that in the case where we work with Gaussian distributionsKL(𝑔(𝑍|𝑥𝑚; 𝜃𝑒)|𝑝(𝜖)) = 𝜎2(𝑥𝑚; 𝜃𝑒) + 𝜇2(𝑥𝑚; 𝜃𝑒) − 1 − 2 log 𝜎2(𝑥𝑚; 𝜃𝑒)2 .

Then, in order to solve (15.9) one can perform standard stochastic gradient
descent.

Remark15.1. In this section, we assumed that 𝑧 and𝑥 are univariate variables.
If instead they aremultivariate but independent, then the framework is similar
due to the property of KL-divergence that

KL(𝐾∏𝑘=1 𝑔𝑘(𝑍𝑘)||
𝐾∏𝑘=1 𝑝𝑘(𝑍𝑘)) =

𝐾∑𝑘=1KL(𝑔𝑘(𝑍𝑘)|𝑝𝑘(𝑍𝑘)) .
Exercise 15.3 establishes the validity of this identity.

Remark 15.2. Of course, instead of Gaussian models, one can use other dis-
tributions. The framework allows for that, but the calculations may be more
involved.

Remark 15.3. The score function formulation and the reparametrization trick
offer two different ways to compute the gradient of expectation of test func-
tions. Both are popular formulations that have generated a lot of interest in
recent years and both are used in deep learning applications (e.g., in genera-
tive modeling and in reinforcement learning). Both methods have advantages
and disadvantages. As we already discussed, the estimation via the score func-
tion formulation is subject to high variance, whereas the estimation via the
reparametrization trick will be less accurate when 𝑔(𝑥|𝑧) has more than one
mode because in that case a normal distribution will not be able to capture
that.

15.3. Generative Adversarial Networks

In this section, we discuss generative adversarial networks (GANs), a clever re-
formulation of a generic generative model. GANs have found many applica-
tions in super-resolution of images, data simulation, semisupervised learning
with unlabeled data, and much more.

GANs transform estimating a density (studied in Section 15.2) to a classifi-
cation problem. In a sense GANs owe their empirical success to this property
by leveraging the fact that deep neural networks work very well when it comes
to classification problems.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

240 15. Variational Inference and Generative Models

15.3.1. Revisiting the Basic Classification Problem of Chapter 3. We in-
troduce GANs by connecting them to the basic classification problem that we
studied in Chapter 3 via logistic regression. In particular, consider the situation
were the {0, 1}-valued label 𝑦 corresponds to whether an image comes from the
generator’s distribution 𝜈(𝑑𝑥), in which case 𝑦 = 0, or from the nature’s distri-
bution 𝜇(𝑑𝑥), in which case 𝑦 = 1. Our data are images 𝒟 = {𝑥𝑚}2𝑀𝑚=1 such
that𝒟 = 𝒟0 ∪ 𝒟1, where𝒟0 = {𝑥𝑚 ∼ 𝜈, 𝑚 = 1, . . . ,𝑀},𝒟1 = {𝑥𝑚 ∼ 𝜇, 𝑚 = 𝑀 + 1, . . . , 2𝑀}.

In this case we model the probability of success as a neural networkℙ(𝑦 = 1|𝑥) = 𝔪(𝑥; 𝜃).
In its simplest form, and as used in Chapter 3, the model𝔪(𝑥; 𝜃) could be

the logistic function

𝔪(𝑥; 𝜃) = 𝑆(𝑤𝑥 + 𝑏) = 𝑒𝑤𝑥+𝑏1 + 𝑒𝑤𝑥+𝑏 = 11 + 𝑒−(𝑤𝑥+𝑏) ,
where 𝜃 = (𝑤𝑏) are the parameters of themodel taking values in the appropriate
space Θ.

No matter what the actual choice of the model 𝔪(𝑥; 𝜃) is, the associated
logistic loss function is

Λ(𝜃) = − 1𝑀 ∑𝑥∈𝒟1
log𝔪(𝑥; 𝜃) − 1𝑀 ∑𝑥∈𝒟0

log(1 − 𝔪(𝑥; 𝜃)),
and naturally the goal is to find 𝜃∗ = argmin𝜃 Λ(𝜃).

Let us now abstract this formulation a little bit. The population loss func-
tion corresponding to Λ(𝜃) defined above isΛpop(𝔪) = −𝔼𝜇 log𝔪(𝑥) − 𝔼𝜈 log(1 − 𝔪(𝑥)),(15.10)

where the subscript in the expectation operator denotes the probability distri-
bution under which the expectation is being considered. Then, in theory we
would have 𝔪∗ = argmin𝔪Λpop(𝔪).

With the goal of building some intuition, let us characterize the optimal
point𝔪∗(𝑥).
Lemma 15.4. Assume that in the loss function defined in (15.10), the measures𝜇 and 𝜈 have continuous densities 𝑝𝜇 and 𝑝𝜈, respectively, that are bounded away

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.3. Generative Adversarial Networks 241

from zero. Then we have

𝔪∗(𝑥) = argmin𝔪Λpop(𝔪) = 𝑝𝜇(𝑥)𝑝𝜇(𝑥) + 𝑝𝜈(𝑥) .
In addition, the global minimum𝔪∗(𝑥) is achieved if and only if 𝑝𝜇(𝑥) = 𝑝𝜈(𝑥)
in which case Λpop(𝔪∗) = ln 4.
Proof. A perturbation argument for the variational derivative 𝛿Λpop(𝔪)𝛿𝔪 gives
that 𝛿Λpop(𝔪)𝛿𝔪 = −𝑝𝜇(𝑥)𝔪(𝑥) + 𝑝𝜈(𝑥)1 − 𝔪(𝑥) .

Setting this equal to zero and solving for 𝔪(𝑥) gives that indeed 𝔪∗(𝑥) =𝑝𝜇(𝑥)𝑝𝜇(𝑥)+𝑝𝜈(𝑥) . Note that𝛿2Λpop(𝔪)𝛿𝔪2 = 𝑝𝜇(𝑥)𝔪2(𝑥) + 𝑝𝜈(𝑥)(1 − 𝔪(𝑥))2 ≥ 0,
which implies that indeed𝔪∗(𝑥) is a minimum.

To answer the second part of the lemma, we note that by symmetry the
minimumofΛpop(𝔪∗) is achievedwhen the two terms balance, whichhappens
when 𝔪∗(𝑥) = 12 . This is true if and only if 𝑝𝜇(𝑥) = 𝑝𝜈(𝑥). In that case, we
immediately see that Λpop (12) = ln 4. □

15.3.2. The Discriminator-Generator Framework. Lemma 15.4 shows
that the ideal case would be when 𝔪∗(𝑥) = 12 for all points 𝑥, which hap-
pens when 𝑝𝜇(𝑥) = 𝑝𝜈(𝑥). This means that in that case all samples are pro-
duced from the same true distribution. The latter starts being suggestive that
we should be viewing the two terms on the right-hand side ofΛpop(𝔪) as com-
peting with each other. The first term (corresponding to distribution 𝜇) tries to
find out whether a datapoint 𝑥 comes from nature’s (true) distribution, while
the second term (corresponding to distribution 𝜈) gives an output 𝑥 which is
supposed to be close to points in the true dataset.

This point of view brings us to the definition of GANs. Formally, a GAN
consists of two neural networks:• Discriminator (D): this works as a classifier. Given a datapoint 𝑥 (e.g.,

an image), a number between [0, 1] is produced which corresponds to
the probability of the datapoint 𝑥 being part of the dataset, i.e., coming
from nature’s distribution.• Generator (G): this gives an output datapoint 𝑥, which is supposed to
be close to images in the dataset.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

242 15. Variational Inference and Generative Models

To record the fact that we can really think of discriminator and generator
as two different things, we reformulate Λpop(𝔪) as Λpop(𝔪𝐷,𝔪𝐺) where

Λpop(𝔪𝐷,𝔪𝐺) = −𝔼𝜇 log𝔪𝐷(𝑥) − 𝔼𝜈 log(1 − 𝔪𝐺(𝑥)),
where the subscripts 𝐷,𝐺 correspond to discriminator and generator, respec-
tively.

Typically𝔪𝐷,𝔪𝐺 are neural networks with parameters 𝜃𝐷 and 𝜃𝐺, respec-
tively, and we choose

𝔪𝐷 = 𝔪𝐷(𝑥; 𝜃𝐷) = 𝔪(𝑥; 𝜃𝐷),𝔪𝐺 = 𝔪𝐺(𝑥; 𝜃𝐺) = 𝔪(𝑔(𝑧; 𝜃𝐺); 𝜃𝐷),
where 𝑔 ∶ 𝒵 ↦ 𝒳 maps latent space to data space (and it is also modeled as a
neural network). Thus, we can actually write

Λpop(𝔪(⋅; 𝜃𝐷),𝔪(𝑔(⋅; 𝜃𝐷); 𝜃𝐺))= −𝔼𝜇 log𝔪𝐷(𝑥) − 𝔼𝜈 log(1 − 𝔪𝐺(𝑥))= −𝔼𝜇 log𝔪(𝑥; 𝜃𝐷) − 𝔼𝜈 log(1 − 𝔪(𝑔(𝑧; 𝜃𝐺); 𝜃𝐷)).
We may view the loss function as a function of 𝜃𝐷, 𝜃𝐺, and thus we write

Λ̂pop(𝜃𝐷, 𝜃𝐺) = −𝔼𝜇 log𝔪(𝑥; 𝜃𝐷) − 𝔼𝜈 log(1 − 𝔪(𝑔(𝑧; 𝜃𝐺); 𝜃𝐷)).(15.11)

The objective of a GAN is twofold. The discriminator updates its weights𝜃𝐷 to minimize the lossΛpop, whereas and generator updates its weights 𝜃𝐺 to
maximize it. Then, we choose

(𝜃∗𝐷, 𝜃∗𝐺) = argmax𝜃𝐺 argmin𝜃𝐷 Λ̂pop(𝜃𝐷, 𝜃𝐺).(15.12)

Remark 15.5. In this remark we directly connect the empirical loss function
corresponding to (15.11) (this is (15.13) that we shall explore in Section 15.4) to
the binary cross entropy (3.7) ℓ𝑦(𝑦′) that we defined in Chapter 3. Let us think
of the true datapoints being in 𝒟1 (i.e., with label 1) and the fake datapoints
being𝒟0 = {𝑔(𝑧; 𝜃𝐺) ∶ 𝑧 generated points, say from 𝑁(0, 1)} (i.e., with label 0).
Create the labeled dataset

𝒟labeled = {𝒟1 × {1}} ∪ {𝒟0 × {0}} .
Assume that the classifier 𝔪(𝑥; 𝜃𝐷) is used by the discriminator. Let 𝑦 ∈{0, 1} denote the label of whether a point is fake or real, respectively. Then, we

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.4. Optimization in GANs 243

haveΛ̃(𝜃𝐷, 𝜃𝐺) = 1|𝒟labeled| ∑(𝑥,𝑦)∈𝒟labeled

ℓ𝑦 (𝑚(𝑥; 𝜃𝐷))
= 1|𝒟labeled| ∑𝑥∈𝒟1

ℓ1 (𝑚(𝑥; 𝜃𝐷)) + 1|𝒟labeled| ∑𝑥∈𝒟0
ℓ0 (𝑚(𝑥; 𝜃𝐷))

= 1|𝒟labeled| [− ∑𝑥∈𝒟1
log𝔪(𝑥; 𝜃𝐷)

− ∑𝑧∈{fake dataset} log(1 − 𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷))] .
Namely the loss empirical function is directly connected to the average

cross entropy associated with a classification problem.

An equivalent formulation is to defineΛ̌pop(𝜃𝐷, 𝜃𝐺) = 𝔼𝜇 log𝔪(𝑥; 𝜃𝐷) + 𝔼𝜈 log(1 − 𝔪(𝑔(𝑧; 𝜃𝐺); 𝜃𝐷)),
in which case (𝜃∗𝐷, 𝜃∗𝐺) = argmin𝜃𝐺 argmax𝜃𝐷 Λ̌pop(𝜃𝐷, 𝜃𝐺). Note that the two
formulations are equivalent since Λ̂pop(𝜃𝐷, 𝜃𝐺) = −Λ̌pop(𝜃𝐷, 𝜃𝐺). However,
we will work with the formulation based on Λ̂pop(𝜃𝐷, 𝜃𝐺) from (15.11), since,
as we discussed in Remark 15.5, Λ̂pop(𝜃𝐷, 𝜃𝐺) is directly related to the basic
cross entropy (3.7) ℓ𝑦(𝑦′) from logistic regression.

We shall discuss how to implement in practice the min-max problem
(15.12).

15.4. Optimization in GANs

In practice, we have training data 𝒟train = {𝑥𝑚}𝑀𝑚=1, where 𝜇 is the empiri-
cal distribution of the data 𝒟train and the generator produces data from some
model distribution 𝜈, say Gaussian 𝑁(0, 1). So, typically, in practice we have
the empirical loss function

Λ̂(𝜃𝐷, 𝜃𝐺) = − 1|𝒟train| ∑𝑥∈𝒟train

log𝔪(𝑥; 𝜃𝐷) − 𝔼𝑍∼𝜈 log(1 − 𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)) .(15.13)

The goal is to obtainmax𝜃𝐺 min𝜃𝐷 Λ̂(𝜃𝐷, 𝜃𝐺). Standard SGD updates then
read as 𝜃𝐷,𝑘+1 = 𝜃𝐷,𝑘 − 𝜂∇𝜃𝐷,𝑘Λ̂(𝜃𝐷,𝑘, 𝜃𝐺,𝑘),𝜃𝐺,𝑘+1 = 𝜃𝐺,𝑘 + 𝜂∇𝜃𝐺,𝑘Λ̂(𝜃𝐷,𝑘+1, 𝜃𝐺,𝑘),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

244 15. Variational Inference and Generative Models

where 𝜂 > 0 is a learning rate. Notice the different sign (minus for the update
of 𝜃𝐷,𝑘+1 and plus for the update of 𝜃𝐺,𝑘+1) in the gradient descent updates.
The difference in the sign is not a typo! It is because we are solving a min-max
problem.

Let us now study the derivatives ∇𝜃𝐷Λ̂(𝜃𝐷, 𝜃𝐺) and ∇𝜃𝐺 Λ̂(𝜃𝐷, 𝜃𝐺). Direct
calculation gives

∇𝜃𝐷Λ̂(𝜃𝐷, 𝜃𝐺) = − 1|𝒟train| ∑𝑥∈𝒟train

(1𝔪(𝑥; 𝜃𝐷) 𝜕𝔪(𝑥; 𝜃𝐷)𝜕𝜃𝐷)
+ 𝔼𝑍∼𝜈 (11 −𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷) 𝜕𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)𝜕𝜃𝐷)

and

∇𝜃𝐺 Λ̂(𝜃𝐷, 𝜃𝐺) = 𝔼𝑍∼𝜈 (11 −𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷) 𝜕𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)𝜕𝜃𝐺)
= 𝔼𝑍∼𝜈 (11 −𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷) 𝜕𝔪 (𝑔(𝑍); 𝜃𝐷)𝜕𝑔(𝑍) 𝜕𝑔(𝑍; 𝜃𝐺)𝜕𝜃𝐺) .

In practice, we sample a minibatch of images {𝑥1, . . . , 𝑥𝑞} and we sample
latent variables {𝑧1, . . . , 𝑧𝑞}. Then

(1) We update the generator 𝑔(⋅; 𝜃𝐺) using the gradient updates and the
minibatch being sampled.

(2) We update the discriminator𝔪(⋅; 𝜃𝐷) using the corresponding gradi-
ent updates and the minibatch being sampled.

Remark 15.6. Training goes in cycles. In the early phases of the training pro-
cess, the generator produces noisy data-images, but over time it becomes bet-
ter at producing images that are closer to the real ones. The discriminator is
trained initially on both fake and real data but as the generator gets better at
its job, the discriminator has a harder time telling apart real from fake data. If
training is successful, then by Lemma 15.4, the discriminator in the end (i.e.,
whenmax𝜃𝐺 min𝜃𝐷 Λ̂(𝜃𝐷, 𝜃𝐺)has been achieved) produces probabilities of 1/2.
Namely, it cannot decide whether a sample is real or fake. When that happens,
the discriminator is useless and can be discarded, leaving only the generator as
being useful.

This is an inherentlymin-max problem, since the discriminator isminimiz-
ing the objective whereas the generator is maximizing the objective function.
Training a GAN can become complicated with gradient methods especially be-
cause solving the min-max problem amounts to finding saddle points (so in-
volving gradients makes it relatively possible to climb up the hill or fall down
the hill). See Remark 15.7 in that direction.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.4. Optimization in GANs 245

Remark 15.7. Early in training the discriminator has an easy job to dowhereas
the generator has a hard job to do. In those early steps of training if the gener-
ator is not good enough, then we will have

∇𝜃𝐺 log(1 − 𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)) = − 𝜕𝜃𝐺𝔪(𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)1 − 𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷) ≈ 0.
Hence, in that case the job of the generator gets even harder! This often

leads to the phenomenon calledmode collapse, whichmeans that the generator
produces the same output for many different inputs; we will also discuss this
in Section 15.5. This is why in practice oftentimes the loss function is modified
to beΛ̂(𝜃𝐷, 𝜃𝐺) = − 1|𝒟train| ∑𝑥∈𝒟train

log𝔪(𝑥; 𝜃𝐷) − 𝔼𝑍∼𝜈 log𝔪 (𝑔(𝑍; 𝜃𝐺); 𝜃𝐷) ,
where again 𝜈 is some model distribution, say standard Gaussian for example,𝑁(0, 1) (if one dimensional). The goal is the same, i.e., to reachmax𝜃𝐺 min𝜃𝐷 Λ̂(𝜃𝐷, 𝜃𝐺).
This choice of the loss function does not face the same vanishing gradient prob-
lem as the original formulation.

We conclude this section with an illustrative max-min problem.

Example 15.8. Let us define𝑓(𝑥, 𝑦) = (𝑥 − 2𝑦)2 − 7(𝑦 − 1)2,
and consider the problemmax𝑦∈ℝmin𝑥∈ℝ 𝑓(𝑥, 𝑦). Think of 𝑥 as the generator
and 𝑦 as the discriminator.

A straightforward computation shows that𝑓∗(𝑦) = min𝑥∈ℝ 𝑓(𝑥, 𝑦) = −7(𝑦 − 1)2,
with the minimum achieved at 𝑥 = 2𝑦 andmax𝑦∈ℝ 𝑓∗(𝑦) = 0,
with the latter maximum achieved at 𝑦 = 1. So, the saddle point is (𝑥, 𝑦) =(2, 1).

If we were to solve this via SGD, we would have𝜕𝑓𝜕𝑥(𝑥, 𝑦) = 2(𝑥 − 2𝑦),𝜕𝑓𝜕𝑦 (𝑥, 𝑦) = 4(𝑥 − 2𝑦) − 14(𝑦 − 1) = 4𝑥 − 22𝑦 + 14.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

246 15. Variational Inference and Generative Models

Consequently, with 𝜂 > 0 a given learning rate, the SGD update equations
would be 𝑥𝑘+1 = 𝑥𝑘 − 𝜂(2𝑥𝑘 − 4𝑦𝑘),𝑦𝑘+1 = 𝑦𝑘 + 𝜂(4𝑥𝑘+1 − 22𝑦𝑘 + 14).

In Exercise 15.3 we will see how the SGD algorithm actually converges to
the target saddle point (𝑥, 𝑦) = (2, 1).
15.5. Wasserstein GANs

As we discussed in Remark 15.7 of Section 15.4, the gradient of the standard
GAN with respect to the generator parameters can be near zero at least in the
early phases of training, which may lead to the phenomenon of mode collapse.
Mode collapse is when the generator produces the same output for main dif-
ferent inputs and it is a challenge that large-scale images will often phase.

A popular remedy to this problem is the Wasserstein GAN (WGAN) algo-
rithm that was originally introduced in [ACB17]. Let us first recall theWasser-
stein 𝑟-metric: 𝑊𝑟(𝜇, 𝜈) = inf𝛾∈Π(𝜇,𝜈)(𝔼|𝑋 − 𝑌|𝑟)1/𝑟,
where Π(𝜇, 𝜈) is any coupling with marginals 𝜇 and 𝜈, (𝑋, 𝑌) ∼ 𝛾 and 𝑟 ∈[1,∞]. Consider the case of 𝑟 = 1.

By the Kantonovich-Rubinstein duality (see [Vil09]), we have𝑊1(𝜇, 𝜈) = sup‖𝑓‖Lip≤1 {𝔼𝑋∼𝜇[𝑓(𝑋)] − 𝔼𝑌∼𝜈[𝑓(𝑌)]} ,
where {𝑓 ∶ ‖𝑓‖Lip ≤ 1} is the set of globally Lipschitz functions with Lipschitz
constant bounded by one. Note that if𝑊1(𝜇, 𝜈) = 0, then𝜇 = 𝜈, and ifwe have a
sequence such that lim𝑛→∞𝑊1(𝜇, 𝜈𝑛) = 0, then 𝜈𝑛 will converge weakly to the
measure 𝜇. These propertiesmakeWassersteinmetric appealing for generative
modeling.

In the world of GANs we have 𝑌 = 𝑔(𝑍; 𝜃𝐺) and 𝜇 would be the empirical
distribution of the data𝒟train. Then, if 𝑋 ∼ 𝜇 and 𝑌 ∼ 𝜈𝜃𝐺 , we get𝑊1(𝜇, 𝜈) = sup‖𝑓‖Lip≤1 {𝔼𝑋∼𝜇[𝑓(𝑋)] − 𝔼𝑍∼model[𝑓(𝑔(𝑍; 𝜃𝐺))]} .

Hence in the end, we are interested in the problemmin𝜃𝐺 𝑊1(𝜇, 𝜈) = min𝜃𝐺 sup‖𝑓‖Lip≤1 {𝔼𝑋∼𝜇[𝑓(𝑋)] − 𝔼𝑍∼model[𝑓(𝑔(𝑍; 𝜃𝐺))]} .
However, optimizing over the whole space {𝑓 ∶ ‖𝑓‖Lip ≤ 1} is a difficult

task. On the other handwe know by the uniform approximation theorems that
neural networks 𝔪(𝑥; 𝜃) approximate continuous functions on compact sets,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.5. Wasserstein GANs 247

see Chapter 16. This approximation, leads us to look into the more practically
relevant optmization problemmin𝜃𝐺 sup𝜃𝐷 {𝔼𝑋∼𝜇[𝔪(𝑋; 𝜃)] − 𝔼𝑍∼model[𝔪(𝑔(𝑍; 𝜃𝐺); 𝜃𝐷)]} ,(15.14)

which is analogous to (15.13).
However, 𝔪(𝑥; 𝜃) may not be of Lipschitz constant one. To this end, we

observe that𝐽(𝜇, 𝜈𝜃𝐺) = sup‖𝑓‖Lip≤𝐾 {𝔼𝑋∼𝜇[𝑓(𝑋)] − 𝔼𝑍∼model[𝑓(𝑔(𝑍; 𝜃𝐺))]}
= 𝐾 sup‖𝑓‖Lip≤𝐾 {𝔼𝑋∼𝜇 [1𝐾 𝑓(𝑋)] − 𝔼𝑍∼model [1𝐾 𝑓(𝑔(𝑍; 𝜃𝐺))]}= 𝐾 sup‖ℎ‖Lip≤1 {𝔼𝑋∼𝜇 [ℎ(𝑋)] − 𝔼𝑍∼model [ℎ(𝑔(𝑍; 𝜃𝐺))]}
= 𝐾𝑊(𝜇, 𝜈𝜃𝐺).

Thus, we shall have∇𝜃𝐺𝑊(𝜇, 𝜈𝜃𝐺) = 1𝐾∇𝜃𝐺𝐽(𝜇, 𝜈𝜃𝐺),
which shows that the two problems are equivalent. Hence, (15.14) can indeed
be used in place of (15.13), also validating Remark 15.7. In Algorithm 2 we
present pseudocode for the WGAN algorithm where we also clip the 𝜃𝐷 pa-
rameter.

Algorithm 2WGAN algorithm with SGD
1: procedure ▹ (Input parameters)
2: Initialise: initial parameters 𝜃𝐺,0, 𝜃𝐷,0, clipping constant 𝑐 > 0, learning rate𝜂, step 𝑘 = 0
3: while Not yet converged do
4: Sample 𝑋, 𝑍
5: ̃𝜃𝐷 ← 𝜃𝐷 + 𝜂 (∇𝜃𝐷𝔪(𝑋; 𝜃𝐷) − ∇𝜃𝐷𝔪(𝑔(𝑍; 𝜃𝐺); 𝜃𝐷))
6: 𝜃𝐷 ← max(min(̃𝜃𝐷, 𝑐) , −𝑐)
7: end while
8: Sample 𝑍
9: 𝜃𝐺 ← 𝜃𝐺 − 𝜂 (−∇𝜃𝐺𝔪(𝑔(𝑍; 𝜃𝐺); 𝜃𝐷))
10: end procedure

Generally speaking, clipping the estimated parameter amounts to fixing a
threshold 𝑐 > 0 and then replacing 𝜃 by max(min(𝜃, 𝑐) , −𝑐). It is easy to see
that this operation constrains the resulting estimated parameter to be within
the interval [−𝑐, 𝑐]. It is a technique often used in practice to reduce the mag-
nitude of the parameter by scaling it back to a given threshold if it becomes

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

248 15. Variational Inference and Generative Models

too large in norm. Oftentimes, the clipping idea is used directly on the gradi-
ent updates to scale them back to a given threshold if they become too large
(effectively trying to mitigate the exploding gradient problem), see [PMB13].

At the same time, clipping introduces a discontinuity which can some-
times lead to undesired results and to difficulty with training. Adding gradi-
ent penalty terms (essentially enforcing a Lipschitz condition with a penaliza-
tion) as an alternative to weight clipping in WGAN algorithm, was suggested
in [GAA+17] as a way to improve the convergence properties of the original
WGAN algorithm.

15.6. Brief Concluding Remarks

Excellent sources for the auto-encoding variational Bayes procedure that we
analyzed in Section 15.2 are [KW13] and [DMBM17]. [Bis06] also contains a
nice related exposition to variational inference.

The generative adversarial networks (GANs) that we studied in Section
15.3 were originally introduced in [GPAM+14] (see also the book [GBC16])
and since then have been tremendously influential. The Wasserstein GAN
(WGAN) algorithm that we presented in Section 15.5 was originally introduced
in [ACB17]. Some of the pitfalls (associatedwith critical weight clipping) of the
original WGAN algorithm were empirically demonstrated in [GAA+17], and
adding a gradient penalty term was proposed to alleviate these pitfalls. Theo-
retically understanding this phenomenon is a subject of active research.

In this chapter we mainly discussed the Kullback-Leibler divergence and
the Wasserstein metric as distance measures and used them in training gener-
ative adversarial networks. There are other distancemeasures, such as integral
probabilitymetrics and 𝑓-divergences, that sometimes are advantageous, espe-
cially when we aim to compare distributions which are not absolutely contin-
uous with each other, see [BDK+22] for details.

This chapter concludes Part 1. In Part 2, we go deeper into several topics,
some that are more of a theoretical nature and some that are of a more compu-
tational nature.

15.7. Exercises

Exercise 15.1. Consider two independent random variables 𝑋 ∼ 𝑁(𝜇𝑥, 𝜎2𝑥)
and 𝑌 ∼ 𝑁(𝜇𝑦, 𝜎2𝑦). Find a formula for KL(𝑁(𝜇𝑥, 𝜎2𝑥)|𝑁(𝜇𝑦, 𝜎2𝑦)) in terms of the
mean and variances of the random variables 𝑋 and 𝑌 .
Exercise 15.2. Prove that under the proper assumptions relation∇𝜃𝑒𝔼 [𝑓(𝑍)] = 𝔼 [𝑓(𝑍)∇𝜃𝑒 log 𝑔(𝑧|𝑥; 𝜃𝑒)] ,
will hold.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

15.7. Exercises 249

Exercise 15.3. Prove that the statement of Remark 15.1 holds. Namely prove
that if 𝑍 are multivariate but independent random variables, then

KL(𝐾∏𝑘=1 𝑔𝑘(𝑍𝑘)||
𝐾∏𝑘=1 𝑝𝑘(𝑍𝑘)) =

𝐾∑𝑘=1KL(𝑔𝑘(𝑍𝑘)|𝑝𝑘(𝑍𝑘)) .
Derive how (15.9) will look in the multivariate case.

Exercise 15.4. Consider the setting of Example 15.8, namely let𝑓(𝑥, 𝑦) = (𝑥 − 2𝑦)2 − 7(𝑦 − 1)2
and consider the problem max𝑦∈ℝmin𝑥∈ℝ 𝑓(𝑥, 𝑦). Implement the stochastic
gradient descent algorithm to show convergence to the saddle point. Assume
starting point (𝑥, 𝑦) = (0, 0). Produce an 𝑥−𝑦 plot showing the progress of the
max-min problem towards the saddle point (2, 1).
Exercise 15.5. Consider the loss function (15.13). Assume that 𝔪(𝑥; 𝜃𝐷) =𝑒𝑏(𝑥;𝜃𝐷)1+𝑒𝑏(𝑥;𝜃𝐷) .

(1) Write down ∇𝜃𝐷Λ̂(𝜃𝐷, 𝜃𝐺) in this case.
(2) Express this in terms of KL-divergence when the optimal 𝔪∗(𝑥) by

Lemma 15.4 takes the form 𝑒𝑏(𝑥)1+𝑒𝑏(𝑥) .
Exercise 15.6. Consider the discriminator to be a sigmoid neural network of
one hidden unit. Namely, let us set 𝔪𝐷(𝑥) = 𝔪(𝑥; 𝜃𝐷) = 𝑒𝑤⋅𝑥+𝑏1+𝑒𝑤⋅𝑥+𝑏 with 𝜃𝐷 =(𝑤, 𝑏). Simplify the loss function (15.13) in that case.
Exercise 15.7. Consider a payoff functionΛ(𝑥, 𝑦)which depends on the values𝑥 and 𝑦. Then, consider that we are interested in(̂𝑥, ̂𝑦) = argmax𝑥 argmin𝑦Λ(𝑥, 𝑦).

Obtain the point (̂𝑥, ̂𝑦) as the long time behavior of a gradient descent
method in continuous time of the joint variable (𝑥(𝑡), 𝑦(𝑡)).
Exercise 15.8. Consider a loss function Λ(𝑥, 𝑦) = 𝑥𝑦 and consider the system𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑦𝑘,𝑦𝑘+1 = 𝑦𝑘 + 𝜂𝑥𝑘,
where 𝜂 > 0 is a learning rate. Find conditions under which (𝑥𝑘, 𝑦𝑘) converges
as 𝑘 → ∞.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Part 2

Advanced Topics and
Convergence Results
in Deep Learning

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Transitioning
from Part 1 to Part 2

As we mentioned in the introductory Chapter 1, this book is composed of two
parts. In Part 1, we introduced the main tools for deep learning from a mathe-
matical perspective based on a unifiedmathematical language. We oftenmade
connections with and drew motivation from classical statistics and machine
learning topics. In Part 2 we dive into more advanced topics of deep learning.
We build gradually.

We recall that the paradigm we have implemented in this book follows the
diagram in the next figure.

Some of the components of the diagram are presented in Part 1 and some in
Part 2, depending on the background that is needed. Aswe now transition from
Part 1 to Part 2 of the book, let us elaborate inmore detail in those components.

1. Motivating Learning: Part 1.

In Part 1, we first presented linear and logistic regression in Chapters 2 and 3,
respectively, from the lens of optimization and in the language of deep learning.
We then motivated how neural networks appear via kernels in Chapter 4. In
Chapter 5 we visited the feed forward neural network architecture.

253

10.1090/gsm/252/16

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

254 Transitioning from Part 1 to Part 2

Graphical representation of how the book is organized

2. Neural Networks and Universal Approximation: Part 1⟶
Part 2.

The development of Chapter 5 (Part 1) was tied to truth tables. This is moti-
vated by the fact that neural networks are universal approximators. Namely,
neural networks can approximate reasonable functions to good accuracy. The
theory of uniform approximation of neural networks is well established, and
we present it in Chapter 16 (Part 2). It is presented in Part 2 because its presen-
tation requires more advanced mathematical tools.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

4. Optimize Training of Neural Networks: Part 1⟶ Part 2. 255

3. Training of Neural Networks: Part 1⟶ Part 2.

Now that we know that neural networks are universal approximators and that
they can be used to approximate a given function of interest,

How do we learn (estimate) the parameters in the neural network?

This is where the method of gradient descent (GD) comes in. Gradient
descent involves differentiating the loss function of interest. Backpropagation
presented in Chapter 6 (Part 1) enables us to do so in an efficient way. The
backpropagagion algorithm can be implemented using automatic differentia-
tion, which we discuss in more detail in Chapter 24 (Part 2). In practice, sto-
chastic gradient descent (SGD) is being used, and we presented the principles
of SGD in Chapters 7 and 8 (Part 1).

But an important question remains:

Does gradient descent or stochastic gradient descent converge?

The answer is yes, but it can be proven only under proper conditions. The
mathematical theory for that is developed in Chapters 17 and 18 for GD and
SGD, respectively (Part 2). This convergence theory is presented in Part 2 be-
cause it requires more advanced mathematical tools.

However, training of very large deep neural networks can become very ex-
pensive, making the need for computing power clear. Distributed learning is a
way to help in that direction; this is described in Chapter 23 of Part 2 because
it is conceptually and computationally more advanced.

4. Optimize Training of Neural Networks: Part 1⟶ Part 2.

Now that we have learned that neural networks are universal approximators
and we know how to train them,

How do we optimize training?

There are several methods to improve training, for instance regularization
methods (Chapter 9 in Part 1) and batch normalization (Chapter 10 in Part 1).
Of course, we need to blend all of these with data and have a sense on how
to tune things and what features are important; these topics were presented in
Chapters 11 and 12 in Part 1.

Last, but not least, is there only the vanilla SGD algorithm, or are there
more advanced algorithms? There are of course other optimization algorithms
and we present those in Chapter 18 in Part 2 together with their properties.
They are presented in Part 2 as their analysis requires sometimes more ad-
vanced mathematical tools.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

256 Transitioning from Part 1 to Part 2

5. Optimization in the Feature Learning Regime: Part 2.

The next natural question is:

Will the algorithms converge to the true answer, and will they perform well with
unseen data? Under which conditions will that be the case?

Note that a priori it is not clear that this would have been the case (due
to the training algorithm involved) even though neural networks are universal
approximators. This brings us to the convergence results of Chapters 19 and
20 in Part 2. In Chapter 19 we study the neural tangent kernel (NTK) limit for
neural networks which, since it is derived using a linearization, is referred to as
the linear regime in this book. In Chapter 20 we discuss the nonlinear regime
and the mean field scaling. The development of this theory requires more ad-
vanced exposure to stochastic processes convergence theory, so we present it
in Part 2.

6. Selected Topics: Part 1⟶ Part 2.

The thematic units that we just described compose the main aspects of any
deep learning algorithm. However, in deep learning there are a number of
other topics of interest. We present a selection of these topics in either Part 1 or
Part 2 depending on the level of mathematical and/or computational maturity
required.

6A. Specialized Architectures (RNN, Transformer, CNN): Part 1. De-
pendent data, sequential data or image data may need more specialized archi-
tectures that take into account the nature of the data. This brings us to recur-
rent neural networks, transformers, and convolution neural networks which
were presented in Chapters 13 and 14 in Part 1. Even though RNNs, trans-
formers, and CNNs are more advanced architectures than feed forward neural
networks, we present them towards the end of Part 1 because these more ad-
vanced architectures are still within reach conceptually.

6B. Variational Inference and Generative Modeling: Part 1. In Chapter
15 we present variational inference and generative adversarial networks which
have been very successful frameworks to generate data from desired (often un-
known) distributions; this is another very exciting area of research.

6C. Control Problems andReinforcement Learning: Part 2. What if now
we want to learn how to control a dynamical system to achieve a certain goal?

Can we use deep learning to control a dynamical system? Will the algorithm
converge to the optimal control policy?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

6. Selected Topics: Part 1⟶ Part 2. 257

The answer is yes and this is the field of reinforcement learning that we
describe in Chapter 21 in Part 2. In Chapter 21, we also present convergence
properties of reinforcement learning algorithms with neural networks which
is mainly why Chapter 21 is in Part 2 and not in Part 1. Reinforcement learning
with neural networks is a very exciting area of research with a long history.

6D. Neural ODEs and SDEs: Part 2. In Chapter 22 we present the topic of
neural differential equations, which essentially amounts to using neural net-
works to learn dynamical systems, another very exciting area of research. It is
presented in Part 2 as its treatment oftentimes requires more advanced mathe-
matical and conceptual tools.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 16

Universal
Approximation
Theorems

16.1. Introduction

In Chapter 5 we discussed feed forward neural networks. We demonstrated
there, via explicit basic constructions, that indicators of rectangles can approx-
imate generic functions.

In this chapter we demonstrate that this is part of a more general pattern
for neural networks. One of the main mathematical questions is:

Given a target function 𝔪̄, is there a vector of parameter values 𝜃
and a neural network (shallow or deep)𝔪(𝑥; 𝜃)
that is close to 𝔪̄(𝑥) in an appropriate sense?

One of the reasons neural networks work well in practice is because they
are able to accurately approximate typical functions. In other words, neural
networks are universal approximators. In this chapter we present some of the
main results on the approximation properties of neural networks.

16.2. Basic Universal Approximation Theorems

In this section we focus on a single-layer neural network,

𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛),
259

10.1090/gsm/252/17

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

260 16. Universal Approximation Theorems

where 𝜃 = (𝑐𝑛, 𝑤𝑛, 𝑏𝑛)𝑁𝑛=1 ∈ ℝ(𝑑+2)𝑁 is the parameter to be estimated,𝑁 is the
number of hidden units, 𝜎 is the activation function, and 𝑥 ∈ ℝ𝑑 is the input
data.

In this section, ℳ(𝑋) denotes the space of finite, signed measures on a
space 𝑋 . 𝐶(𝑋) is the space of continuous functions on 𝑋 , and 𝐿2(𝑋) is the space
of square-integrable functions on 𝑋 . Typically, we shall take 𝑋 = 𝐼𝑑 = [0, 1]𝑑,
the hypercube in 𝑑 dimensions.

In Definition 16.1 we define what a discriminatory function is, which is a
key concept in the theory of universal approximation of neural networks.

Definition 16.1. Consider a measure 𝜇 ∈ ℳ(𝐼𝑑) and a function 𝜎 ∶ ℝ ↦ ℝ.
Then 𝜎 is called discriminatory with respect to the measure 𝜇 if

∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝜇(𝑑𝑥) = 0
for every (𝑤, 𝑏) ∈ ℝ𝑑+1 implies 𝜇 = 0.
Definition 16.2. Consider a function 𝜎 ∶ ℝ ↦ [0, 1]. Then, 𝜎 is said to be
sigmoidal if lim𝑥→−∞𝜎(𝑥) = 0, lim𝑥→∞𝜎(𝑥) = 1.

A question that arises is what kind of activation functions are indeed dis-
criminatory? Proposition 16.3 shows that this is a quite common property, and
in fact any continuous sigmoidal function is discriminatory in the sense of Def-
inition 16.1.

Proposition 16.3. Let 𝜎 be a given continuous sigmoidal function. Then 𝜎 is
discriminatory with respect to all measures 𝜇 ∈ ℳ(𝐼𝑑).
Proof. Let us start by fixing a measure 𝜇 ∈ ℳ(𝐼𝑑). Let 𝜎 be a continuous
sigmoidal function such that

∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝜇(𝑑𝑥) = 0 for all (𝑤, 𝑏) ∈ ℝ𝑑+1.
By Definition 16.1, we would like to show that 𝜇 = 0. For this purpose,

we define the function 𝜎𝜌(𝑥) = 𝜎(𝜌(𝑤 ⋅ 𝑥 + 𝑏) + 𝑞). Since 𝜎 is assumed to be
sigmoidal, we will have

lim𝜌→∞𝜎𝜌(𝑥) = ⎧⎨⎩
1, if 𝑤 ⋅ 𝑥 + 𝑏 > 0𝜎(𝑞), if 𝑤 ⋅ 𝑥 + 𝑏 = 00, if 𝑤 ⋅ 𝑥 + 𝑏 < 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.2. Basic Universal Approximation Theorems 261

Slightly abusing notation, let us now set

𝜎∞(𝑥) = ⎧⎨⎩
1, if 𝑥 ∈ 𝐵+𝑤,𝑏 = {𝑥 ∈ 𝐼𝑑 ∶ 𝑤 ⋅ 𝑥 + 𝑏 > 0}𝜎(𝑞), if 𝑥 ∈ 𝐵∘𝑤,𝑏 = {𝑥 ∈ 𝐼𝑑 ∶ 𝑤 ⋅ 𝑥 + 𝑏 = 0}0, if 𝑥 ∈ 𝐵−𝑤,𝑏 = {𝑥 ∈ 𝐼𝑑 ∶ 𝑤 ⋅ 𝑥 + 𝑏 < 0},

and note that lim𝜌→∞ 𝜎𝜌(𝑥) = 𝜎∞(𝑥). By a bounded convergence theorem we
then have

0 = lim𝜌→∞∫𝐼𝑑 𝜎𝜌(𝑥)𝜇(𝑑𝑥) = ∫𝐼𝑑 𝜎∞(𝑥)𝜇(𝑑𝑥)= 𝜇(𝐵+𝑤,𝑏) + 𝜎(𝑞)𝜇(𝐵∘𝑤,𝑏).
So, we have deduced that 𝜇(𝐵+𝑤,𝑏) + 𝜎(𝑞)𝜇(𝐵∘𝑤,𝑏) = 0. Taking now 𝑞 → ∞,

we obtain 𝜇(𝐵+𝑤,𝑏) + 𝜇(𝐵∘𝑤,𝑏) = 0. On the other hand, if we take 𝑞 → −∞,
we shall have that 𝜇(𝐵+𝑤,𝑏) = 0. Thus, we get 𝜇(𝐵∘𝑤,𝑏) = 0. But 𝐵+𝑤,𝑏 = 𝐵−−𝑤,−𝑏.
Thus, 𝜇 vanishes on the half-planes ofℝ𝑑, which then implies that 𝜇 = 0. Even
though the latter conclusion is not so obvious here because the measure 𝜇 is a
finite signedmeasure (not necessarily a positivemeasure), it effectively follows
by the argument of Example 16.8.

All in all, we have shown that 𝜎 is discriminatory with respect to the arbi-
trarily chosen measure 𝜇 ∈ ℳ(𝐼𝑑). □

When a function 𝜎 is discriminatory with respect to all measures 𝜇 ∈ℳ(𝐼𝑑), then we will say that 𝜎 is a discriminatory function. Proposition 16.3
shows that, at least, continuous sigmoidal functions are indeed discriminatory.

Proposition 16.4 shows that neural networks with continuous and discrim-
inatory activation functions are dense in the space of continuous functions, i.e.,
they can approximate any given continuous function. In particular, Proposi-
tion 16.4 shows that for any given 𝑔 ∈ 𝐶(𝐼𝑑), there exists a neural network such
that for a given 𝜖 > 0, we have|𝑔(𝑥) − 𝔪(𝑥; 𝜃)| < 𝜖 for all 𝑥 ∈ 𝐼𝑑,
which is the definition of density of the space of shallow neural network func-
tions in the space of continuous functions; see also Definition B.4.

Proposition 16.4. Consider a continuous discriminatory function𝜎. Then func-
tions of the form

𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛)
with 𝑤𝑛 ∈ ℝ𝑑 and 𝑐𝑛, 𝑏𝑛 ∈ ℝ are dense in 𝐶(𝐼𝑑), where 𝐼𝑑 = [0, 1]𝑑.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

262 16. Universal Approximation Theorems

Proof. Webegin the proof by defining the space of all shallow neural networks

𝑈 = {𝔪 ∶ 𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛), 𝑤𝑛 ∈ ℝ𝑑, 𝑐𝑛, 𝑏𝑛 ∈ ℝ, 𝑥 ∈ 𝐼𝑑} .
The assumption that 𝜎 is continuous, means that the space 𝑈 is a linear

subspace of 𝐶(𝐼𝑑). Let us now suppose that 𝑈 is not dense in 𝐶(𝐼𝑑). Then, by
Lemma B.6 there is a measure 𝜇 ∈ ℳ(𝐼𝑑) such that𝑁∑𝑛=1∫𝐼𝑑 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛)𝜇(𝑑𝑥) = 0 for all (𝑐𝑛, 𝑤𝑛, 𝑏𝑛) ∈ ℝ𝑑+2.

By choosing the 𝑐𝑛’s appropriately, we get that for all (𝑤𝑛, 𝑏𝑛) ∈ ℝ𝑑+1, the
relation holds ∫𝐼𝑑 𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛)𝜇(𝑑𝑥) = 0.

Since 𝜎 is discriminatory, we get that 𝜇 = 0. This is immediately a contra-
diction, yielding the proposition. □

Aswe discussed, Proposition 16.4 shows that for any given 𝑔 ∈ 𝐶(𝐼𝑑), there
exists𝔪 ∈ 𝑈 of the form of a neural network such that for all 𝜖 > 0, we have
that sup𝑥∈𝐼𝑑 |𝑔(𝑥) − 𝔪(𝑥; 𝜃)| < 𝜖.

The aforementioned results bring us to one of the first universal approxi-
mation theorems.

Theorem 16.5 ([Cyb89]). Consider a continuous sigmoidal function 𝜎. Then,
the finite sums of the form𝔪(𝑥; 𝜃) = ∑𝑁𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛) with 𝑤𝑛 ∈ ℝ𝑑 and𝑐𝑛, 𝑏𝑛 ∈ ℝ are dense in 𝐶(𝐼𝑑).
Proof. This is a direct consequence of Propositions 16.4 and 16.3. □

Another one of the early classical universal approximation theorems was
derived in [HSW89].

Theorem 16.6 ([HSW89]). Consider a continuous, nonconstant function𝜎 ∶ ℝ ↦ ℝ. Then, the set
𝑈 = {𝔪 ∶ 𝔪(𝑥; 𝜃)= 𝑁∑𝑛=1 𝑐𝑛

𝐽𝑛∏𝑗=1 𝜎(𝑤𝑗𝑛 ⋅ 𝑥+𝑏𝑗𝑛), 𝑤𝑗𝑛∈ℝ𝑑, 𝑐𝑛, 𝑏𝑗𝑛∈ℝ, 𝑥∈𝐼𝑑}
is dense in 𝐶(𝐼𝑑).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.2. Basic Universal Approximation Theorems 263

Proof. Since 𝜎 is continuous, we can verify that the set 𝑈 is an algebra on 𝐼𝑑,
see Definition B.8.

In addition, 𝑈 separates points in 𝐼𝑑. Since 𝜎 is nonconstant, there exist𝑢1, 𝑢2 ∈ ℝ such that 𝑢1 ≠ 𝑢2 and 𝜎(𝑢1) ≠ 𝜎(𝑢2). Next, we pick points 𝑥, 𝑦 in
the hyperplanes {𝑤 ⋅ 𝑥 + 𝑏 = 𝑢1} and {𝑤 ⋅ 𝑦 + 𝑏 = 𝑢2}, respectively. Then, we
shall have that the function𝔪(𝑧; 𝜃) = 𝜎(𝑤 ⋅ 𝑧 + 𝑏) separates 𝑥 and 𝑦. Indeed,
we have that𝔪(𝑥; 𝜃) = 𝜎(𝑤 ⋅𝑥+𝑏) = 𝜎(𝑢1) and𝔪(𝑦; 𝜃) = 𝜎(𝑤 ⋅ 𝑦+𝑏) = 𝜎(𝑢2)
with 𝜎(𝑢1) ≠ 𝜎(𝑢2).

Moreover, wehave that𝑈 contains nonzero constants. Indeed, let 𝑏 be such
that 𝜎(𝑏) ≠ 0 and choose 𝑤 = (0, 0, . . . , 0) ∈ ℝ𝑑. Then𝔪(𝑥; 𝜃) = 𝜎(𝑏) ≠ 0.

Hence, overallwehave shown that𝑈 satisfies the assumptions of the Stone-
Weierstrass theorem, Theorem B.9, implying that 𝑈 is dense in 𝐶(𝐼𝑑). □

Theorems 16.5 and 16.6 address the uniform approximation properties of
shallow neural networks in the supremum norm in 𝐶(𝐼𝑑). However, one may
be interested in approximations of certain target functions in other norms. For
example, one may be interested in approximating square integrable functions𝑔 ∈ 𝐿2(𝐼𝑑), i.e., functions for which ∫𝐼𝑑 |𝑓(𝑥)|2𝑑𝑥 < ∞. To illustrate this point,
let us consider the following definition.

Definition 16.7. A function 0 ≤ 𝜎 ≤ 1 is called discriminatory in 𝐿2 if for𝑓 ∈ 𝐿2(𝐼𝑑),
∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝑓(𝑥)𝑑𝑥 = 0

for every (𝑤, 𝑏) ∈ ℝ𝑑+1 implies 𝑓 = 0.
Before presenting the uniform approximation theorem in this case, let us

see an example that not only is useful as a building block, but it also builds
useful intuition.

Example 16.8. Let us prove that the indicator function 𝜎(𝑥) = 1{𝑥≥0} is dis-
criminatory in 𝐿2. Indeed, let us consider 𝑓 ∈ 𝐿2(𝐼𝑑) and assume that for every(𝑤, 𝑏) ∈ ℝ𝑑+1,

∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝑓(𝑥)𝑑𝑥 = 0
⟹∫{𝑥∶𝑤⋅𝑥+𝑏≥0}∩𝐼𝑑 𝑓(𝑥)𝑑𝑥 = 0
⟹∫{𝑥∶𝑤⋅𝑥≥−𝑏}∩𝐼𝑑 𝑓(𝑥)𝑑𝑥 = 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

264 16. Universal Approximation Theorems

Since, the last relation is true for every (𝑤, 𝑏) ∈ ℝ𝑑+1, it motivates the idea
that the integral of 𝑓(𝑥) is zero over all intervals for 𝑤 ⋅ 𝑥, and by linearity of
the integral, it will also be zero over unions of disjoint intervals. Let us make
this idea precise.

We view ∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝑓(𝑥)𝑑𝑥 as the functional,
𝔉(𝑔) = ∫𝐼𝑑 𝑔(𝑥)𝑓(𝑥)𝑑𝑥 = ∫𝐼𝑑 1{𝑤⋅𝑥≥−𝑏}𝑓(𝑥)𝑑𝑥 = ∫{𝑥∶𝑤⋅𝑥≥−𝑏}∩𝐼𝑑 𝑓(𝑥)𝑑𝑥

for 𝑔(𝑥) = 1{𝑤⋅𝑥≥−𝑏}. Then, since this is true for all 𝑏 ∈ ℝ and since the integral
operator has the additive property, if𝑈𝑖 are disjoint intervals inℝ𝑑, then𝔉(𝐻) =0 for 𝐻(𝑥) = ∑𝐾𝑖=1 𝑢𝑖1𝑈𝑖(𝑥) for 𝑢𝑖 ∈ ℝ. 𝐻 is a simple function, and we know
that simple functions are dense in the set of bounded functions. Therefore, by
density, if 𝑔 is a bounded function, we will also have that 𝔉(𝑔) = 0.

Let us now calculate the Fourier transform of 𝑓. We have by definition̂𝑓(𝑢) = ∫𝐼𝑑 𝑒𝑖(ᵆ⋅𝑥)𝑓(𝑥)𝑑𝑥= ∫𝐼𝑑 (cos(𝑢 ⋅ 𝑥) + 𝑖 sin(𝑢 ⋅ 𝑥)) 𝑓(𝑥)𝑑𝑥
= 𝔉(cos) + 𝑖𝔉(sin)= 0,

because cos(𝑥), sin(𝑥) are both bounded functions. Here, 𝑖2 = −1 is the stan-
dard imaginary number. Since the inverse Fourier transform of 𝑓 is zero for all𝑢 ∈ ℝ𝑑, then 𝑓 = 0 almost everywhere. This completes the derivation.

Then, we have the following theorem.

Theorem 16.9. Let 𝜎 be discriminatory in 𝐿2 according to Definition 16.7. Then,
the set

𝑈 = {𝔪 ∶ 𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛), 𝑐𝑛, 𝑏𝑛ℝ,𝑤𝑛 ∈ ℝ𝑑, 𝑥 ∈ 𝐼𝑑}
is dense in 𝐿2(𝐼𝑑). Namely, if 𝑓 ∈ 𝐿2(𝐼𝑑), then for every 𝜖 > 0, there is 𝔪 ∈ 𝑈
such that ∫𝐼𝑑 |𝑓(𝑥) − 𝔪(𝑥; 𝜃)|2𝑑𝑥 < 𝜖.
Proof. The proof of this result is an application of the celebrated Riesz repre-
sentation theorem, Theorem B.1. Indeed, let us assume by contradiction that
the set 𝑈 is not dense in 𝐿2(𝐼𝑑). By a reformulation of Lemma B.6, we get that
there will be a linear bounded functional𝐻 such that𝐻 ≠ 0 on 𝐿2(𝐼𝑑), but with

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.2. Basic Universal Approximation Theorems 265

𝐻 = 0 on 𝑈 . Hence, by the Riesz representation theorem, Theorem B.1 there
is some 𝑓 ∈ 𝐿2(𝐼𝑑) such that

𝐻(ℎ) = ∫𝐼𝑑 ℎ(𝑥)𝑓(𝑥)𝑑𝑥,
and in addition ‖𝐻‖ = ‖𝑓‖2.

In addition, for any𝔪 ∈ 𝑈 we shall have that 𝐻(𝔪) = 0. This means that
∫𝐼𝑑 𝜎(𝑤 ⋅ 𝑥 + 𝑏)𝑓(𝑥)𝑑𝑥 = 0.

Since 𝜎 is discriminatory according to Definition 16.7, we get that 𝑓 = 0.
This, however, wouldmean that ‖𝐻‖ = 0whichwould be a contradiction since
we have assumed that 𝐻 ≠ 0 on 𝐿2(𝐼𝑑). □

Since the fundamental works of [Cyb89,HSW89] there have been many
universal approximation theorems, and we will not cover all of them. Nev-
ertheless, we have gotten a good taste of the basic universal approximations
theorems here. In addition, we visit some more recent results in Section 16.3
using ReLU activation functions.

We conclude this section with a short detour on error bounds. In partic-
ular, we have seen that shallow neural networks are universal approximator
functions in 𝐶(𝐼𝑑) and in 𝐿2(𝐼𝑑).

But how good really is such an approximation? To get a taste of such a
result, we will visit one of the classical results in this direction by [Bar94].
In order to state this result, we first need to discuss some properties of tar-
get functions having a Fourier representation. In particular, assume that the
target function 𝔪̄ has the inverse Fourier representation (with ̂𝔪̄ the Fourier
transform), 𝔪̄(𝑥) = ∫ℝ𝑑 𝑒𝑖ᵆ⋅𝑥 ̂𝔪̄(𝑢)𝑑𝑢 for 𝑥 ∈ ℝ𝑑.

Let us now assume that 𝑢 ̂𝔪̄(𝑢) is integrable and let us set
𝐷(𝔪̄) = ∫ℝ𝑑 ‖𝑢‖1| ̂𝔪̄(𝑢)|𝑑𝑢,

where ‖𝑢‖1 = ∑𝑖 |𝑢𝑖|. Then, we have the following result, which we present
without proof referring the interested reader to [Bar94] for its proof.

Theorem 16.10 ([Bar94]). Let 𝜎 be a sigmoidal activation function, i.e.,lim𝑥→−∞𝜎(𝑥) = 0 and lim𝑥→+∞𝜎(𝑥) = 1.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

266 16. Universal Approximation Theorems

Let 𝔪̄ be a target function with 𝐷(𝔪̄) < ∞ and consider 𝜇 ∈ ℳ(𝐼𝑑). Then, for
any 𝑁 ∈ ℕ there exists a function𝔪𝑁(𝑥; 𝜃) = ∑𝑁𝑛=1 𝑐𝑛𝜎(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛) such that

(∫𝐼𝑑 |𝔪̄(𝑥) − 𝔪𝑁(𝑥; 𝜃)|2𝜇(𝑑𝑥))1/2 ≤ 𝐷(𝔪̄)√𝑁 .
Theorem 16.10 says that the approximation error in the 𝐿2 norm is of the

order of 1/√𝑁.
16.3. Universal Approximation Results Using 𝖱𝖾𝖫𝖴 Activation

Functions

In this section, we visit some more recent universal approximation theorems
using deep neural networks based on 𝖱𝖾𝖫𝖴 activation functions.

Let us start by defining what a 𝖱𝖾𝖫𝖴 deep neural network (DNN) is. First,
we recall that a one-dimensional 𝖱𝖾𝖫𝖴 function simply is 𝖱𝖾𝖫𝖴(𝑥) = max(𝑥, 0)
for 𝑥 ∈ ℝ. Similarly if 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ ℝ𝑑, then we define𝖱𝖾𝖫𝖴(𝑥) = (𝖱𝖾𝖫𝖴(𝑥1), . . . , 𝖱𝖾𝖫𝖴(𝑥𝑑)).

Let us also establish some notation for linear transformations. With 𝑥 ∈𝑅𝑑, let us set for 𝑘 = 1, . . . , 𝑛, 𝑇𝑘(𝑥) = 𝑤𝑘 ⋅ 𝑥+𝑏𝑘 = ∑𝑑𝑖=1𝑤𝑖𝑘𝑥𝑖 +𝑏𝑘 and define
the mapping 𝑇 ∶ ℝ𝑑 ↦ ℝ𝑛 to be𝑇(𝑥) = (𝑇1(𝑥), . . . , 𝑇𝑛(𝑥)).

Now, we can define what a 𝖱𝖾𝖫𝖴 DNN is.
Definition 16.11. A 𝖱𝖾𝖫𝖴 DNN is a function𝔪 ∶ ℝ𝑑 ↦ ℝ𝑛 of the form
(16.1) 𝔪(𝑥; 𝜃) = (𝑇𝐿+1 ∘ 𝖱𝖾𝖫𝖴 ∘ 𝑇𝐿 ∘ ⋯ ∘ 𝑇2 ∘ 𝖱𝖾𝖫𝖴 ∘ 𝑇1)(𝑥; 𝜃),
where 𝑥 ∈ ℝ𝑑, 𝑇1 ∶ ℝ𝑑 ↦ ℝℓ1 , 𝑇𝑘 ∶ ℝℓ𝑘−1 ↦ ℝℓ𝑘 for 𝑘 = 2, . . . , 𝐿,𝑇𝐿+1 ∶ ℝℓ𝐿 ↦ ℝ𝑛. Here ℓ𝑖 ∈ ℕ for 𝑖 = 1, . . . , 𝐿 represents the widths of
the hidden layers, 𝐿+1 is the depth of the network, and 𝜃 is the vector with all
parameters (𝑤1, . . . , 𝑤𝐿+1, 𝑏1, . . . , 𝑏𝐿+1) in the affine transformations 𝑇𝑘(𝑥).

The depth of such a 𝖱𝖾𝖫𝖴 DNN is 𝐿 + 1, the width is max{ℓ1, . . . , ℓ𝐿} and
the size is∑𝐿𝑖=1 ℓ𝑖. 𝐿 is the number of hidden layers.

A basic property of 𝖱𝖾𝖫𝖴DNNs is that compositions and additions of 𝖱𝖾𝖫𝖴
DNNs yield a 𝖱𝖾𝖫𝖴 DNN. Indeed, we have the following lemma.
Lemma 16.12 ([ABMM18]). The set of 𝖱𝖾𝖫𝖴DNNs defined by Definition 16.11
is closed under the operations of addition and composition. Indeed,

(1) Let𝔪1,𝔪2 ∶ ℝ𝑑 ↦ ℝ𝑛 be two 𝖱𝖾𝖫𝖴 DNNs with depth 𝐿 + 1 and sizes𝑠1 and 𝑠2, respectively. Then𝔪1 +𝔪2 is a 𝖱𝖾𝖫𝖴 DNN with depth 𝐿 + 1
and size 𝑠1 + 𝑠2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.3. Universal Approximation Results Using 𝖱𝖾𝖫𝖴 267

(2) Let𝔪1 ∶ ℝ𝑑 ↦ ℝ𝑛 and𝔪2 ∶ ℝ𝑚 ↦ ℝ𝑑 be two 𝖱𝖾𝖫𝖴DNNs with depths𝐿1 + 1 and 𝐿2 + 1, respectively, and sizes 𝑠1 and 𝑠2, respectively. Then,
the composition function𝔪1 ∘𝔪2 is a 𝖱𝖾𝖫𝖴DNNwith depth 𝐿1+𝐿2+1
and size 𝑠1 + 𝑠2.

Proof. Both parts followdirectly by the structure of a𝖱𝖾𝖫𝖴DNNviaDefinition
16.11. The first part follows by combining the coordinates of the outputs while
the second part follows by noting that composition of affine transformations is
an affine transformation. □

Lemma 16.13 ([ABMM18]). Let𝔪1, . . . ,𝔪𝑘 ∶ ℝ𝑑 ↦ ℝ1 be 𝑘 𝖱𝖾𝖫𝖴DNNs with
depths 𝐿𝑖+1 and sizes 𝑠𝑖 for 𝑖 = 1, . . . , 𝑘, respectively. Then𝔪 ∶ ℝ𝑑 ↦ ℝ1 defined
as𝔪(𝑥) = max{𝔪1(𝑥), . . . ,𝔪𝑘(𝑥)} can be written as a 𝖱𝖾𝖫𝖴 DNN with depth at
mostmax{𝐿1, . . . , 𝐿𝑘} + ⌈log2(𝑘)⌉ + 1 and size at most∑𝑘𝑖=1 𝑠𝑖 + 4(2𝑘 − 1).
Proof. The proof proceeds by induction. The case 𝑘 = 1 is trivial (and note
that a special case when 𝑘 = 2 is shown in Exercise 16.4). For 𝑘 ≥ 2 define the
functions 𝑓1 = max{𝔪1, . . . ,𝔪⌊ 𝑘2 ⌋} and 𝑓2 = max{𝔪⌊ 𝑘2 ⌋+1, . . . ,𝔪𝑘}.

Let us first show the big-picture idea of the proof and then go into themore
detailed computations. Define the vector-valued function 𝐹 ∶ ℝ𝑑 ↦ ℝ2 by𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) and the function 𝑇 ∶ ℝ2 ↦ ℝ by 𝑇(𝑥1, 𝑥2) = max{𝑥1, 𝑥2}.
By the second part of Lemma 16.12 we have that𝔪 = 𝑇 ∘ 𝐹 is indeed a 𝖱𝖾𝖫𝖴
DNN.

It remains to clarify the appropriate depth and size formulas. Let us go back
to 𝑓1, 𝑓2. The induction hypothesis is that the claimed formulas for depth and
size hold for all𝑚 < 𝑘, andwewant to prove the claim for the given 𝑘. Note that
both 𝑓1 and 𝑓2 represent a maximum of not more than 𝑘1 = ⌊𝑘2 ⌋ and 𝑘2 = ⌈𝑘2 ⌉
terms, respectively (both 𝑘1, 𝑘2 < 𝑘). So, due to the induction hypothesis,• 𝑓1 is a 𝖱𝖾𝖫𝖴DNNwith depth at mostmax{𝐿1, . . . , 𝐿𝑘1}+ ⌈log2(𝑘1)⌉+1

and size at most∑𝑘1𝑖=1 𝑠𝑖 + 4(2𝑘1 − 1).• 𝑓2 is a𝖱𝖾𝖫𝖴DNNwith depth atmostmax{𝐿𝑘1+1, . . . , 𝐿𝑘}+⌈log2(𝑘2)⌉+1
and size at most∑𝑘𝑖=𝑘1+1 𝑠𝑖 + 4(2𝑘2 − 1).

This means that 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) can be written as a 𝖱𝖾𝖫𝖴 DNN
with depth at mostmax{𝐿1, . . . , 𝐿𝑘} + ⌈log2(𝑘2)⌉ + 1 and size at most∑𝑘𝑖=1 𝑠𝑖 +4(2𝑘 − 2). Next note that 𝑇 can be written as a 𝖱𝖾𝖫𝖴 DNN with two layers and
size 4. The proof now is concluded by using the second part of Lemma 16.12
for the formulas for depth and size for the composition 𝑇 ∘ 𝐹. □

Then, we have the following theorem.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

268 16. Universal Approximation Theorems

Theorem 16.14 ([ABMM18]). Any continuous piecewise linear functionℝ𝑑 ↦ℝ can be represented by a 𝖱𝖾𝖫𝖴DNN of at most ⌈log2(𝑑 + 1)⌉+1 depth, and any𝖱𝖾𝖫𝖴 DNN ℝ𝑑 ↦ ℝ represents a continuous piecewise linear function.

Proof. The fact that any 𝖱𝖾𝖫𝖴 DNN ℝ𝑑 ↦ ℝ represents a continuous piece-
wise linear function follows immediately by Definition 16.11. Indeed, the com-
position of continuous piecewise linear functions is a continuous piecewise lin-
ear function.

The converse now is trickier and it is based on Theorem1 of [WS05], saying
that every continuous piecewise linear function 𝑓 ∶ ℝ𝑑 ↦ ℝ can be written in
the form

𝑓(𝑥) = 𝑝∑𝑗=1 𝑠𝑗max𝑖∈𝑆𝑗 𝑔𝑖(𝑥),
where 𝑠𝑗 ∈ {−1, 1}, 𝑔1, . . . , 𝑔𝑘 are affine functions and subsets 𝑆𝑗 ⊂ {1, . . . , 𝑘} for𝑘 ∈ ℕ and 𝑗 = 1, . . . , 𝑝 (not necessarily disjoint) where each 𝑆𝑗 is of maximum
cardinality 𝑑 + 1.

Then, we notice that the functions max𝑖∈𝑆𝑗 𝑔𝑖 are piecewise linear convex
functions. In addition, each one of the functions max𝑖∈𝑆𝑗 𝑔𝑖 has at most 𝑑 + 1
affine pieces. Hence, the formula for 𝑓 ∶ ℝ𝑑 ↦ ℝ above says that any con-
tinuous piecewise linear function can be thought of as a linear combination of
piecewise linear convex functions with at most 𝑑 + 1 pieces.

Recall that {𝑔𝑖} are affine functions. By Lemma 16.13 each of the maxi-
mumsmax𝑖∈𝑆𝑗 𝑔𝑖 (each one with at most 𝑑 + 1 terms) can be represented by a𝖱𝖾𝖫𝖴DNNwith at most ⌈log2(𝑑 + 1)⌉+1 depth. By Lemma 16.12 we have that
additions of 𝖱𝖾𝖫𝖴 DNNs each one of depth ⌈log2(𝑑 + 1)⌉ + 1 at most, can be
represented by a 𝖱𝖾𝖫𝖴 DNN with at most depth ⌈log2(𝑑 + 1)⌉ + 1, completing
the proof of the theorem. □

Theorem 16.15 ([ABMM18]). Let 1 ≤ 𝑞 < ∞. Consider a function 𝑓 ∈𝐿𝑞(ℝ𝑑), i.e., 𝑓 is such that ‖𝑓‖𝑞 = (∫ℝ𝑑 |𝑓(𝑥)|𝑞𝑑𝑥)1/𝑞 < ∞. Then, there is a𝖱𝖾𝖫𝖴 DNN with at most ⌈log2(𝑑 + 1)⌉ + 1 hidden layers that approximates 𝑓 in𝐿𝑞 to arbitrary accuracy.
Proof. By classical density results (see for example [RF10]) the space of con-
tinuous piecewise linear functions is dense in 𝐿𝑞(ℝ𝑑) for any 1 ≤ 𝑞 < ∞. This
means that given 𝑓 ∈ 𝐿𝑞(ℝ𝑑) and some given 𝜖 > 0 there is a continuous
piecewise linear function, say ℎ ∶ ℝ𝑑 ↦ ℝ, such that

‖𝑓(𝑥) − ℎ(𝑥)‖𝑞 ≤ 𝜖.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.3. Universal Approximation Results Using 𝖱𝖾𝖫𝖴 269

But, by Theorem 16.14 we have that any continuous piecewise linear func-
tion ℝ𝑑 ↦ ℝ can be represented by a 𝖱𝖾𝖫𝖴 DNN of at most ⌈log2(𝑑 + 1)⌉ + 1
depth. This concludes the proof. □

We conclude this section with a result by [Han19] that showcases aspects
of the tradeoffs between deep-and-narrow 𝖱𝖾𝖫𝖴 DNN and shallow-and-wide𝖱𝖾𝖫𝖴 neural networks.
Theorem 16.16 ([Han19]). Consider a 𝖱𝖾𝖫𝖴 neural network𝔪 ∶ [0, 1]𝑑 ↦ ℝ
with input dimension 𝑑, output dimension 1, and with a single layer of width𝑛. Then, there exists another 𝖱𝖾𝖫𝖴 DNN defined as in Definition 16.11 which
computes the same function andhas input dimension𝑑, output dimension 1, 𝑛+2
hidden layers, each one with width 𝑑 + 2.

This result is interesting especially in the case of 𝑛 > 𝑑. It basically says
that the width goes from 𝑛 to 𝑑 + 2 but at the expense of an increase in the
number of hidden layers from 1 to 𝑛 + 2.
Proof. Let 𝑇𝑘 for 𝑘 = 1, . . . , 𝑛 be the affine functions computed by the hidden
neurons in the single layer of 𝑓. Namely, we set 𝑇𝑘(𝑥) = ∑𝑑𝑖=1𝑤𝑖𝑘𝑥𝑖 + 𝑏𝑘. The
neural network𝔪(𝑥) (we ignore for notational convenience to explicitly denote
the dependence on the parameter 𝜃) can be represented as

𝔪(𝑥) = 𝖱𝖾𝖫𝖴(𝑏 + 𝑛∑𝑘=1 𝑐𝑘𝖱𝖾𝖫𝖴(𝑇𝑘(𝑥))) .
By continuity and since [0, 1]𝑑 is a compact set, there is Γ > 0 large enough

so that for all 𝑘 = 1, . . . , 𝑛 and 𝑥 ∈ [0, 1]𝑑,
Γ + 𝑘∑𝑖=1 𝑐𝑖 𝖱𝖾𝖫𝖴(𝑇𝑖(𝑥)) > 0.

Consider now the affine transformations̃𝑇1(𝑥) = (𝑥, 𝑇1(𝑥), Γ),̃𝑇𝑛+2(𝑥, 𝑦, 𝑧) = 𝑧 − Γ + 𝑏,̃𝑇𝑗(𝑥, 𝑦, 𝑧) = (𝑥, 𝑇𝑗(𝑥), 𝑧 + 𝑐𝑗−1𝑦), 𝑗 = 2, . . . , 𝑛 + 1.
These are the affine transformations that will define the new 𝖱𝖾𝖫𝖴 DNN

per Definition 16.11. Let us confirm this. For the 𝑘th layer (𝑘 ≤ 𝑛 + 1), the
activation is 𝔪̃(𝑘)(𝑥) = (𝖱𝖾𝖫𝖴 ∘ ̃𝑇𝑘 ∘ ⋯ ∘ ̃𝑇2 ∘ 𝖱𝖾𝖫𝖴 ∘ ̃𝑇1)(𝑥)

= (𝑥, 𝖱𝖾𝖫𝖴(𝑇𝑘(𝑥)), Γ + 𝑘−1∑𝑖=1 𝑐𝑖𝖱𝖾𝖫𝖴(𝑇𝑖(𝑥))) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

270 16. Universal Approximation Theorems

So, for the last layer we shall have𝔪̃(𝑛+2)(𝑥) = 𝖱𝖾𝖫𝖴 ∘ ̃𝑇𝑛+2 ∘ (𝔪̃(𝑛+1))(𝑥)
= 𝖱𝖾𝖫𝖴 ∘ ̃𝑇𝑛+2 (𝑥, 𝖱𝖾𝖫𝖴(𝑇𝑛+1(𝑥)), Γ + 𝑛∑𝑖=1 𝑐𝑖𝖱𝖾𝖫𝖴(𝑇𝑖(𝑥)))
= 𝖱𝖾𝖫𝖴(Γ + 𝑛∑𝑖=1 𝑐𝑖𝖱𝖾𝖫𝖴(𝑇𝑖(𝑥)) − Γ + 𝑏)
= 𝔪(𝑥),

which concludes the proof. □

Smooth functions can approximate to any given accuracy positive contin-
uous functions and therefore the same is true for 𝖱𝖾𝖫𝖴 DNNs with a single
hidden layer, see for example [MP16] for a related discussion. With that in
mind Theorem 16.16 directly gives rise to the following result.

Theorem 16.17. Consider 𝑓 ∶ [0, 1]𝑑 ↦ ℝ+ to be a positive and bounded con-
tinuous function. Then, there exists a 𝖱𝖾𝖫𝖴DNNwith input dimension 𝑑, output
dimension 1, and width of hidden layer being 𝑑 + 2 that approximates 𝑓 to arbi-
trary accuracy.

We conclude this section with a result showing that for positive, continu-
ous, piecewise linear, convex functions 𝑓, the width upper bound is 𝑑 + 1.
Theorem 16.18 ([Han19]). Let 𝑓 ∶ [0, 1]𝑑 ↦ ℝ+ be the function computed by
a 𝖱𝖾𝖫𝖴 neural network with arbitrarily given width. Assume in addition that 𝑓
is convex. Then, there are positive affine functions 𝑔𝑖 ∶ [0, 1]𝑑 ↦ ℝ such that we
can write 𝑓(𝑥) = 𝑔(𝑥) = max1≤𝑖≤𝑁 𝑔𝑖(𝑥),
where 𝑔 is a positive convex function. In addition, there exists a feed forward𝖱𝖾𝖫𝖴 DNN𝔪 ∶ [0, 1]𝑑 ↦ ℝ+ with hidden layers width 𝑑 + 1 and depth 𝑁 that
computes 𝑓 exactly.
Proof. The representation of 𝑓 as the maximum of positive affine functions
follows by Theorem 16.14.

We want to show that 𝑓 can be computed by a 𝖱𝖾𝖫𝖴DNN that has hidden-
layer width 𝑑 + 1 and depth 𝑁. For 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ ℝ𝑑, 𝑥𝑑+1 ∈ ℝ1, and𝑖 = 1, . . . , 𝑁, let us define𝑇𝑖 ∶ ℝ𝑑+1 ↦ ℝ𝑑+1, with 𝑇𝑖(𝑥, 𝑥𝑑+1) = (𝑥, 𝑔𝑖(𝑥) + 𝑥𝑑+1)
and ̃𝑇𝑖 ∶ ℝ𝑑+1 ↦ ℝ𝑑+1, with ̃𝑇𝑖(𝑥, 𝑥𝑑+1) = (𝑥, −𝑔𝑖(𝑥) + 𝑥𝑑+1) .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

16.4. Brief Concluding Remarks 271

Next we compute that for 𝑥 ∈ ℝ𝑑+ and for any function 𝜅 ∶ ℝ𝑑+ ↦ ℝ,
𝑇𝑖 ∘ 𝖱𝖾𝖫𝖴 ∘ ̃𝑇𝑖(𝑥, 𝜅(𝑥)) = 𝑇𝑖(𝑥,max{𝜅(𝑥) − 𝑔𝑖(𝑥), 0})= (𝑥, 𝑔𝑖(𝑥) + max{𝜅(𝑥) − 𝑔𝑖(𝑥), 0})= (𝑥,max{𝜅(𝑥), 𝑔𝑖(𝑥)}).

Defining now 𝒢𝑖 = 𝑇𝑖 ∘ 𝖱𝖾𝖫𝖴 ∘ ̃𝑇𝑖, the latter relation implies that under the
mapping 𝒢𝑖, the graph of 𝑥 ↦ 𝜅(𝑥) is the graph of 𝑥 ↦ max{𝜅(𝑥), 𝑔𝑖(𝑥)} when
viewed as function on ℝ𝑑+.

Now that we defined 𝒢1, . . . , 𝒢𝑁 , let us also set𝒢0(𝑥) = 𝖱𝖾𝖫𝖴(𝑥, 0),𝒢𝑁+1(𝑥, 𝑥𝑑+1) = 𝖱𝖾𝖫𝖴(𝑥𝑑+1).
After these definitions, we are ready to construct the 𝖱𝖾𝖫𝖴 DNN represen-

tation of 𝑓(𝑥) = 𝑔(𝑥) = max1≤𝑖≤𝑁 𝑔𝑖(𝑥). In particular, we see that we can writemax1≤𝑖≤𝑁 𝑔𝑖(𝑥) = (𝒢𝑁+1 ∘ 𝒢𝑁 ∘ ⋯ ∘ 𝒢1 ∘ 𝒢0) (𝑥),
which has input dimension 𝑑, hidden layer width 𝑑 + 1, and depth 𝑁. □

16.4. Brief Concluding Remarks

In this chapter we presented the main uniform approximation theorems. The
main references here are [Cyb89,HSW89,Hor91,KH91] for classical results
and [GWFM+13,ABMM18,Han19,Yar17, SH17] for some more recent de-
velopments using rectified liner units (𝖱𝖾𝖫𝖴) as activation functions. The abil-
ity of 𝖱𝖾𝖫𝖴 DNNs to represent continuous piecewise linear functions and re-
lated uniform approximation results was observed in [GWFM+13]. Later on,
[ABMM18] improved upon those results with an upper bound on the depth of
such 𝖱𝖾𝖫𝖴 DNNs. [Han19] found width and depth upper bounds for 𝖱𝖾𝖫𝖴
DNN representations of positive continuous piecewise linear functions. In
[Yar17] it is shown that deep ReLU networks can have advantages when it
comes to approximation of smooth functions compared to shallow neural net-
works. In [SH17] the author shows that the depth (number of layers) of the
neural network architecture is important when it comes to 𝖱𝖾𝖫𝖴 activation
functions. It is shown in [SH17] that, for any network architecture satisfy-
ing a certain condition, one can obtain good approximation rates. See also
[Cal20] for a more extensive exposition to universal approximation theorems.
The proofs in Section 16.2 are based on [Cyb89] and [HSW89]. The proofs in
Section 16.3 are based on [ABMM18] and [Han19].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

272 16. Universal Approximation Theorems

16.5. Exercises

Exercise 16.1. Prove that the logistic function 𝜎(𝑥) = 𝑒𝑥1+𝑒𝑥 is discriminatory
in the 𝐿2-sense.
Exercise 16.2. Consider the Heaviside function,

𝐻(𝑥) = {1, 𝑥 ≥ 00, 𝑥 < 0.
(1) Show that the function 𝐻(𝑥) is discriminatory in the 𝐿2-sense.
(2) Show that any function 𝑓 ∈ 𝐿2(𝐼𝑑) can be approximated by a one-layer

perceptron model of the form𝔪(𝑥; 𝜃) = ∑𝑁𝑛=1 𝑐𝑛𝐻(𝑤𝑛 ⋅ 𝑥 + 𝑏𝑛) with𝜃 = {(𝑐𝑛, 𝑤𝑛, 𝑏𝑛)𝑁𝑛=1} for 𝑁 large enough.
Exercise 16.3. Let 𝑓 be a continuous function 𝑓 ∶ [𝑎, 𝑏] ↦ ℝ. Prove that
for every 𝜖 > 0 there is an equidistant partition 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏
such that a piecewise linear function 𝑓∗ that passes through the points{𝑥𝑛, 𝑓(𝑥𝑛)}𝑁𝑛=1 satisfies sup𝑥∈[𝑎,𝑏] |𝑓(𝑥) − 𝑓∗(𝑥)| < 𝜖.
Exercise 16.4. Consider the function 𝑓(𝑥1, 𝑥2) = max{𝑥1, 𝑥2}. By using the
representation max{𝑥1, 𝑥2} = 𝑥1+𝑥22 + |𝑥1−𝑥2|2 , show in a constructive manner
that there are 𝑝 ∈ ℕ, 𝑐𝑖, 𝑤1,𝑖, 𝑤2,𝑖 ∈ ℝ so that

𝑓(𝑥1, 𝑥2) = 𝑝∑𝑖=1 𝑐𝑖 𝖱𝖾𝖫𝖴(𝑤1,𝑖𝑥1 + 𝑤2,𝑖𝑥2).
Exercise 16.5. Prove that the function 𝑓(𝑥1, 𝑥2) = max{𝑥1, 𝑥2}, with 𝑥1 ∈ ℝ
and 𝑥2 ≥ 0, is implementable by a 𝖱𝖾𝖫𝖴 DNN that has hidden layer width 2,
depth 2 and output dimension 1. Namely, identify the linear transformations𝑇1, 𝑇2, 𝑇3 so that 𝑓 can be written in the form (16.1) and establish that identity.
Exercise 16.6. Consider a one-layer neural networkwith𝖱𝖾𝖫𝖴 activation func-
tion, 𝔪(𝑥; 𝜃) = 𝑁∑𝑛=1 𝑐𝑛𝖱𝖾𝖫𝖴(𝑥 + 𝜃𝑛) + 𝑏.

Let 𝔪̄ ∈ 𝐶([𝑎, 𝑏]; ℝ) be a target function. Show that for every 𝜖 > 0, there
exist 𝑐𝑛, 𝜃𝑛 and 𝑁 ≥ 1 such thatsup𝑥∈[𝑎,𝑏] |𝔪(𝑥; 𝜃) − 𝔪̄(𝑥)| < 𝜖.
Exercise 16.7. Let 𝑦 = 𝔪̄(𝑥). The universal approximation theorem states that
for every 𝜖 > 0 there exist a neural network 𝔪(𝑥; 𝜃) and a parameter choice𝜃∗ such that 𝔼(𝑋,𝑌) [‖𝑌 −𝔪(𝑋; 𝜃∗)‖] < 𝜖. If we estimate 𝜃 using stochastic
gradient descent, will it converge to 𝜃∗, and why?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 17

Convergence Analysis
of Gradient Descent

17.1. Introduction

Aswe have seen in the preceding chapters, wemust search over classes of deep
neural networks to find parameters which best fit our ground-truth data. A loss
function helps us compare choices of parameters and (informally) leads to the
best parameters. Gradient descent algorithms, which (informally, again) itera-
tively improve upon parameter choices, provide the mathematical underpin-
ning of numerical methods to minimize the loss function.

In this chapter we present the classical theory of gradient descent-type al-
gorithms. In particular, we will quantify the convergence and performance of
gradient descent optimization. This will allow us to understand tradeoffs be-
tween various types of gradient descent algorithms.

Our goal in this chapter is to present the main results with an eye towards
the developments in Chapter 18 where we study convergence properties of sto-
chastic gradient descent, which is what is typically being used in deep learning
algorithms.

The results of this chapter are informative. In reality, loss functions are
oftentimes unknown and very high-dimensional and may have degeneracies.
In Section 17.2 we discuss the gradient flow and convergence properties under
convexity assumptions. Convergence results in the nonconvex case are dis-
cussed in Section 17.3. Accelerated gradient descent methods such as Polyak’s
and Nesterov’s methods are discussed in Section 17.4.

273

10.1090/gsm/252/18

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

274 17. Convergence Analysis of Gradient Descent

17.2. Convergence Properties under Convexity Assumptions

Consider a loss function Λ ∈ 𝒞1 and the ordinary differential equatioṅ𝜃 = −∇Λ(𝜃), 𝜃(0) = 𝜃0.(17.1)

An easy calculation shows that𝑑𝑑𝑡Λ(𝜃(𝑡)) = ̇𝜃(𝑡)∇Λ(𝜃(𝑡)) = − ‖∇Λ(𝜃(𝑡))‖22 ≤ 0.
Thus, we have that 𝑑𝑑𝑡Λ(𝜃(𝑡)) ≤ 0 which means that as 𝑡 increases, Λ(𝜃(𝑡))

decreases. This is a good thing! The relation (17.1) is gradient flow and Λ acts
as a Lyapunov function for the dynamical system (17.1). However, the fact
that 𝑑𝑑𝑡Λ(𝜃(𝑡)) ≤ 0 does not guarantee convergence. It only says that it is non-
increasing.

Now let us discretize (17.1) to get𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘),(17.2)

where 𝜂 is the discretization step of the gradient flow and it is also called the
learning rate. It can also be viewed as the timestep size in a discretization of
the gradient flow. In fact, relation (17.2) is called gradient descent (GD). If we
know the structure ofΛ, generally speaking, a good choice for the learning rate𝜂 is one that does not overshoot theminimum 𝜃∗, but wewill come back to that
point shortly.

17.2.1. Convexity and Convergence Criteria. Consider a loss function Λ ∶ℝ𝑑 ↦ ℝ, 𝛼 ∈ [0, 1] and 𝜃, 𝜃′ ∈ ℝ𝑑. Let’s start with some definitions.
Definition 17.1 (Convexity). We say that the function Λ is convex ifΛ(𝛼𝜃 + (1 − 𝛼)𝜃′) ≤ 𝛼Λ(𝜃) + (1 − 𝛼)Λ(𝜃′),
with 𝛼 ∈ (0, 1), or equivalently if Λ ∈ 𝒞1Λ(𝜃′) ≥ Λ(𝜃) + ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ .

Note that the second inequality above can be derived from the first inequal-
ity by rearranging the terms and letting 𝛼 → 0.
Definition 17.2 (Strict convexity). We say that the functionΛ is strictly convex
if Λ(𝛼𝜃 + (1 − 𝛼)𝜃′) < 𝛼Λ(𝜃) + (1 − 𝛼)Λ(𝜃′),
with 𝛼 ∈ (0, 1), or equivalently if Λ ∈ 𝒞1Λ(𝜃′) > Λ(𝜃) + ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.2. Convergence Properties under Convexity Assumptions 275

Definition 17.3 (Strong convexity). We say that the functionΛ is strongly con-
vex if there exists 0 < 𝛾 < ∞ such that Λ(𝜃) − 𝛾2‖𝜃‖22 is convex. Oftentimes, we
shall call refer to this as 𝛾-strong convexity.

Let us now discuss some facts and conditions related to optimality.• We say that 𝜃 is a local minimum if for every 𝜃′ in the neighborhood
of 𝜃, Λ(𝜃) ≤ Λ(𝜃′).• Local minima are global minima for convex functions.• Global minimum is unique for strictly convex functions. Indeed, let𝜃, 𝜃′ be two candidate globalminima, and apply the definition of strict
convexity to 𝜃″ = 𝜃+𝜃′2 to get Λ(𝜃″) < 12 (Λ(𝜃) + Λ(𝜃′)) = Λ(𝜃). This
immediately gives us a contradiction.• If 𝜃 is a local minimum and 𝜃 ↦ Λ(𝜃) is once differentiable, then∇Λ(𝜃) = 0. The latter condition is sufficient for a global minimum ifΛ is convex.

Remark 17.4. Note that if Λ is convex the following hold for all 𝜃, 𝜃′:Λ(𝜃′) ≥ Λ(𝜃) + ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ ,Λ(𝜃) ≥ Λ(𝜃′) + ⟨∇Λ(𝜃′), 𝜃 − 𝜃′⟩ .
By adding these two expressions we get that⟨∇Λ(𝜃) − ∇Λ(𝜃′), 𝜃 − 𝜃′⟩ ≥ 0.
This is called monotonicity of the gradients and it says that the gradient ofΛ and 𝜃 change in the same direction.

17.2.2. Newton’sMethod. LetΛ ∈ 𝒞2 and let 𝜃0 be an initial guess of a min-
imizer. Assume that Λ is convex around 𝜃0. Using a Taylor series expansion,
we haveΛ(𝜃) ≈ Λ(𝜃0) + (𝜃 − 𝜃0)∇Λ(𝜃0) + 12(𝜃 − 𝜃0)2∇2Λ(𝜃0)(𝜃 − 𝜃0),
where the third-order term has been ignored.

At the same time, we also have by a Taylor series expansion again (ignoring
the error term), ∇Λ(𝜃) ≈ ∇Λ(𝜃0) + ∇2Λ(𝜃0)(𝜃 − 𝜃0).(17.3)

Recall that at a minimizer 𝜃∗ of the objective function the gradient∇Λ(𝜃∗) = 0. Then, substituting 𝜃∗ for 𝜃 in the equation above yields∇2Λ(𝜃0)𝜃∗ ≈ −∇Λ(𝜃0) + ∇2Λ(𝜃0)𝜃0.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

276 17. Convergence Analysis of Gradient Descent

If in addition, we have that thematrix∇2Λ(𝜃0) is invertible (i.e., it does not
have zero eigenvalues), then𝜃∗ = 𝜃0 − (∇2Λ(𝜃0))−1∇Λ(𝜃0)
gives the minimum of the quadratic approximation (17.3) to Λ(𝜃). This obser-
vation motivates the update,𝜃𝑘+1 = 𝜃𝑘 − (∇2Λ(𝜃𝑘))−1∇Λ(𝜃𝑘),
which is called Newton’s method.

Newton’s method converges to the minimum of Λ faster than gradient de-
scent does, but it requires the computation of the Hessian at each iteration,
which can be a very costly step.

17.2.3. Convergence Rate Results for Gradient Descent. Let us now try
to answer some basic questions:• How quickly does gradient descent converge?• Can we pick learning rates without overshooting?• How many iterations do we need in order to be within some given

distance of the minimum?
We visited some of these questions to a certain extent in the case of logistic

regression in Chapter 3 for original versus normalized data. In this section
we will consider these questions in a more general context. To answer these
questions, we first impose certain assumptions to at least be able to discuss
those questions in stylized settings. We assume that the parameter space is a
Euclidean space, 𝜃 ∈ Θ with Θ = ℝ𝑑.
Assumption 17.5. We assume that the loss function Λ is 𝐿∘-Lipschitz in the
sense that for all 𝜃, 𝜃′ ∈ Θ,|Λ(𝜃) − Λ(𝜃′)| ≤ 𝐿∘‖𝜃 − 𝜃′‖2.
Assumption 17.6. We assume that the gradient of the loss function ∇Λ is𝐿-Lipschitz in the sense that for all 𝜃, 𝜃′ ∈ Θ,‖∇Λ(𝜃) − ∇Λ(𝜃′)‖2 ≤ 𝐿‖𝜃 − 𝜃′‖2.

Notice that Assumption 17.6 implies that⟨∇Λ(𝜃) − ∇Λ(𝜃′), 𝜃 − 𝜃′⟩ ≤ 𝐿‖𝜃 − 𝜃′‖22.
Convex optimization and convergence of gradient descent for convex prob-

lems is a classical topic in the literature, see for example [Ber03,Nes04,Nes07].
Below we present some of the main results of the literature, building towards
the convergence results for stochastic gradient descent, which are discussed in
Chapter 18. In this section we shall see two things:

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.2. Convergence Properties under Convexity Assumptions 277

• In Lemma 17.11 we show that for gradient descent under Assumption
17.6 with learning rate sufficiently small compared to the Lipshcitz
constant (𝜂𝐿 ≤ 1), we have thatΛ(𝜃𝑘) − Λ(𝜃∗) ≤ 12𝜂𝑘‖𝜃0 − 𝜃∗‖22,
where 𝜃∗ is a global minimum of the loss function Λ(⋅). This result
means that gradient descent will result in the loss function converging
to its minimum value as the number of iterations 𝑘 → ∞.• If in addition, we assume that the loss function Λ is strongly convex
(Definition 17.3), then we get a rate of convergence. In particular,
as we shall see in Lemma 17.14, if the learning rate is even smaller
(𝜂 < 2𝐿+𝛾), then for 𝜆 = 1 − 𝜂 2𝛾𝐿𝐿+𝛾 < 1, we have that

‖𝜃𝑘 − 𝜃∗‖22 ≤ 𝜆𝑘‖𝜃0 − 𝜃∗‖22.
We first present a few preliminary results that will naturally lead to these

conclusions.

Lemma 17.7. Under Assumption 17.6 we have for all 𝜃, 𝜃′ ∈ Θ,|Λ(𝜃′) − Λ(𝜃) − ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩| ≤ 𝐿2 ‖𝜃′ − 𝜃‖22.
In particular, we have that Λ(𝜃′) − Λ(𝜃) ≤ ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ + 𝐿2 ‖𝜃′ − 𝜃‖22.

Proof. Using Taylor’s theorem, we can calculate that

Λ(𝜃′) − Λ(𝜃) = ∫1
0 ⟨∇Λ(𝜃 + 𝜌(𝜃′ − 𝜃)), 𝜃′ − 𝜃⟩ 𝑑𝜌.

Subtracting ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ from both terms yields

Λ(𝜃′) − Λ(𝜃) − ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ = ∫1
0 ⟨∇Λ(𝜃 + 𝜌(𝜃′ − 𝜃)) − ∇Λ(𝜃), 𝜃′ − 𝜃⟩ 𝑑𝜌.

Therefore, we obtain|Λ(𝜃′) − Λ(𝜃) − ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩|
≤ ∫1

0 ‖∇Λ(𝜃 + 𝜌(𝜃′ − 𝜃)) − ∇Λ(𝜃)‖2 ‖𝜃′ − 𝜃‖2 𝑑𝜌
≤ 𝐿(∫1

0 𝜌𝑑𝜌) ‖𝜃′ − 𝜃‖22
= 𝐿2‖𝜃′ − 𝜃‖22,

completing the proof. □

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

278 17. Convergence Analysis of Gradient Descent

Lemma 17.8. Let Assumption 17.6 hold. Consider the setting of gradient descent
and choose a learning rate 𝜂 such that 𝜂𝐿 ≤ 1. Then, we have

Λ(𝜃𝑘+1) − Λ(𝜃𝑘) ≤ −𝜂2‖∇Λ(𝜃𝑘)‖22.
Proof. By Lemma 17.7 we have that

Λ(𝜃′) − Λ(𝜃) ≤ ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ + 𝐿2 ‖𝜃′ − 𝜃‖22.
Hence, using the update equation 𝜃𝑘+1 = 𝜃𝑘−𝜂∇Λ(𝜃𝑘) from the GD algo-

rithm, we get

Λ(𝜃𝑘+1) − Λ(𝜃𝑘) ≤ ⟨∇Λ(𝜃𝑘), 𝜃𝑘+1 − 𝜃𝑘⟩ + 𝐿2 ‖𝜃𝑘+1 − 𝜃𝑘‖22
= −𝜂‖∇Λ(𝜃𝑘)‖22 + 𝐿𝜂22 ‖∇Λ(𝜃𝑘)‖22≤ −𝜂‖∇Λ(𝜃𝑘)‖22 + 𝜂2‖∇Λ(𝜃𝑘)‖22= −𝜂2‖∇Λ(𝜃𝑘)‖22,

where we used the assumption 𝜂𝐿 ≤ 1 to derive the third line. □

Lemma 17.9. Let Assumption 17.6 hold and let 𝜃∗ be the global minimum of
the convex loss function Λ(⋅). Consider the setting of gradient descent and choose
learning rate 𝜂 such that 𝜂𝐿 ≤ 1. Then, we have

Λ(𝜃𝑘+1) − Λ(𝜃∗) ≤ 12𝜂 (‖𝜃𝑘 − 𝜃∗‖22 − ‖𝜃𝑘+1 − 𝜃∗‖22) .
Proof. We begin by expanding the square

‖𝜃𝑘 − 𝜃∗ − 𝜂∇Λ(𝜃𝑘)‖22 = ‖𝜃𝑘 − 𝜃∗‖22 + ‖𝜂∇Λ(𝜃𝑘)‖22 − 2 ⟨𝜂∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩ ,
which then leads to the identity

⟨∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩=− 12𝜂‖𝜃𝑘−𝜃∗−𝜂∇Λ(𝜃𝑘)‖22+ 12𝜂‖𝜃𝑘 − 𝜃∗‖2+𝜂2‖∇Λ(𝜃𝑘)‖22.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.2. Convergence Properties under Convexity Assumptions 279

Then, Lemma 17.8 (which uses the assumption 𝜂𝐿 ≤ 1) and the aforemen-
tioned formula for ⟨∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩ yieldΛ(𝜃𝑘+1) − Λ(𝜃∗) ≤ Λ(𝜃𝑘) − Λ(𝜃∗) − 𝜂2‖∇Λ(𝜃𝑘)‖22≤ ⟨∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩ − 𝜂2‖∇Λ(𝜃𝑘)‖22= − 12𝜂‖𝜃𝑘 − 𝜃∗ − 𝜂∇Λ(𝜃𝑘)‖22 + 12𝜂‖𝜃𝑘 − 𝜃∗‖22

+ 𝜂2‖∇Λ(𝜃𝑘)‖22 − 𝜂2‖∇Λ(𝜃𝑘)‖22= − 12𝜂‖𝜃𝑘+1 − 𝜃∗‖22 + 12𝜂‖𝜃𝑘 − 𝜃∗‖22,
completing the proof of the lemma. Note that the second line above uses the
definition of convexity and the last line uses the gradient descent equation𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘). □

This leads to Lemmas 17.10 and 17.11 which demonstrate that gradient
descent makes progress towards the minimum.

Lemma 17.10. Let Assumption 17.6 hold and let 𝜃∗ be global minimum of the
convex loss function Λ(⋅). Consider the setting of gradient descent and pick a
learning rate 𝜂 such that 𝜂𝐿 ≤ 1. Then, we have that‖𝜃𝑘+1 − 𝜃∗‖22 ≤ ‖𝜃𝑘 − 𝜃∗‖22.
Proof. The proof follows directly by Lemma 17.9 because, since 𝜃∗ is the global
minimizer, Λ(𝜃𝑘+1) − Λ(𝜃∗) ≥ 0. □

Lemma 17.11. Let Assumption 17.6 hold. Consider the gradient descent update
equation 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘) with learning rate 𝜂 such that 𝜂𝐿 ≤ 1. Then, we
have that Λ(𝜃𝑘) − Λ(𝜃∗) ≤ 12𝜂𝑘‖𝜃0 − 𝜃∗‖22.
Proof. By Lemma 17.9 we have that

Λ(𝜃𝑖) − Λ(𝜃∗) ≤ 12𝜂 (‖𝜃𝑖−1 − 𝜃∗‖22 − ‖𝜃𝑖 − 𝜃∗‖22) .
Averaging over 𝑖 ∈ {1, . . . , 𝑘}, we then obtain

1𝑘 𝑘∑𝑖=1Λ(𝜃𝑖) − Λ(𝜃∗) ≤ 12𝜂𝑘 𝑘∑𝑖=1 (‖𝜃𝑖−1 − 𝜃∗‖22 − ‖𝜃𝑖 − 𝜃∗‖22)
≤ 12𝜂𝑘‖𝜃0 − 𝜃∗‖22,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

280 17. Convergence Analysis of Gradient Descent

where we have used a telescoping series and the fact that the final term−‖𝜃𝑘 − 𝜃∗‖22 ≤ 0.
Since Λ(𝜃𝑘) ≤ Λ(𝜃𝑖) for all 𝑖 ∈ {1, . . . , 𝑘} (see Lemma 17.8) we have

Λ(𝜃𝑘) ≤ 1𝑘 𝑘∑𝑖=1Λ(𝜃𝑖).
Therefore, we obtainΛ(𝜃𝑘) − Λ(𝜃∗) ≤ 12𝜂𝑘‖𝜃0 − 𝜃∗‖22,

completing the proof of the lemma. □

Remark 17.12. The conclusion from Lemma 17.11 is that to find 𝜃∗ so thatΛ(𝜃𝑘) − Λ(𝜃∗) ≤ 𝜖 for a convex loss function Λ, then we need 𝒪(1/𝜖) steps.
Lemma 17.13. Let Assumption 17.6 hold. Assume thatΛ is strongly convex, i.e.,
there exists 𝛾 > 0 so thatΛ(𝜃)− 𝛾2‖𝜃‖22 is convex. Let the learning rate 𝜂 be chosen
such that 𝜂 < 2𝐿+𝛾 . Then, we have that‖𝜃𝑘+1 − 𝜃∗‖22 ≤ (1 − 𝜂 2𝛾𝐿𝐿 + 𝛾) ‖𝜃𝑘 − 𝜃∗‖22.
Proof. Using the algorithm 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘) and expanding the square,
we get‖𝜃𝑘+1 − 𝜃∗‖22 = ‖𝜃𝑘 − 𝜂∇Λ(𝜃𝑘) − 𝜃∗‖22= ‖𝜃𝑘 − 𝜃∗‖22 + 𝜂2‖∇Λ(𝜃𝑘)‖22 − 2𝜂 ⟨∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩ .

For the last term, we use the definition of strong convexity of Λ to get that⟨∇Λ(𝜃𝑘), 𝜃𝑘 − 𝜃∗⟩ ≥ 1𝐿 + 𝛾‖∇Λ(𝜃𝑘)‖22 + 𝛾 𝐿𝐿 + 𝛾‖𝜃𝑘 − 𝜃∗‖22.
Hence, we can continue the expression for ‖𝜃𝑘+1 − 𝜃∗‖22 to get‖𝜃𝑘+1 − 𝜃∗‖22 ≤ (1 − 2𝜂𝛾 𝐿𝐿 + 𝛾) ‖𝜃𝑘 − 𝜃∗‖22 + 𝜂 (𝜂 − 2𝐿 + 𝛾) ‖∇Λ(𝜃𝑘)‖22≤ (1 − 𝜂 2𝛾𝐿𝐿 + 𝛾) ‖𝜃𝑘 − 𝜃∗‖22,

where to get the last inequality we used the assumption 𝜂 − 2𝐿+𝛾 < 0. This
concludes the proof of the lemma. □

Lemma 17.14. Let Assumption 17.6 hold and assume that Λ is strongly convex.
Let 𝜂 < 2𝐿+𝛾 and define 𝜆 = 1 − 𝜂 2𝛾𝐿𝐿+𝛾 < 1. Then, we have that

‖𝜃𝑘 − 𝜃∗‖22 ≤ 𝜆𝑘‖𝜃0 − 𝜃∗‖22.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.3. Convergence in the Absence of Convexity Assumptions 281

Proof. It follows by iteratively applying Lemma 17.13. □

Remark 17.15. Note that strong convexity yields faster convergence than plain
convexity. Let us set 𝜂 = 2𝐿+𝛾 . Using the inequality

𝜆𝑘 = (1 − 𝜂 2𝛾𝐿𝐿 + 𝛾)𝑘 = (1 − 4 𝛾𝐿(𝐿 + 𝛾)2)𝑘 ≤ 𝑒−4𝑘 𝛾𝐿(𝐿+𝛾)2 ,
Lemma 17.14 yields the bound

‖𝜃𝑘 − 𝜃∗‖22 ≤ 𝑒−4𝑘 𝛾𝐿(𝐿+𝛾)2 ‖𝜃0 − 𝜃∗‖22.
Suppose we want error 𝜖. Then, with convexity we will need 𝒪(1/𝜖) steps.

On the other hand with strong convexity we will need 𝒪(log(1/𝜖)) steps.
Also, if we again consider 𝜂 = 2𝐿+𝛾 , then going back to Lemma 17.14, we

have that

𝜆 = 1 − 𝜂 2𝛾𝐿𝐿 + 𝛾 = (𝐿𝛾 − 1
𝐿𝛾 + 1)

2 .
Note that 𝜆 is a decreasing function of 𝐿𝛾 . Hence the convergence is faster

when 𝐿𝛾 is small. Large 𝐿𝛾 means that some directions of the loss functionΛ are
highly curved whereas others are flat. So picking a small scalar 𝜂 would not
work equally well for all regions.

If step size 𝜂 is too large, then the algorithmwill overshoot in highly curved
regions. If, on the other hand, 𝜂 is too small, the progress of gradient descent
will be slow.

All in all, the number 𝐿𝛾 is important! Wemay also recognize the parameter𝐿𝛾 = largest eigenvalue
smallest eigenvalue

> 1 as the condition number for the Hessian of the loss
function Λ.
17.3. Convergence in the Absence of Convexity Assumptions

Let us now return to the gradient descent algorithm (17.2)𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘)
and study convergence properties of gradient descent when Λ(𝜃) is noncon-
vex. As we shall see, we will need to choose the learning rate 𝜂 to decrease
in a specific way. In particular, the learning rate must satisfy the conditions∑∞𝑘=1 𝜂𝑘 = ∞ and∑∞𝑘=1 𝜂2𝑘 < ∞ (see [BT00]). This turns out to be a good learn-
ing schedule, and we will return to this in Section 18.3.3 where we will study

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

282 17. Convergence Analysis of Gradient Descent

stochastic gradient descent. We note that an example of a learning rate satisfy-
ing these conditions is 𝜂𝑘 = 𝐶0𝐶1+𝐶2𝑘 for finite constants 0 < 𝐶0, 𝐶1, 𝐶2 < ∞.

We shall prove that with those choices for learning rates and, if we further
assume that Assumption 17.6 holds and that there is some 𝐿1 < ∞ such that‖∇Λ(𝜃)‖2 ≤ 𝐿1, then lim𝑘→∞Λ(𝜃𝑘) exists, and thatlim𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0.

Note that we are not claiming that lim𝑘→∞ 𝜃𝑘 exists. Building towards the
aforementioned result, we first write

Λ(𝜃𝑘+1) = Λ(𝜃𝑘) − 𝜂𝑘∫1
0 ⟨∇Λ(𝜃𝑘 − 𝑠𝜂𝑘∇Λ(𝜃𝑘)), ∇Λ(𝜃𝑘)⟩ 𝑑𝑠= Λ(𝜃𝑘) − 𝜂𝑘‖∇Λ(𝜃𝑘)‖22

− 𝜂𝑘∫1
0 ⟨∇Λ(𝜃𝑘 − 𝑠𝜂𝑘∇Λ(𝜃𝑘)) − Λ(𝜃𝑘), ∇Λ(𝜃𝑘)⟩ 𝑑𝑠.

Then, if we set 𝜉𝑘+1 = −𝜂𝑘 ∫10 ⟨∇Λ(𝜃𝑘 − 𝑠𝜂𝑘∇Λ(𝜃𝑘)) − Λ(𝜃𝑘), ∇Λ(𝜃𝑘)⟩ 𝑑𝑠,
we can obtain the relationΛ(𝜃𝑘+1) − Λ(𝜃𝑘) + 𝜂𝑘‖∇Λ(𝜃𝑘)‖22 = 𝜉𝑘+1.

Using the definition of 𝜉𝑘+1 and Cauchy-Schwarz inequality (see Appendix
B), we obtain

|𝜉𝑘+1| ≤ 𝜂𝑘∫1
0 ‖∇Λ(𝜃𝑘 − 𝑠𝜂𝑘∇Λ(𝜃𝑘)) − Λ(𝜃𝑘)‖2‖∇Λ(𝜃𝑘)‖2𝑑𝑠

≤ 𝜂2𝑘𝐿‖∇Λ(𝜃𝑘)‖22∫1
0 𝑠𝑑𝑠

≤ 𝜂2𝑘𝐿𝐿21,
where in the last inequalityweused the assumedLipschitz property of∇Λ from
Assumption 17.6 aswell as the global boundedness assumption ‖∇Λ(𝜃)‖2 ≤ 𝐿1.

Since we have further assumed that∑∞𝑘=1 𝜂2𝑘 < ∞, we immediately obtain
that∑∞𝑘=1 |𝜉𝑘+1| < ∞, which is due to the fact thatℝ is a completemetric space
which gives that lim𝑘→∞∑𝑘𝑘′=1 𝜉𝑘′ exists. Let us set Ξ𝑘 = ∑𝑘𝑘′=1 𝜉𝑘′ . Then, we
rewrite Λ(𝜃𝑘+1) − Λ(𝜃𝑘) + 𝜂𝑘‖∇Λ(𝜃𝑘)‖22 = Ξ𝑘+1 − Ξ𝑘.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.3. Convergence in the Absence of Convexity Assumptions 283

We know that Ξ∞ = lim𝑘→∞ Ξ𝑘 exists. By definition, this means that that
for a given 𝜖 > 0, there exists an 𝐾(𝜖) such that for 𝑘 ≥ 𝐾(𝜖),|Ξ𝑘 − Ξ∞| ≤ 𝜖/2.

Therefore, for 𝐾(𝜖) ≤ 𝑘1 ≤ 𝑘2, a telescoping series argument givesΛ(𝜃𝑘2) − Λ(𝜃𝑘1) ≤ |(Ξ𝑘2 − Ξ∞) − (Ξ𝑘1 − Ξ∞)|≤ 𝜖.
Taking first 𝑘2 →∞ and then 𝑘1 →∞ yields thatlim sup𝑘2→∞ Λ(𝜃𝑘2) ≤ lim inf𝑘1→∞ Λ(𝜃𝑘1) + 𝜖.
Taking now 𝜖 → 0 we obtainlim sup𝑘→∞ Λ(𝜃𝑘) ≤ lim inf𝑘→∞ Λ(𝜃𝑘),

and since, trivially the reverse direction lim inf𝑘→∞Λ(𝜃𝑘) ≤ lim sup𝑘→∞Λ(𝜃𝑘),
automatically holds, we obtain that indeed lim𝑘→∞Λ(𝜃𝑘) exists.

Let us next prove that lim𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0. We recall the relationΛ(𝜃𝑘+1) − Λ(𝜃𝑘) + 𝜂𝑘‖∇Λ(𝜃𝑘)‖22 = Ξ𝑘+1 − Ξ𝑘.
Let us suppose that 𝜁− = lim inf𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 > 0. Then, there is some𝐾(𝜁−) > 0 such that for 𝑘 ≥ 𝐾(𝜁−) we shall have‖∇Λ(𝜃𝑘)‖2 > 12𝜁−.
Using a telescoping series summation, we obtain

Λ(𝜃𝑘) − Λ(𝜃𝐾(𝜁−)) + 𝑘−1∑𝑘′=𝐾(𝜁−) 𝜂𝑘′‖∇Λ(𝜃𝑘′)‖22 = Ξ𝑘 − Ξ𝐾(𝜁−).
Rearranging the latter relation gives

𝑘−1∑𝑘′=𝐾(𝜁−) 𝜂𝑘′ (12𝜁−)
2 ≤ 𝑘−1∑𝑘′=𝐾(𝜁−) 𝜂𝑘′‖∇Λ(𝜃𝑘′)‖22≤ (Λ(𝜃𝑘) − Λ(𝜃𝐾(𝜁−))) + (Ξ𝑘 − Ξ𝐾(𝜁−))≤ ||Λ(𝜃𝑘) − Λ(𝜃𝐾(𝜁−))|| + ||Ξ𝑘 − Ξ𝐾(𝜁−)|| .

Therefore we have that𝑘−1∑𝑘′=𝐾(𝜁−) 𝜂𝑘′ ≤ 1(12𝜁−)2 ||Λ(𝜃𝑘) − Λ(𝜃𝐾(𝜁−))|| + ||Ξ𝑘 − Ξ𝐾(𝜁−)|| .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

284 17. Convergence Analysis of Gradient Descent

Since now we have already established that lim𝑘→∞Λ(𝜃𝑘) and lim𝑘→∞ Ξ𝑘
exist and since by assumption∑∞𝑘=1 𝜂𝑘 = ∞, we obtain a contradiction under
the assumption 𝜁− > 0. Hence, we have obtained thatlim inf𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0.

To conclude the proof, it remains to show that lim sup𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0.
Let us on the contrary assume that𝜁+ = lim sup𝑘→∞ ‖∇Λ(𝜃𝑘)‖ > 0.

Since lim inf𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0, we have that ‖∇Λ(𝜃𝑘)‖2 has an infinite
number of oscillations above 23𝜁+ and below 13𝜁+. This means that there are0 ≤ 𝑘−1 < 𝑘+1 < 𝑘−2 < 𝑘+2 < ⋯ such that• limℓ→∞ 𝑘−ℓ = limℓ→∞ 𝑘+ℓ = ∞.• ‖∇Λ(𝜃𝑘−ℓ)‖2 < 13𝜁+.• 13𝜁+ ≤ ‖∇Λ(𝜃𝑘)‖ ≤ 23𝜁+ for 𝑘−ℓ < 𝑘 < 𝑘+ℓ .• ‖∇Λ(𝜃𝑘+ℓ)‖2 > 23𝜁+.

We then write
𝑘+ℓ−1∑𝑘′=𝑘−ℓ (‖∇Λ(𝜃𝑘′+1)‖2 − ‖∇Λ(𝜃𝑘′)‖2) = ‖∇Λ(𝜃𝑘+ℓ)‖2 − ‖∇Λ(𝜃𝑘−ℓ)‖2

≥ 23𝜁+ − 13𝜁+= 13𝜁+.
On the other hand‖∇Λ(𝜃𝑘+1)‖2 − ‖∇Λ(𝜃𝑘)‖2 = ‖∇Λ(𝜃𝑘+1) − ∇Λ(𝜃𝑘) + ∇Λ(𝜃𝑘)‖2 − ‖∇Λ(𝜃𝑘)‖2≤ ‖∇Λ(𝜃𝑘+1) − ∇Λ(𝜃𝑘)‖2≤ 𝐿‖𝜃𝑘+1 − 𝜃𝑘‖2≤ 𝐿𝜂𝑘‖∇Λ(𝜃𝑘)‖2≤ 𝐿𝐿1𝜂𝑘.
Therefore, we have obtained that

13𝜁+ ≤ 𝐿𝐿1 𝑘+ℓ−1∑𝑘′=𝑘−ℓ 𝜂𝑘′ .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.3. Convergence in the Absence of Convexity Assumptions 285

Note that
𝑘+ℓ−1∑𝑘′=𝑘−ℓ 𝜂𝑘′‖∇Λ(𝜃𝑘′)‖22 ≤ − (Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)) + (Ξ𝑘+ℓ − Ξ𝑘−ℓ)

≤ ||Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)|| + ||Ξ𝑘+ℓ − Ξ𝑘−ℓ ||
and that

𝑘+ℓ−1∑𝑘′=𝑘−ℓ+1 𝜂𝑘′‖∇Λ(𝜃𝑘′)‖22 ≥
𝑘+ℓ−1∑𝑘′=𝑘−ℓ+1 𝜂𝑘′ (13𝜁+)

2 .
So, we have

𝑘+ℓ−1∑𝑘′=𝑘−ℓ 𝜂𝑘′ (13𝜁+)
2 ≤ ||Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)|| + ||Ξ𝑘+ℓ − Ξ𝑘−ℓ || + 𝜂𝑘−ℓ (13𝜁+)2 ,

which leads to
𝑘+ℓ−1∑𝑘′=𝑘−ℓ 𝜂𝑘′ ≤ 1(13𝜁+)2 (||Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)|| + ||Ξ𝑘+ℓ − Ξ𝑘−ℓ ||) + 𝜂𝑘−ℓ .

So we have

13𝜁+ ≤ 𝐿𝐿1 𝑘+ℓ−1∑𝑘′=𝑘−ℓ 𝜂𝑘′
≤ 𝐿𝐿1(13𝜁+)2 (||Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)|| + ||Ξ𝑘+ℓ − Ξ𝑘−ℓ || + 𝜂𝑘−ℓ (13𝜁+)2) .

Since lim𝑘→∞Λ(𝜃𝑘) and lim𝑘→∞ Ξ𝑘 exist and lim𝑘→∞ 𝜂𝑘 = 0, we havelim𝑘→∞ (||Λ(𝜃𝑘+ℓ) − Λ(𝜃𝑘−ℓ)|| + ||Ξ𝑘+ℓ − Ξ𝑘−ℓ ||) = 0.
However, this is a contradiction to the assumption that there are an infi-

nite number of oscillations above 23𝜁− and below 13𝜁−. The latter then leads
to a contradiction to lim sup𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 > 0. Therefore, we have indeed
obtained that lim sup𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0.

So, all in all, we have obtained the following result.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

286 17. Convergence Analysis of Gradient Descent

Theorem17.16. Assume thatAssumption 17.6holds and that there is some𝐿1 <∞ such that ‖∇Λ(𝜃)‖2 ≤ 𝐿1. Assume that the learning rate 𝜂𝑘 is chosen so that∑∞𝑘=1 𝜂𝑘 = ∞ and∑∞𝑘=1 𝜂2𝑘 < ∞. Then, we havelim𝑘→∞Λ(𝜃𝑘) exists, and thatlim𝑘→∞ ‖∇Λ(𝜃𝑘)‖2 = 0.
Wenote that Theorem17.16 proves convergence to critical points of the loss

function in the case of the standard gradient descent algorithm. In Chapter 18,
we will revisit this issue in the case of stochastic gradient descent, see Theorem
18.10 therein.

17.4. Accelerated Gradient Descent Methods

17.4.1. Polyak’s method. Polyak’s idea constitutes giving particles velocity;
see [Pol67]. Let 𝑣𝑘 = 𝜃𝑘+1 − 𝜃𝑘 be the velocity (change) in 𝜃. Then, we can
write 𝑣𝑘 = 𝜃𝑘+1 − 𝜃𝑘 = −𝜂∇Λ(𝜃𝑘). What about now employing Newton’s
second law of motion and giving particles some velocity?

We will see two derivations of Polyak’s method. Both derivations attempt
to account for velocity (change) in 𝜃 albeit they have a different starting point.

In the first derivation, we can write as an approximation to the derivative
for 𝜂 small

−∇Λ(𝜃𝑘) ≈ 𝜃𝑘+1 − 2𝜃𝑘 + 𝜃𝑘−1𝜂 ,
which, by rearranging, leads to (making the ≈ sign to be an = sign)𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘) + (𝜃𝑘 − 𝜃𝑘−1).

Now augment the latter by an additional hyperparameter 𝜌 as𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘) + 𝜌(𝜃𝑘 − 𝜃𝑘−1).
The latter can be written equivalently as𝑢𝑘+1 = (1 + 𝜌)𝜃𝑘 − 𝜌𝜃𝑘−1,𝜃𝑘+1 = 𝑢𝑘 − 𝜂∇Λ(𝜃𝑘)

or, equivalently, 𝑢𝑘+1 = 𝜌𝑢𝑘 − ∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 + 𝜂𝑢𝑘+1.(17.4)

The second derivation (that is perhapsmathematically better motivated) of
Polyak’s momentum method is as follows. Let us start with gradient descent

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.4. Accelerated Gradient Descent Methods 287

Figure 17.1. An irregular road that naturally hasmany local minimums and
local maximums and many possible different directions of motion. This mo-
tivates the idea of considering particles with velocity to explore loss functions
with such characteristics. (Photograph by the second author.)

for the loss function Λ(𝜃)
𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘).

To avoid small fluctuations in the landscape ofΛ (think for example of Fig-
ure 17.1), we replace ∇Λ(𝜃) by the exponential moving average

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 𝑘∑𝑘′=0 𝜌𝑘−𝑘′(1 − 𝜌)∇Λ(𝜃𝑘′).(17.5)

At first sight this formula seems strange, but it relies on a rigorous math-
ematical result, oftentimes referred to as the Tauberian theorem. The Taube-
rian theorem connects exponential averaging and regular averaging. Note thatΛ(𝜃) is a regular average. This is Lemma 18.17 which is presented and proven
in Chapter 18. Lemma 18.17 says that if {𝜉𝑘}𝑘∈ℕ is a bounded sequence such

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

288 17. Convergence Analysis of Gradient Descent

that ̄𝜉 def= lim𝑘↗∞ 1𝑘 𝑘∑𝑘′=1 𝜉𝑘′
is well defined, then we have that

lim𝜌↗1(1 − 𝜌) ∞∑𝑘′=0 𝜌𝑘′𝜉𝑘′ = ̄𝜉.
Hence, one can indeed motivate (17.5) as another approximation to a reg-

ular average. The next step is to add an auxiliary equation for the evolution of
the velocity of 𝜃. For this purpose, we define

𝑢𝑘+1 = (1 − 𝜌) 𝑘∑𝑘′=0 𝜌𝑘−𝑘′∇Λ(𝜃𝑘′),
with 𝑢0 = 0. Then we have that

𝑢𝑘+1 = (1 − 𝜌) 𝑘−1∑𝑘′=0 𝜌𝑘−𝑘′∇Λ(𝜃𝑘′) + (1 − 𝜌)∇Λ(𝜃𝑘)
= 𝜌(1 − 𝜌) 𝑘−1∑𝑘′=0 𝜌𝑘−1−𝑘′∇Λ(𝜃𝑘′) + (1 − 𝜌)∇Λ(𝜃𝑘)
= 𝜌𝑢𝑘 + (1 − 𝜌)∇Λ(𝜃𝑘).

We have that if 𝜌 ≈ 1, then 𝑢𝑘+1 ≈ 𝑢𝑘 (representing the memory), whereas
if𝜌 ≈ 0, then𝑢𝑘+1 ≈ ∇Λ(𝜃𝑘) (update). Hence, wehave arrived at the equations𝑢𝑘+1 = 𝜌𝑢𝑘 + (1 − 𝜌)∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑢𝑘+1
with 𝑢0 = 0. We can of course rescale and define 𝑢′𝑘 = −𝑢𝑘 1(1−𝜌) , in which
case we get (for 𝜌 ≠ 1) 𝑢′𝑘+1 = 𝜌𝑢′𝑘 − ∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 + 𝜂′𝑢′𝑘+1,
where we define the new learning rate 𝜂′ = 𝜂(1 − 𝜌). Essentially the latter is
the same as (17.4).

Note that by defining 𝑢̂𝑘 = 𝜂′𝑢′𝑘 the latter can also be written equivalently
as ̂𝑢𝑘+1 = 𝜌𝑢̂𝑘 − 𝜂′∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 + 𝑢̂𝑘+1.(17.6)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.4. Accelerated Gradient Descent Methods 289

Remark 17.17. An analysis similar to the plain GD method shows that if we
want an error of order 𝜖, then Polyak’s method requires𝒪 (1/√𝜖) steps for con-
vex loss functions Λ and 𝒪 (√𝐿𝛾 log(1/𝜖)) steps for strongly convex loss func-
tions Λ. However, Polyak’s method may be unstable and not converge because
when the iterates overshoot the global minimum, the inertia is different than
the gradient.

17.4.2. Nesterov’s method. This is an improvement of the classical momen-
tum’s Polyak method which tries to remove the oscillations when we are close
to the global minimum, see [Nes83,Nes04]. The idea is to include damping
(i.e., friction) in the motion. In particular, the effective force reduces the veloc-
ity without slowing down the weights much. To be exact, let us recall Polyak’s
method in the form (17.6) (ignore now the hat and prime notations):𝑢𝑘+1 = 𝜌𝑢𝑘 − 𝜂∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 + 𝑢𝑘+1.

The idea is to approximate the next step in the gradient. Therefore, we
replace ∇Λ(𝜃𝑘) by an approximation of the next (probably better) point∇Λ(𝜃𝑘+1) = ∇Λ(𝜃𝑘 + 𝑢𝑘+1) = ∇Λ (𝜃𝑘 + 𝜌𝑢𝑘 − 𝜂∇Λ(𝜃𝑘))≈ ∇Λ(𝜃𝑘 + 𝜌𝑢𝑘).

Nesterov’s idea in the latter calculation was that∇Λ(𝜃𝑘 +𝜌𝑢𝑘) gives better
performance near the minimum where ∇Λ = 0. Note that the term ∇Λ(𝜃𝑘 +𝜌𝑢𝑘) computes the gradient at the current velocity which prevents overshoot-
ing in the neighborhood of the global minimum. So, we have the algorithm𝜃𝑘+1 = 𝜃𝑘 + 𝑢𝑘+1,𝑢𝑘+1 = 𝜌𝑢𝑘 − 𝜂∇Λ(𝜃𝑘 + 𝜌𝑢𝑘).

If we now define ̂𝜃𝑘 = 𝜃𝑘+𝜌𝑢𝑘, then we get the alternative representation
of Nesterov’s algorithm ̂𝜃𝑘+1 = ̂𝜃𝑘 + 𝜌(𝑢𝑘+1 − 𝑢𝑘) + 𝑢𝑘+1,𝑢𝑘+1 = 𝜌𝑢𝑘 − 𝜂∇Λ(̂𝜃𝑘).

Some related remarks are in order.

Remark 17.18. A typical choice is to set 𝜌 = √𝑚−1√𝑚+1 where𝑚 = 𝐿𝛾 is the condi-
tion number. In practice we do not know the condition’s number𝑚. A typical
value is 𝜌 = 0.9 in most deep learning libraries. This choice is motivated as
follows. If 𝑚 = 1, then 𝜌 = 0 and no inertia is needed. If 𝑚 ≫ 1, the Hessian
of the loss function is badly conditioned and a value of 𝜌 ∼ 1would be needed.
So, choosing a value for 𝜌 close to 1 is well motivated.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

290 17. Convergence Analysis of Gradient Descent

17.5. Brief Concluding Remarks

There are many excellent sources that cover in depth the classical topic of con-
vergence theory for the gradient descent algorithm and related optimization
results; see for example [Ber03,Nes04,Nes07] and the lecture notes [Cha22],
which also partiallymotivated aspects of the presentation and proofs of lemmas
of Section 17.2.3 on convergence rates for gradient descent. In this chapter, our
goal was to present the main results paving the path towards Chapter 18 where
we study convergence properties of stochastic gradient descent (SGD), which
is the foundation of many deep learning algorithms.

17.6. Exercises

Exercise 17.1. Consider the algorithm 𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇Λ(𝑥𝑘) with 𝜂 > 0 andΛ a continuously differentiable function. Show that

(1) If the sequence {𝑥𝑘} converges, then ∇Λ(𝑥𝑘) → 0.
(2) If the series∑∞𝑘=0∇Λ(𝑥𝑘) converges, then the sequence {𝑥𝑘} converges.

Exercise 17.2. Consider the classical gradient descent problem with learning
rate 𝜂 > 0, 𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇Λ(𝑥𝑘),
where Λ a continuously differentiable function.

(1) Let 𝑘 = 𝑛Δ𝑡 and 𝜂 = 𝜆Δ𝑡. Show that as Δ𝑡 → 0, the continuous time
formulation of the gradient descent algorithm is the ordinary differ-
ential equation ̇𝑥𝑡 = −𝜆∇Λ(𝑥𝑡).

(2) Let Λ(𝑥) = 12‖𝐴𝑥 − 𝑏‖22, where 𝐴 ∈ 𝑅𝑚1×𝑚2 and 𝑏 ∈ ℝ𝑚1 . Show that
the corresponding continuous time problem converges to the least
squares solution (𝐴⊤𝐴)−1𝐴⊤𝑏 as 𝑡 → ∞.

Exercise 17.3. Let Λ ∶ ℝ𝑚 ↦ ℝ be a convex function with minimum at 𝜃∗ ∈𝑅𝑚. Assume that 𝜃(𝑡) solves the gradient flow ODE,̇𝜃 = −∇Λ(𝜃),𝜃(0) = 𝜃0.
Show that

Λ(𝜃(𝑡)) − Λ(𝜃∗) ≤ ‖𝜃0 − 𝜃∗‖22𝑡 .
Exercise 17.4. Assume that Λ(𝜃) is strongly convex. Prove that the gradient
descent update always decreases the objective function.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

17.6. Exercises 291

Exercise 17.5. Assume that the gradient of the loss function∇Λ is 𝐿-Lipschitz,
and let 𝜃∗ be the global minimum of the loss function Λ(⋅). Prove that for any𝜃 ∈ Θ, Λ(𝜃∗) − Λ(𝜃) ≤ − 12𝐿‖∇Λ(𝜃)‖22.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 18

Convergence Analysis
of Stochastic Gradient
Descent

18.1. Introduction

Gradient descent, whose convergence we analyzed in Chapter 17, calculates
the gradient on all available data samples at each optimization iteration and
thus becomes computationally expensive when the number of data samples is
large. For large datasets, gradient descent becomes computationally infeasible
since a single optimization iteration may require calculating the loss gradient
for millions or even billions of data samples. This motivates the method of sto-
chastic gradient descent, which at each optimization iteration only calculates
the gradient of the loss on a randomly selected subset of the dataset. For large
datasets, stochastic gradient descent has a substantially lower computational
cost than gradient descent. Stochastic gradient descent can be viewed as us-
ing a noisy, stochastic estimate of the direction of steepest descent for the true
objective function (which is evaluated on the entire dataset).

The key idea is at each optimization iteration (i.e., for each parameter up-
date) to use a different randomly selected subset of the dataset. Thus, after the
stochastic gradient descent algorithm has run for long enough, most likely all
data samples in the overall dataset would have been used multiple times, and
thus on average the effect should be the same as that of using the full dataset
in gradient descent. Due to the fact that we randomly select a subset of the
full dataset for every parameter update, the algorithm now is called stochastic
gradient descent (SGD) instead of gradient descent (GD).

293

10.1090/gsm/252/19

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

294 18. Convergence Analysis of Stochastic Gradient Descent

We discussed SGD in Chapters 7 and 8 without studying its theoretical as-
pects. In this chapter we elaborate on the convergence properties of SGD, we
examine how SGD compares with classical GD, and we also present and dis-
cussmore sophisticated SGDmethods such as SGDwithmomentum, AdaGrad,
RMSProp, ADAM, and AdaMax.

18.2. Preliminary calculations

Assume we have data (𝑋, 𝑌) taking values in ℝ𝑑 × ℝ and a model 𝔪(𝑥; 𝜃)
where 𝜃 is the parameter of the model we want to estimate. We use the no-
tation 𝜆(𝑥,𝑦)(𝜃) to measure how close the model’s prediction 𝔪(𝑥; 𝜃) is to the
actual observation 𝑦. We assume that we can sample data 𝒟 = {(𝑥𝑚, 𝑦𝑚)𝑀𝑚=1}
from the distribution ℙ of (𝑋, 𝑌). The loss function is

Λ(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃).
Oftentimes wemay writeΛ𝒟(𝜃) to emphasize the dataset𝒟. Then, we will

naturally choose 𝜃∗ = argmin𝜃∈ΘΛ(𝜃). We recall that 𝜆(𝑥,𝑦)(𝜃) can be thought
of as the per-data-sample loss and Λ as the average loss.

As we discussed in Section 17.2, gradient descent takes steps in the direc-
tion of steepest descent, recall (17.2)𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘).

Notice now that a Taylor series expansion yields (ignoring the higher-order
error term)

Λ(𝜃𝑘+1)−Λ(𝜃𝑘) ≈ ⟨∇Λ(𝜃𝑘), (𝜃𝑘+1−𝜃𝑘)⟩+ 12(𝜃𝑘+1−𝜃𝑘)⊤∇2Λ(𝜃𝑘)(𝜃𝑘+1−𝜃𝑘)= −𝜂‖∇Λ(𝜃𝑘)‖2 + 12𝜂2 (∇Λ(𝜃𝑘))⊤∇2Λ(𝜃𝑘)∇Λ(𝜃𝑘).
This shows that if 𝜂 is sufficiently small, then Λ(𝜃𝑘+1) − Λ(𝜃𝑘) ≤ 0. This

indicates that—if 𝜂 is selected to be sufficiently small—then the objective func-
tion loss for the gradient descent training algorithm is monotone decreasing.
That is, the training algorithm is making progress towards a minimizer.

Next we notice that for a given finite dataset𝒟 we shall have that

∇𝜃Λ𝒟(𝜃) = ∇𝜃 1|𝒟| ∑(𝑥,𝑦)∈𝒟 𝜆(𝑥,𝑦)(𝜃) = 1|𝒟| ∑(𝑥,𝑦)∈𝒟 [∇𝜃𝜆(𝑥,𝑦)(𝜃)] .
If now𝒟′ is a randomly selected subset of𝒟, then we write

Λ𝒟′(𝜃) def= 1|𝒟′| ∑(𝑥,𝑦)∈𝒟′ 𝜆(𝑥,𝑦)(𝜃)
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.2. Preliminary calculations 295

to emphasize that the computed loss function is on the randomly selected sub-
set of𝒟, i.e., on𝒟′𝑘 ⊂ 𝒟. SGD ignores the expectation and follows a noisy (still
unbiased) descent direction𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜃Λ𝒟′𝑘(𝜃𝑘),
where a new random data subset 𝒟′𝑘 is selected uniformly-at-random at each
parameter update iteration 𝑘.

The term−𝜂∇𝜃Λ𝒟′𝑘(𝜃𝑘) is an unbiased estimate of the direction of steepest
descent for the objective function Λ(𝜃𝑘). The fact that it is unbiased follows
from the assumption that (𝑥𝑚, 𝑦𝑚) ∈ 𝒟′𝑘 are i.i.d. samples from ℙ. Indeed,
notice that under the i.i.d. assumption and given that at each given iteration
we first choose the dataset 𝒟′𝑘 and then we apply the gradient operator, we
shall have for a given dataset𝒟′𝑘 ⊂ 𝒟 that

𝔼 [∇𝜃Λ𝒟′𝑘(𝜃)] = 𝔼[1|𝒟′𝑘| ∑(𝑥,𝑦)∈𝒟′𝑘
[∇𝜃𝜆(𝑥,𝑦)(𝜃)]]

= 𝔼 [∇𝜃𝜆(𝑋,𝑌)(𝜃)] = 𝔼 [∇𝜃Λ𝒟(𝜃)] .
Online learning typically corresponds to choosing 𝒟′ with cardinality|𝒟′| = 1. Before we proceed with the analysis of SGD let us summarize some

practical messages which we will develop from the analysis that will follow.

Remark 18.1.
(1) GD needs to compute gradients for each data sample in the dataset

at every iteration, which is very computationally expensive for large
datasets. SGD is computationally cheaper and is typically advanta-
geous when the size of the dataset 𝑀 is large. When 𝑀 is large, we
would sample a much smaller subset |𝒟′| ≪ 𝑀 at each iteration.

(2) The learning rate 𝜂 = 𝜂𝑘 determines the size of the parameter update
step. It needs to decay appropriately in order to average out the noise
in the SGD step.

(3) Typical requirements are∑∞𝑘=1 𝜂𝑘=∞ and∑∞𝑘=1 𝜂2𝑘<∞; see [RM51,
BT00]. As an example consider the choice 𝜂𝑘 = 𝐶0𝐶1+𝐶2𝑘 where 0 <𝐶0, 𝐶1, 𝐶2 < ∞ are constants.

(4) A choice that is typically used in practice is to define a priori constants0 < 𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4 < ∞ and then consider the step function

𝜂𝑘 = ⎧⎪⎨⎪⎩
𝐶0, 𝑘 ≤ 𝐶10.1𝐶0, 𝐶1 < 𝑘 ≤ 𝐶20.01𝐶0, 𝐶2 < 𝑘 ≤ 𝐶30.001𝐶0, 𝐶2 < 𝑘 ≤ 𝐶4.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

296 18. Convergence Analysis of Stochastic Gradient Descent

(5) Note that too small of a learning rate leads to slow convergence,
whereas too large of a learning rate means that the algorithm oscil-
lates and overshoots.

Note thatGD canuse larger learning rates than SGD. In regards to SGD, this
can be partially addressed by using minibatches, which use batches of random
samples to reduce the noise. In particular, a minibatch is created by letting
some 𝑀∘ ≪ 𝑀, a randomly selected subset 𝒟′ ⊂ 𝒟 of cardinality |𝒟′| = 𝑀∘
and setting

∇Λ𝒟′(𝜃) = 1|𝒟′| ∑(𝑥,𝑦)∈𝒟′∇𝜃𝜆(𝑥,𝑦)(𝜃).(18.1)

To simplify notation and emphasize the cardinality of the randomly se-
lected subset𝒟′ ⊂ 𝒟, we shall write 𝐺(𝑀∘)(𝜃𝑘) = ∇Λ𝒟′𝑘(𝜃) in the SGD update
equation for 𝜃 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝐺(𝑀∘)(𝜃𝑘).(18.2)

We emphasize that at each iteration 𝑘 of the algorithm in (18.2) a new ran-
dom subset𝒟′𝑘 ⊂ 𝒟 of cardinality𝑀∘ is selected.

Note that 𝐺(𝑀∘)(𝜃) is less noisy than 𝐺(1)(𝜃) for 𝑀∘ > 1. Indeed, we can
calculate

Var(𝐺(𝑀∘)(𝜃𝑘)|𝜃𝑘) = Var(1|𝒟′𝑘| ∑(𝑥,𝑦)∈𝒟′∇𝜃𝜆(𝑥,𝑦)(𝜃𝑘)||𝜃𝑘)
= 1|𝒟′| Var(∇𝜃𝜆(𝑥𝑗 ,𝑦𝑗)(𝜃𝑘)||𝜃𝑘)< Var(∇𝜃𝜆(𝑥𝑗 ,𝑦𝑗)(𝜃𝑘)||𝜃𝑘)= Var(𝐺(1)(𝜃𝑘)|𝜃𝑘) ,

where the data sample (𝑥𝑗, 𝑦𝑗) is selected uniformly at random from the dataset𝒟. The above inequality shows that the minibatch SGD gradient estimate is
less noisy (lower variance) than the classical SGD gradient estimate (𝑀∘ = 1).
Remark 18.2 (Training epochs). Related to the latter statement for the vari-
ance is also the notion of an epoch. An epoch, similar to the minibatch size,
is another hyperparameter to be chosen. The number of epochs refers to the
number of times the learning algorithm goes through the entire training data-
set. Therefore, having completed one epoch means that each sample in the
training dataset has been used in the algorithm. Naturally, one epoch can be
composed by one or more minibatches and the number of epochs completed
during training is typically large. Rigorous minibatch learning may take a long

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.3. Convergence Results for SGD 297

time to see all datapoints. On the other hand, unbiased estimation of the gradi-
ent of the loss function sort of depends on rigorous sampling of the data. Stan-
dard SGDwith a large number of epochs tries to find a reasonable compromise
between these two situations.

Essentially, we randomly partition 𝒟 = ⋃𝐾𝑘=1𝒟′𝑘 with |𝒟′𝑘| ≈ |𝒟|/𝐾.
Then, for each 𝑛 ∈ ℕ and 𝑘 ∈ {1, 2, . . . , 𝐾}, we apply SGD𝜃𝑛𝐾+𝑘 = 𝜃𝑛𝐾+𝑘−1 − 𝜂∇Λ𝒟′𝑘(𝜃𝑛𝐾+𝑘−1).

By breaking gradient descent into epochs, after completing one epoch, each
sample in the training dataset has had the opportunity to be used in the algo-
rithm. However, we do note a bias issue. Even though,∇Λ𝒟′1(𝜃) is an unbiased
estimate of ∇Λ𝒟(𝜃), the remaining ∇Λ𝒟′𝑘(𝜃) will be biased because 𝒟′1 has al-
ready been chosen.

This issue of bias can be addressed by simply running SGD using uniform-
at-random sampling (with replacement) from the dataset𝒟 and considering an
epoch to be the number of minibatch SGD updates such that the total number
of data samples used equals the size of the overall datasets |𝒟|. Note that it is
not guaranteed that in a single epoch every data sample in 𝒟 will have been
trained on though.

18.3. Convergence Results for SGD

18.3.1. Convergence of SGD for Convex Loss Functions. Let us consider
a convex loss functionΛ(𝜃) per Definition 17.1. Recall that 𝜆(𝑥𝑚,𝑦𝑚)(𝜃) denotes
the per-data-sample loss.

Before proceeding with the convergence results for SGD for strongly con-
vex loss functions, let us perform some initial calculations motivated by our
analysis of standard GD. We recall that the standard update in GD is given by
(17.2): 𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇Λ(𝜃𝑘).

Substituting the above equation into Lemma 17.7 yields

Λ(𝜃𝑘+1) − Λ(𝜃𝑘) ≤ −𝜂‖∇Λ(𝜃𝑘)‖22 + 𝐿𝜂22 ‖∇Λ(𝜃𝑘)‖22= −𝜂 (1 − 𝐿𝜂2) ‖∇Λ(𝜃𝑘)‖22.(18.3)

This relation means that if 𝜂 is sufficiently small and, specifically, if 𝜂 <2/𝐿, then GD will typically be making progress towards the global minimum.
However, this is not necessarily guaranteed for SGD. In the case of plain SGD,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

298 18. Convergence Analysis of Stochastic Gradient Descent

the update is given by (18.2) with |𝒟′| = 1, i.e.,𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝐺(1)(𝜃𝑘)= 𝜃𝑘 − 𝜂∇𝜆(𝑥𝑖𝑘 ,𝑦𝑖𝑘)(𝜃𝑘),
where the index 𝑖𝑘 is randomly sampled at the 𝑘th iteration. Substituting 𝜃′ =𝜃𝑘+1, 𝜃 = 𝜃𝑘, and the aforementioned SGD update into Lemma 17.7 and then
taking a conditional expectation produces the following lemma.

Lemma 18.3. Under Assumption 17.6 we have that𝔼 [Λ(𝜃𝑘+1) − Λ(𝜃𝑘)|𝜃𝑘]≤ 𝜂 (𝐿𝜂2 𝔼 [‖∇𝜆(𝑥𝑖𝑘 ,𝑦𝑖𝑘)(𝜃𝑘)‖22|𝜃𝑘] − ⟨∇Λ(𝜃𝑘), 𝔼 [∇𝜆(𝑥𝑖𝑘 ,𝑦𝑖𝑘)(𝜃𝑘)|𝜃𝑘]⟩)= 𝜂 (𝐿𝜂2 𝔼 [‖∇𝜆(𝑥𝑖𝑘 ,𝑦𝑖𝑘)(𝜃𝑘)‖22|𝜃𝑘] − ‖∇Λ(𝜃𝑘)‖22) ,
where the expectation is taken under the index 𝑖𝑘 sampled by the SGD algorithm
at the 𝑘th iteration and we have used the fact that ∇Λ(𝜃) = 𝔼 [∇𝜆(𝑥𝑖,𝑦𝑖)(𝜃)] (i.e.,
the stochastic gradient estimates are unbiased).

Lemma 18.3 shows that without extra assumptions, SGD updates may not
monotonically decrease the value of the average loss function. In the last line,
the first term (which is positive)may potentially be larger than the second term
for a fixed learning rate 𝜂. However, it should be highlighted that there always
does exist an 𝜂 > 0 (which will depend upon 𝜃𝑘) such that the last line is neg-
ative when ‖∇Λ(𝜃𝑘)‖22 > 0. Furthermore, we observe that 𝜂 must be smaller
when ‖∇Λ(𝜃𝑘)‖22 is smaller (which typically means 𝜃𝑘 is closer to a local mini-
mizer) to guarantee that the last line is negative. This suggests that we should
reduce the learning rate 𝜂 during training. Specifically, the learning rate should
be 𝜂𝑘, a function of the number of parameter update iterations, where 𝜂𝑘 → 0
as 𝑘 → ∞. Consequently, as 𝜃𝑘 approaches a local minimizer (and ‖∇Λ(𝜃𝑘)‖22
becomes smaller), the learning rate will also become smaller.

Let us now try to improve upon Lemma 18.3. We will use the following
assumptions.

Assumption 18.4. Let us assume the following.• ∇Λ(𝜃) = 𝔼 [∇𝜆(𝑥𝑖,𝑦𝑖)(𝜃)], i.e., that stochastic gradients are unbiased.• There are constants 𝜅1, 𝜅2 < ∞ such that

𝔼 ‖‖∇𝜆(𝑥𝑖,𝑦𝑖)(𝜃)‖‖22 ≤ 𝜅1 + 𝜅2‖∇Λ(𝜃)‖22,
i.e., that the secondmoments of SGD and GD are comparable in mag-
nitude.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.3. Convergence Results for SGD 299

Some comments are in order. The first part of Assumption 18.4 will hold if
the sampling distribution of the index is uniform, which is the standard sam-
pling method for SGD and which we have previously used in our analysis, in-
cluding in Lemma 18.3. The second part of Assumption 18.4 states that the sec-
ondmoments of the stochastic gradient are of amagnitude similar to the square
of the full gradient. Combining the second assumption now with Lemma 18.3,
we immediately have the following result.
Lemma 18.5. Under Assumptions 17.6 and 18.4 we have that𝔼 [Λ(𝜃𝑘+1) − Λ(𝜃𝑘)|𝜃𝑘] ≤ 𝜂 (𝜂𝐿𝜅12 − (1 − 𝜂𝐿𝜅22) ‖∇Λ(𝜃𝑘)‖22) ,
where the expectation is taken under the index 𝑖𝑘 sampled by the SGD at the 𝑘th
iteration.

Lemma 18.5 shows that in order for the right-hand side to be negative
(i.e., in order for SGD to be making progress towards the global minimum),
we need to select the step size 𝜂 in such a way that the combined term𝜂𝐿𝜅12 − (1 − 𝜂𝐿𝜅22) ‖∇Λ(𝜃𝑘)‖22 is negative.

In addition, note that Lemma 18.5 shows that if 𝜅1 = 0 and 𝜅2 = 1, i.e., in
the absence of stochasticity, we recover the result of standardGD, i.e., the decay
(18.3). If the stochastic gradient is noisy, i.e., if 𝜅1 ≠ 0, then there is not neces-
sarily a monotonic decay of the difference 𝔼 [Λ(𝜃𝑘+1) − Λ(𝜃𝑘)|𝜃𝑘] because for
every iteration 𝑘 ∈ ℕ, there is the positive term 𝜂2 𝐾𝜅12 at the right-hand side
bound.

As it is then shown in [BCN18], under Assumptions 17.6 and 18.4 stronger
results can be obtained. Note that even though we assume in the next lemmas
that 𝜅2 ≥ 1 from Assumption 18.4, this is done with loss of generality, as one
can always use a larger upper bound if necessary. We next present the related
theory.
Lemma 18.6. Let Assumptions 17.6 and 18.4 with 𝜅2 ≥ 1 hold, and in addition
assume that Λ is 𝛾-strongly convex (Definition 17.3). Assume that the learning
rate is chosen according to 𝜂 ≤ 1𝐿𝜅2 , where 𝐿 is the Lipschitz constant from As-
sumption 17.6. Then we have the bound𝔼 [Λ(𝜃𝑘+1)] − Λ(𝜃∗) ≤ 𝜂𝐿𝜅12𝛾 + (1 − 𝜂𝛾)𝑘 (Λ(𝜃0) − Λ(𝜃∗) − 𝜂𝐿𝜅12𝛾) .

The aforementioned upper bound converges to 𝜂𝐿𝜅12𝛾 as 𝑘 → ∞.

Proof of Lemma 18.6. First, we notice that by 𝛾-strong convexity, we have for
all 𝜃, 𝜃′ ∈ Θ Λ(𝜃′) ≥ Λ(𝜃) + ⟨∇Λ(𝜃), 𝜃′ − 𝜃⟩ + 𝛾2 ‖𝜃′ − 𝜃‖2 .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

300 18. Convergence Analysis of Stochastic Gradient Descent

As a function of 𝜃′, the right-hand side (a quadratic function) has the
unique minimizer ̂𝜃 = 𝜃 − 1𝛾∇Λ(𝜃),
further yielding

(18.4) Λ(𝜃′) ≥ Λ(𝜃) − 12𝛾‖∇Λ(𝜃)‖22.
Set Λ∗ = Λ(𝜃∗). By Lemma 18.5 and 𝛾-strong convexity (in particular, ap-

plying (18.4) with 𝜃′ = 𝜃∗ and 𝜃 = 𝜃𝑘), we have for all 𝑘 ∈ ℕ
𝔼 [Λ(𝜃𝑘+1) − Λ(𝜃𝑘)|𝜃𝑘] ≤ −𝜂 (1 − 𝜂𝐿𝜅22) ‖∇Λ(𝜃𝑘)‖22 + 𝜂2𝐿𝜅12≤ −𝜂2‖∇Λ(𝜃𝑘)‖22 + 𝜂2𝐿𝜅12≤ −𝜂𝛾(Λ(𝜃𝑘) − Λ∗) + 𝜂2𝐿𝜅12 .

The next step is to subtract Λ∗ from both sides and then to take an expecta-
tion. Doing so, we obtain

𝔼 [Λ(𝜃𝑘+1) − Λ∗] ≤ (1 − 𝜂𝛾)(𝔼 [Λ(𝜃𝑘) − Λ∗]) + 𝜂2𝐿𝜅12 .
This yields

𝔼 [Λ(𝜃𝑘+1) − Λ∗] − 𝜂𝐿𝜅12𝛾 ≤ (1 − 𝜂𝛾)(𝔼 [Λ(𝜃𝑘) − Λ∗]) + 𝜂2𝐿𝜅12 − 𝜂𝐿𝜅12𝛾= (1 − 𝜂𝛾) (𝔼 [Λ(𝜃𝑘) − Λ∗] − 𝜂𝐿𝜅12𝛾) .(18.5)

Recall now that we have chosen 𝜂 ≤ 1𝐿𝜅2 . This means that0 < 𝜂𝛾 ≤ 𝛾𝐿𝜅2 ≤ 𝛾𝐿 ≤ 1,
the latter being true because we assumed 𝜅2 ≥ 1 and because it must hold that𝛾 ≤ 𝐿 (recall that 𝛾 is the strong convexity constant ofΛwhereas 𝐿 is the global
Lipschitz constant for the gradient of Λ). Therefore, (18.5) is a contraction and
the result follows by applying (18.5) iteratively in 𝑘 ∈ ℕ. This concludes the
proof of the lemma. □

Lemma 18.6 shows that we must select 𝜂 to be small in order to hope to
eventually reach the global minimum. However, if 𝜂 > 0 is chosen to be very
small, then the algorithm will take a long time to converge, and we will still be𝒪(𝜂) away from the global minimum.

So, the question is: how can we guarantee that the SGD algorithm con-
verges? The answer is to let the learning rate 𝜂 gradually decrease over time,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.3. Convergence Results for SGD 301

see Remark 18.1. We will specifically discuss the necessity for decay in the
learning rate in the next Section 18.3.3. We will prove in Lemma 18.7 that SGD
converges to the global minimizer for strongly convex functions if the learning
rate appropriately decays as the number of update steps→∞.

Lemma 18.7. Let Assumptions 17.6 and 18.4 with 𝜅2 ≥ 1 hold and in addition
assume that Λ is 𝛾-strongly convex (Definition 17.3). Assume that the learning
rate is chosen according to 𝜂 = 𝜂𝑘 = 𝐶0𝐶1+𝑘 with 𝛾𝐶0 > 1, 𝐶1 > 0, and 𝜂1 ≤1𝐿𝜅2 , where 𝐿 is the Lipschitz constant from Assumption 17.6. Then, the following
bound holds: 𝔼 [Λ(𝜃𝑘)] − Λ(𝜃∗) ≤ 𝜏𝐶1 + 𝑘,
where 𝜏 = max{ 𝐶20𝐿𝜅12(𝛾𝐶0−1) , (𝐶1 + 1)(𝔼[Λ(𝜃1)] − Λ(𝜃∗))}.
Proof of Lemma 18.7. The proof of this lemma is similar to the proof of
Lemma 18.6. Set Λ∗ = Λ(𝜃∗). By Lemma 18.5 and 𝛾-strong convexity, we have
for all 𝑘 ∈ ℕ𝔼 [Λ(𝜃𝑘+1) − Λ(𝜃𝑘)|𝜃𝑘] ≤ −𝜂𝑘 (1 − 𝜂𝑘𝐿𝜅22) ‖∇Λ(𝜃𝑘)‖22 + 𝜂2𝑘𝐿𝜅12≤ −𝜂𝑘2 ‖∇Λ(𝜃𝑘)‖22 + 𝜂2𝑘𝐿𝜅12≤ −𝜂𝑘𝛾(Λ(𝜃𝑘) − Λ∗) + 𝜂2𝑘𝐿𝜅12 ,
where in the last display we used (18.4) with 𝜃′ = 𝜃∗ and 𝜃 = 𝜃𝑘.

The next step is to subtract Λ∗ from both sides of the latter expression fol-
lowed by taking expectation. We then obtain

𝔼 [Λ(𝜃𝑘+1) − Λ∗] ≤ (1 − 𝜂𝑘𝛾)(𝔼 [Λ(𝜃𝑘) − Λ∗]) + 𝜂2𝑘𝐿𝜅12 .
Next, we proceed with an induction argument. The statement holds for𝑘 = 1 directly by the definition of 𝜏. Then, let us assume that it holds for some

integer 𝑘 greater than 1 and prove it for 𝑘 + 1. We have
𝔼 [Λ(𝜃𝑘+1) − Λ∗] ≤ (1 − 𝐶0𝛾𝐶1 + 𝑘) 𝜏𝐶1 + 𝑘 + 𝐶20𝐿𝜅12(𝐶1 + 𝑘)2

= 𝐶1 + 𝑘 − 𝐶0𝛾(𝐶1 + 𝑘)2 𝜏 + 𝐶20𝐿𝜅12(𝐶1 + 𝑘)2
= 𝐶1 + 𝑘 − 1(𝐶1 + 𝑘)2 𝜏 + [− 𝐶0𝛾 − 1(𝐶1 + 𝑘)2 𝜏 + 𝐶20𝐿𝜅12(𝐶1 + 𝑘)2]≤ 𝜏𝐶1 + 𝑘 + 1,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

302 18. Convergence Analysis of Stochastic Gradient Descent

where in the latter calculation we used that the term in the bracket

[− 𝐶0𝛾 − 1(𝐶1 + 𝑘)2 𝜏 + 𝐶20𝐿𝜅12(𝐶1 + 𝑘)2] ≤ 0
due to the definition of 𝜏 and the fact that(𝐶1 + 𝑘)2 ≥ (𝐶1 + 𝑘 + 1)(𝐶1 + 𝑘 − 1).

This concludes the proof of the lemma. □

Some remarks on Lemmas 18.6 and 18.7 are in order. First, it is interesting
to note that the choice of the learning rate 𝜂 = 𝜂𝑘 = 𝐶0𝐶1+𝑘 satisfies the condi-
tions∑∞𝑘=1 𝜂𝑘 = ∞ and∑∞𝑘=1 𝜂2𝑘 < ∞. (In fact, a slightlymore general learning
rate of 𝜂𝑘 = 𝐶0𝐶1+𝐶2𝑘 could be used.) This turns out to be a good learning rate
schedule. We already demonstrated this in the case of gradient descent in The-
orem 17.16 and we will return to this in Section 18.3.3 for the case of stochastic
gradient descent.

Second, the strong convexity constant 𝛾 > 0 is seen to play an important
role for both statements in Lemmas 18.6 and 18.7. However, it affects the step
size in different ways in the two lemmas. For the case of constant stepsize of
Lemma 18.6 the stepsize is not affected by 𝛾, even though the optimality gap
is. On the other hand, in the vanishing stepsize case of Lemma 18.7 the choice
of the learning rate is affected by 𝛾. Indeed, we have chosen 𝜂𝑘 = 𝐶0𝐶1+𝑘 with𝐶0 > 1/𝛾.

Third, in the case of vanishing learning rate of Lemma 18.7, the choice of
the initial point affects the optimality gap through the parameter 𝜏 via the termΛ(𝜃1) − Λ(𝜃∗). However, with an appropriate choice of the learning schedule,
the effect of this term can be diminished. We refer the reader to [BCN18] for
more details on this issue.

Fourth, let us comment on the effect of choosing aminibatch of size𝑀∘ > 1
as seen in (18.1)–(18.2). Note that in that case, Assumption 18.4 changes to𝔼 ‖∇𝜌𝑖(𝜃)‖22 ≤ 𝜅1𝐾 + 𝜅2𝑀∘ ‖∇Λ(𝜃)‖22. This then leads to the statement of Lemma
18.6 becoming

𝔼 [Λ(𝜃𝑘+1)] − Λ(𝜃∗) ≤ 𝜂𝐿𝜅12𝛾𝑀∘ + (1 − 𝜂𝛾)𝑘 (Λ(𝜃0) − Λ(𝜃∗) − 𝜂𝐿𝜅12𝛾𝑀∘)
and the requirement for the learning rate to change to 𝜂 ≤ 𝑀∘𝐿𝜅𝑠 . This means
that a larger choice of the learning rate is allowed. If we do choose the largest
allowed constant rate, the term 𝜂𝐿𝜅12𝛾𝑀∘ will not be affected by𝑀∘. However, the
term (1 − 𝜂𝛾)𝑘 will be affected by it and in particular increasing the learning

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.3. Convergence Results for SGD 303

rate to 𝑀∘𝐿𝜅𝑠 will lead to faster decay of that term by a factor of 𝑀∘. However,
we need to keep in mind that the choice of the minibatch size also requires𝑀∘
calculations of the gradient.

18.3.2. Convergence of SGD for Nonconvex Loss Functions. As is typi-
cally the case, many important machine learning models lead to nonconvex
optimization problems. In particular, neural networks are nonconvex. Even
though the analysis of nonconvex functions trained with SGD is more com-
plicated than the analysis in the convex case, one can still obtain meaningful
results. We will follow the presentation of Section 18.3.1 by first presenting
bounds for a constant learning rate and then for a decreasing learning rate.

Lemma 18.8. Let Assumptions 17.6 and 18.4 hold. Assume that the learning
rate is chosen according to 𝜂 ≤ 1𝐿𝜅2 , where 𝐿 is the Lipschitz constant from As-
sumption 17.6. In addition, assume that the sequence of iterates 𝜃𝑘 is contained
in an open set over which Λ is bounded below by Λ∗. Then we have the bound

𝔼[1𝑀∘
𝑀∘∑𝑚=1 ‖∇Λ(𝜃𝑚)‖22] ≤ 𝜂𝐿𝜅1 + 2 (Λ(𝜃1) − Λ∗)𝑀∘𝜂 .

The aforementioned upper bound converges to 𝜂𝐿𝜅1 as𝑀∘ →∞.

Proof of Lemma 18.8. As in Lemma 18.6, we have for all𝑚 ∈ ℕ,𝔼 [Λ(𝜃𝑚+1)] − 𝔼 [Λ(𝜃𝑚)] ≤ −𝜂 (1 − 𝜂𝐿𝜅22) 𝔼‖∇Λ(𝜃𝑚)‖22 + 𝜂2𝐿𝜅12≤ −𝜂2𝔼‖∇Λ(𝜃𝑚)‖22 + 𝜂2𝐿𝜅12 .
The result now follows by summing over all𝑚 ∈ {1, . . . ,𝑀∘} and using the

assumption that the sequence of iterates 𝜃𝑚 is contained in an open set over
which Λ is bounded below by Λ∗. This completes the proof of the lemma. □

Lemma 18.9. Let Assumptions 17.6 and 18.4 hold. In addition, assume that the
sequence of iterates 𝜃𝑘 is contained in an open set over whichΛ is bounded below
by Λ∗. Assume that the sequence of learning rates satisfies∑∞𝑚=1 𝜂𝑚 = ∞ and∑∞𝑚=1 𝜂2𝑚 < ∞. Then, we have

lim𝑀∘→∞𝔼[𝑀∘∑𝑚=1 𝜂𝑚‖∇Λ(𝜃𝑚)‖22] < ∞,
and consequently

lim𝑀∘→∞𝔼[1∑𝑀∘𝑚=1 𝜂𝑚
𝑀∘∑𝑚=1 𝜂𝑚‖∇Λ(𝜃𝑚)‖22] = 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

304 18. Convergence Analysis of Stochastic Gradient Descent

Proof of Lemma 18.9. The condition∑∞𝑚=1 𝜂2𝑚 < ∞ implies that 𝜂𝑚 → 0, so
we may choose 𝜂𝑚 ≤ 1𝐿𝜅2 . Then, proceeding as in the proof of Lemma 18.8,𝔼 [Λ(𝜃𝑚+1)] − 𝔼 [Λ(𝜃𝑚)] ≤ −𝜂𝑚 (1 − 𝜂𝑚𝐿𝜅22) 𝔼‖∇Λ(𝜃𝑚)‖22 + 𝜂2𝑚𝐿𝜅12≤ −𝜂𝑚2 𝔼‖∇Λ(𝜃𝑚)‖22 + 𝜂2𝑚𝐿𝜅12 .

Next, we sum over𝑚 ∈ {1, . . . ,𝑀∘} to obtain
Λ∗ − 𝔼 [Λ(𝜃1)] ≤ −12 𝐾∑𝑚=1 𝜂𝑚𝔼‖∇Λ(𝜃𝑚)‖22 + 𝐿𝜅12 𝑀∘∑𝑚=1 𝜂2𝑚.

Rearranging this statement leads to the first claim of the lemma. The sec-
ond claim follows by the first statement and the fact that∑∞𝑚=1 𝜂𝑚 = ∞. This
concludes the proof of the lemma. □

Lemma 18.9 leads to the following important theorem.

Theorem 18.10 ([BT00,BCN18]). Let Assumptions 17.6 and 18.4 hold. In ad-
dition, assume that the sequence of iterates 𝜃𝑘 is contained in an open set over
whichΛ is bounded below byΛ∗. Assume that the learning rate is chosen accord-
ing to 𝜂𝑘 satisfying∑∞𝑘=1 𝜂𝑘 = ∞ and∑∞𝑘=1 𝜂2𝑘 < ∞. Then, we havelim inf𝑘→∞ 𝔼 [‖∇Λ(𝜃𝑘)‖22] = 0.

Note that this result includes a limit infimum result. Under stronger con-
ditions this can be that reduced to lim𝑘→∞ 𝔼 [‖∇Λ(𝜃𝑘)‖22] = 0. This is Theorem
18.11 and was proven in [BT00] and under a somewhat different set of condi-
tions in [BCN18].

18.3.3. WhyShould theLearningRateDecrease? Let us nowdemonstrate
with a formal argument as towhy the learning rate needs to decrease. We recall
that we have already seen instances of this phenomenon in the cases of linear
and logistic regression, Chapters 2 and 3, where we show that overshooting oc-
curs if the learning rate is too large. The fully rigorous treatment in the general
case of this result can be found in [BT00]. For simplicity we will focus on the
case of plain SGD where |𝒟′| = 1. We have𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘)= 𝜃𝑘 − 𝜂𝑘𝔼 [∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘)] + 𝜂𝑘 (𝔼 [∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘)] − ∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘))= 𝜃𝑘 − 𝜂𝑘∇𝜃Λ(𝜃𝑘) + 𝜂𝑘 (𝔼 [∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘)] − ∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘)) .

Let us set 𝑅𝑘 = (𝔼 [∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘)] − ∇𝜃𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘)) which represents
the randomness in SGD. We would like to prove that in the appropriate sense

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.3. Convergence Results for SGD 305

lim𝑘→∞ 𝑅𝑘 = 0. Now, let us assume that 𝜆 ∈ 𝒞2,2𝑏 . Using Taylor expansion we
obtain for some 𝑘1 > 𝑘,

Λ(𝜃𝑘1) − Λ(𝜃𝑘) = − 𝑘1∑𝑖=𝑘 𝜂𝑖‖∇𝜃Λ(𝜃𝑖)‖22 +
𝑘1∑𝑖=𝑘 𝜂𝑖 (∇𝜃Λ(𝜃𝑖))⊤ 𝑅𝑖

+ 𝑘1∑𝑖=𝑘 𝜂2𝑖 × (higher order terms).
If∑∞𝑖=0 𝜂2𝑖 < ∞, then we have that for every 𝜖 > 0 there is a 𝑘 < ∞ such

that∑∞𝑖=𝑘 𝜂2𝑖 < 𝜖. Assuming that the higher order terms are bounded, we then
obtain that for this chosen 𝑘

𝑘1∑𝑖=𝑘 𝜂2𝑖 (higher order terms) ≤ 𝐶 𝑘1∑𝑖=𝑘 𝜂2𝑖 ≤ 𝐶𝜖.
In addition, we shall have that

𝔼((𝑘1∑𝑖=𝑘 𝜂𝑖 (∇𝜃Λ(𝜃𝑖))⊤ 𝑅𝑖)
2)

= 𝑘1∑𝑖=𝑘 𝜂2𝑖 𝔼 ((∇⊤𝜃 Λ(𝜃𝑖) (𝔼𝑋,𝑌 (∇𝜃𝜆(𝑋,𝑌)(𝜃𝑘) − ∇𝜃𝜆(𝑥𝑖,𝑦𝑖)(𝜃𝑖))))2)
+ 𝑘1∑𝑖=𝑘

𝑘1∑𝑗=𝑘,𝑗≠𝑖 𝜂𝑖𝜂𝑗𝔼 (∇𝜃Λ(𝜃𝑖) (𝔼𝑋,𝑌 (∇𝜃𝜆(𝑋,𝑌)(𝜃𝑖) − ∇𝜃𝜆(𝑥𝑖,𝑦𝑖)(𝜃𝑖))
×∇𝜃Λ(𝜃𝑗) (𝔼𝑋,𝑌 (∇𝜃𝜆(𝑋,𝑌)(𝜃𝑗) − ∇𝜃𝜆(𝑥𝑗 ,𝑦𝑗)(𝜃𝑗)))))

≤ 𝐶 𝑘1∑𝑖=𝑘 𝜂2𝑖≤ 𝐶𝜖.
In the calculation above we used the tower property of expectation to real-

ize that

𝔼 (𝔼𝑋,𝑌 (∇𝜃𝜆(𝑋,𝑌)(𝜃𝑗) − ∇𝜃𝜆(𝑥𝑗 ,𝑦𝑗)(𝜃𝑗)) |ℱ𝑗) = 0,
where ℱ𝑗 is the filtration at time 𝑗, i.e., all of the information on the random
variables at steps 0, 1, . . . , 𝑗.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

306 18. Convergence Analysis of Stochastic Gradient Descent

Thus, by Chebyshev’s inequality we have that for every 𝜖, 𝛿 > 0 there is𝑘1 > 𝑘 so that
ℙ[(𝑘1∑𝑖=𝑘 𝜂𝑖 (∇𝜃Λ(𝜃𝑖))⊤ 𝑅𝑖)

2 ≥ 𝜖] < 𝛿.
In fact, by the Borel-Cantelli lemma, one actually has∞∑𝑖=𝑘 𝜂𝑖 (∇𝜃Λ(𝜃𝑖))⊤ 𝑅𝑖 → 0 almost surely.
Thus, if 𝑘 is large enough, we have

Λ(𝜃𝑘1) − Λ(𝜃𝑘) ≈ − 𝑘1∑𝑖=𝑘 𝜂𝑖‖∇𝜃Λ(𝜃𝑖)‖22 < 0.
In fact, if ‖∇𝜃Λ(𝜃𝑖)‖22 ≥ 𝜆 > 0, then we have that

Λ(𝜃𝑘1) − Λ(𝜃𝑘) ≤ −𝜆 𝑘1∑𝑖=𝑘 𝜂𝑖 → −∞.
But, by assumption 𝜃 ↦ Λ(𝜃) is bounded function, so the last display can-

not happen. Thus, there is 𝑖 > 𝑘 so that ‖∇𝜃Λ(𝜃𝑖)‖22 < 𝜆. What we just derived
is a heuristic derivation of the following classical result.

Theorem 18.11 ([BT00]). Assume ∇𝜃Λ(𝜃) is globally Lipschitz and bounded.
Assume Λ(𝜃) is bounded and that the learning rate is such that ∑∞𝑘=1 𝜂𝑘 = ∞
and∑∞𝑘=1 𝜂2𝑘 < ∞. Then we have thatlim𝑘→∞ ‖∇𝜃Λ(𝜃𝑘)‖2 = 0 almost surely.
Remark 18.12. Neural networks do not typically satisfy the assumptions of
Theorem 18.11 because the gradient of the loss function will typically be nei-
ther globally Lipschitz nor globally bounded. Regardless, SGD on neural net-
works has been proven to be very effective in practice and the message of the
theorem has empirically been shown to be valid, i.e., the learning rates should
progressively decrease for convergence to occur but not too fast.

18.4. Comparing SGD with GD

18.4.1. SGD Is Like GD with Noise. Let us now investigate how SGD and
GD are related to each other. Comparing the analysis in Sections 17.2.3 and
18.3 legitimately raises the question as towhywe should use stochastic gradient
descent versus gradient descent. After all, if one has a strongly convex function
to minimize, GD is much faster to minimize it than SGD. Typically, in order

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.4. Comparing SGD with GD 307

to reach an 𝜖 neighborhood of the global minimum, GD requires 𝒪(1/𝜖) steps
whereas SGD typically requires 𝒪(1/𝜖2) steps.

When making these comparisons however we should keep in mind that
the empirical loss we are minimizing consists of 𝑀 terms. So, taking 𝑀 into
account, GD actually requires 𝒪(𝑀/𝜖) steps whereas plain SGD still requires𝒪(1/𝜖2) steps.

Thus, if 𝜖 ≪ 1/𝑀, then GD is superior to SGD. However, if 𝜖 ≫ 1/𝑀, then
SGD wins! Thus, if the sample size is large and we cannot afford to have a tiny𝜖 accuracy, then SGD will typically be less costly and preferable to GD. This is
one of the main reasons why SGD is well suited for machine learning.

Let us next investigate a more direct relation between 𝐺𝐷 and 𝑆𝐺𝐷. We
will see that SGD is basically GD with noise. Let us consider for now a fixed
learning rate 𝜂. Let us recall that

𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜃 1𝑀 𝑀∑𝑚=1 𝜆(𝑥𝑚,𝑦𝑚)(𝜃𝑘).
Now notice that

𝔼 [𝜃𝑘+1 − 𝜃𝑘|𝜃𝑘] = −𝜂𝔼 [∇𝜃 1𝑀 𝑀∑𝑚=1 𝜆(𝑥𝑚,𝑦𝑚)(𝜃𝑘)||𝜃𝑘]= −𝜂∇𝜃Λ(𝜃𝑘).
The last display shows that the average change in weights of 𝜃𝑘 is propor-

tional to the full gradient ∇𝜃Λ(𝜃𝑘), which is exactly what GD gives.
What about the change in the variance? We have

Var[𝜃𝑘+1 − 𝜃𝑘|𝜃𝑘] = 𝜂2𝑀2
𝑀∑𝑚=1Var[∇𝜃ℓ𝑦𝑚(𝔪(𝑥𝑚; 𝜃𝑘))|𝜃𝑘]= 𝜂2𝑀 Var[∇𝜃Λ(𝜃𝑘)|𝜃𝑘] ,

which follows because we sample uniformly which in turnmeans that the ran-
dom variables ℓ𝑦𝑚(𝔪(𝑥𝑚; 𝜃𝑘)) are i.i.d.

The previous discussion motivates us to model the transition probabilitiesℙ(𝜃𝑘+1|𝜃𝑘) as a Gaussian random variable. In particular,

𝜃𝑘+1 = 𝜃𝑘 + 𝜉𝑘, where 𝜉𝑘 ∼ 𝑁 (−𝜂∇𝜃Λ(𝜃𝑘), 𝜂2𝑀 Var[∇𝜃Λ(𝜃𝑘)|𝜃𝑘]) .
So, on average SGD is like GD plus noise that decreases as 𝑀 increases!

Now, this allows us to approximate𝜃𝑘+1 = 𝜃𝑘 − 𝜂∇𝜃Λ(𝜃𝑘) + 𝜂√𝑀√Var[∇𝜃Λ(𝜃𝑘)]𝑍𝑘, where 𝑍𝑘 ∼ 𝑁 (0, 1) i.i.d.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

308 18. Convergence Analysis of Stochastic Gradient Descent

This observation is the basis for continuous time approximation of SGD
by stochastic differential equations (see Appendix A for a quick discussion on
stochastic differential equations and further bibliographical remarks). In par-
ticular, we have the following result.

Theorem 18.13 ([HLLL19]). Let 𝑇 < ∞ be fixed and let us assume that Λ is
such that∑|𝑎|≤7 |𝐷𝑎Λ|∞ < 𝐶 < ∞ for some finite constant 𝐶 < ∞ (𝐷𝑎Λ is the𝑎th-order derivatives of theΛ function). Let (𝑥𝑘, 𝑦𝑘) be a sequence of i.i.d. random
variables sampled from some distribution (𝑋, 𝑌) ∼ ℙ. Let Θ̃ be the solution to the
stochastic differential equatioṅΘ̃(𝑡) = (−∇Λ(Θ̃(𝑡)) − 𝜂4∇|∇Λ(Θ̃(𝑡))|2) + √𝜂√Var(𝑋,𝑌) [∇𝜆(𝑋,𝑌)(Θ̃(𝑡))]𝑊̇(𝑡),
where𝑊(𝑡) is a standard multidimensional Brownian motion. Then with 𝑝 = 2
for any 𝜙 ∈ 𝒞2(𝑝+1)𝑏 , there is 𝐶 < ∞ and 𝜂0 > 0 such that||𝔼𝜙(𝜃𝑘) − 𝔼𝜙(Θ̃(𝑘𝜂))|| ≤ 𝐶𝜂𝑝 for all 𝑘 ≤ 𝑇/𝜂 and 𝜂 ∈ (0, 𝜂0),
where 𝜃𝑘 satisfies 𝜃𝑘 = 𝜃𝑘−1 − 𝜂∇𝜆(𝑥𝑘,𝑦𝑘)(𝜃𝑘−1).

This theorem says that Θ̃ approximates the sequence {𝜃𝑘} with weak order2. As a matter of fact if we ignore the term −𝜂4∇|∇Λ(Θ̃(𝑡))|2, the approxima-
tion above yields the same result but with 𝑝 = 1, i.e., a weak error of order 1
approximation instead of 2. With or without the correction term, we can viewΘ̃ as the SGD diffusion approximation to the discrete algorithm for 𝜃𝑘.
18.4.2. Momentum methods and SGD. In Section 17.4 we explored mo-
mentum kinds of methods for gradient descent. As was discussed there, mo-
mentum methods can be expected to lead to acceleration of gradient descent
methods due to the use of inertia of particles. The natural question is whether
momentum methods would be expected to accelerate convergence of SGD as
they do with GD. It turns out that the answer to this question is not necessarily
yes.

To this end we recall that SGD is a noisy approximation of the full gradient
of the dataset. This means that the gradient will always be incorrect in SGD
and as such one does not expect that the velocity in the next iteration will be
accurate. In fact, it is shown in [LB20,KNJK18] that a standard application
of either Polyak’s or Nesterov’s momentum methods does not always lead to
acceleration. For instance, as demonstrated in [LB20] in the case of the mean-
square error loss problem (a strongly convex problem), Nesterov’s momentum
method when applied to SGD leads to the estimate

|𝔼 [Λ(𝜃𝑘)] − Λ(𝜃∗)| ≤ 𝑒−𝑘 𝐶𝑚 |Λ(𝜃0) − Λ(𝜃∗)|
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.4. Comparing SGD with GD 309

for 𝑘 large enough, where 𝑚 = 𝐿𝛾 is the condition number and 𝐶 > 0 is some
constant. Comparing this to what one gets in the standard gradient descent
problem for the same problem

|𝔼 [Λ(𝜃𝑘)] − Λ(𝜃∗)| ≤ 𝑒−𝑘 1𝑚 |Λ(𝜃0) − Λ(𝜃∗)|,
we conclude that the only effect of momentum method to SGD is the multi-
plicative factor for 𝐶. It is worthwhile to mention here that standard GD with-
out momentum would lead to the bound

|𝔼 [Λ(𝜃𝑘)] − Λ(𝜃∗)| ≤ 𝑒−𝑘 1√𝑚 |Λ(𝜃0) − Λ(𝜃∗)|,
which means that momentum does accelerate GD, since when 𝑚 > 1,1√𝑚 > 1𝑚 . Even though, we will not investigate this in further depth in this
book, we mention the following for completeness.• Modifications to the momentum method to provably accelerate SGD

have been recently proposed, see for example [LB20].• A standard way to accelerate stochastic optimization methods is
through the use of control variates, see [RSB12].

Momentum methods, such as Nesterov’s method, are used in practice in
conjunction with SGD to train deep neural networks with great success. So,
the natural question is why do they work so well when the theory suggests
that one should not necessarily see acceleration? One answer to this question
is that while training deep neural networks, the SGD gradients are very close
to the GD gradients (see [CS17]) for which we know that Nesterov’s method
leads to acceleration. In particular, as discussed in [CS17], many deep learning
applications to datasets lead to weights of the neural network that have similar
gradients with each other. So, even though stochastic gradients are computed
on different batches of gradients, they are very similar to each other and thus
to the full gradient. We refer the interested reader to [CS17] for a more detailed
discussion on this.

18.4.3. GD and SGD for Linear Regression. In Chapter 2 we visited linear
regression. We return now to this topic making connections with gradient de-
scent and stochastic gradient descent. Consider the simple setting of the one-
dimensional least square regression problem.

Λ(𝜃) = 1𝑀 𝑀∑𝑚=1(𝑤𝑥𝑚 − 𝑦𝑚)2, 𝜃 = 𝑤 ∈ ℝ.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

310 18. Convergence Analysis of Stochastic Gradient Descent

It is relatively easy to see that each term of this sum is minimized at𝑤∗𝑚 = 𝑦𝑚𝑥𝑚 . Let us now set 𝑤∗min = min{𝑤∗𝑚, 𝑚 = 1, . . . ,𝑀} and 𝑤∗max =max{𝑤∗𝑚, 𝑚 = 1, . . . ,𝑀}. If the initialization 𝑤0 is such that𝑤0 > 𝑤∗max or 𝑤0 < 𝑤∗min,
then after a few number of steps of SGD, say 𝑘 number of steps, we will even-
tually have that 𝑤𝑘 ∈ (𝑤∗min, 𝑤∗max). The region (𝑤∗min, 𝑤∗max) is sometimes
referred to in the literature as the confusion zone.

As soon as 𝑤𝑘 ∈ (𝑤∗min, 𝑤∗max) then there is no convergence for SGD. For a
fixed learning rate and because the weights are sampled uniformly, the weights
will move either to the left or to the right of the confusion zone depending on
which value was used to compute the gradient. This is because SGD samples a
different point at each iteration. Consequently, SGD will oscillate in the con-
fusion zone.

However, the objective function used in linear regression is convex, as the
sum of convex functions, and there is a unique global minimum. The global
minimum is

𝑤∗ = ∑𝑀𝑚=1 𝑥𝑚𝑦𝑚∑𝑀𝑚=1 𝑥2𝑚 ,
which we recognize as the least squares estimator. In contrast to SGD, GD
(which uses the gradient evaluated on the entire dataset) will converge to the
global minimum!

18.5. Variants of Stochastic Gradient Descent

In this section we discuss some popular variants of stochastic gradient descent.

18.5.1. AdaGrad. AdaGrad (adaptive gradient) was introduced by [DHS11].
We define

𝐺𝑘 = 𝑘∑𝑖=1∇Λ(𝜃𝑖) (∇Λ(𝜃𝑖))⊤ ,
and then we consider the update𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝐺−1/2𝑘 ∇Λ(𝜃𝑘).

In high dimensions 𝐺−1/2𝑘 is hard to compute. Therefore typically the up-
date is done using only the diagonal elements of the matrix. In particular, the
diagonal elements of 𝐺𝑘 are (𝐺𝑘)𝑗,𝑗 = ∑𝑘𝑖=1((∇Λ(𝜃𝑖))𝑗)2 and we have𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ⋅ diag(𝐺−1/2𝑘)∇Λ(𝜃𝑘).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.5. Variants of Stochastic Gradient Descent 311

Note that essentially AdaGrad is an adaptive learning algorithm where the
adaptive learning rate is 𝜂 ⋅ diag(𝐺−1/2𝑘).

AdaGrad was conceived in order to deal with sparse and unbalanced data.
So, it makes sense to use different learning rates for different coordinates. Also
note that AdaGrad has a vanishing effective learning rate 𝜂 ⋅ diag(𝐺−1/2𝑘), so it
will typically converge.

Remark 18.14. When applied in practice, AdaGrad usually takes the following
equivalent form

𝑢𝑘+1 = 𝑢𝑘 + ∇Λ(𝜃𝑘) ⊙ ∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 − 𝜂 1𝜖 + √𝑢𝑘+1 ⊙∇Λ(𝜃𝑘),
where division and square root are applied elementwise and 𝜖 > 0 is there
to avoid instabilities in the denominator when a region of small gradients is
reached by the algorithm.

18.5.2. RMSProp. RMSProp (root-mean square propagation)was developed by
[TH12]. A drawback of AdaGrad, presented in Section 18.5.1, is that it treats
all past gradients equally. It wouldmake sense to use decaying weights for past
gradients. One relatively simple way to do so is as follows.

Let 𝛿 ∈ (0, 1) be the factor controlling the exponential forgetting rate.
Then, with 𝛼⊙ 𝛽 = (𝛼1𝛽1, . . . , 𝛼𝑑𝛽𝑑) as the elementwise multiplication of two𝑑-dimensional vectors 𝛼, 𝛽, we set

𝑢𝑘+1 = 𝛿𝑢𝑘 + (1 − 𝛿)∇Λ(𝜃𝑘) ∘ ∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ⋅ 𝑢−1/2𝑘+1 ⊙∇Λ(𝜃𝑘).
Note that by iterating the update rule for 𝑢𝑘+1, we have

𝑢𝑘+1 = 𝛿𝑘+1𝑢0 + (1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗∇Λ(𝜃𝑗) ⊙ ∇Λ(𝜃𝑗).
Since we have

𝛿𝑘+1 + (1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗 = 1,
we get that 𝑢𝑘+1 is the weighted average of 𝑢0 and all the elements of∇Λ(𝜃𝑗) ∘∇Λ(𝜃𝑗) until step 𝑘 + 1. Notice that the most recent updates are more heavily
weighted than the earlier updates.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

312 18. Convergence Analysis of Stochastic Gradient Descent

Remark 18.15. When applied in practice, RMSPropusually takes the following
equivalent form 𝑢𝑘+1 = 𝛿𝑢𝑘 + (1 − 𝛿)∇Λ(𝜃𝑘) ∘ ∇Λ(𝜃𝑘),𝜃𝑘+1 = 𝜃𝑘 − 𝜂 1√𝜖 + 𝑢𝑘+1 ⊙∇Λ(𝜃𝑘),
where division and square root are applied elementwise and 𝜖 > 0 is there
to avoid instabilities in the denominator when a region of small gradients is
reached by the algorithm.

As an example, let us consider the convergence properties of RMSProp in
the case ofΛ(𝜃) = 12‖𝜃‖22. For simplicity, we shall focus on the one-dimensional
case and we will consider 𝜃0 > 0. In this case, the update rule for 𝑢𝑘 becomes

𝑢𝑘+1 = 𝛿𝑘+1𝑢0 + (1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗|𝜃𝑗|2.
The update rule for 𝜃𝑘+1 becomes𝜃𝑘+1 = 𝜃𝑘 (1 − 𝜂𝑢−1/2𝑘+1) .
The latter relation immediately implies that if0 < min𝑘∈ℕ (1 − 𝜂𝑢−1/2𝑘+1) ≤ max𝑘∈ℕ (1 − 𝜂𝑢−1/2𝑘+1) < 𝜁 < 1,

then we will have that 𝜃𝑘 ∈ (0, 𝜃0𝜁𝑘),
which subsequently implies (recall that we have claimed that 𝜁 < 1) thatlim𝑘→∞ 𝜃𝑘 = 0,
i.e., we have established convergence to the global minimum of the loss func-
tion Λ(𝜃) = 12‖𝜃‖2.

It remains to discuss when the claim0 < min𝑘∈ℕ (1 − 𝜂𝑢−1/2𝑘+1) ≤ max𝑘∈ℕ (1 − 𝜂𝑢−1/2𝑘+1) < 𝜁 < 1
holds. Note that this requirement is equivalent to requiring that

𝜂2 < min𝑘∈ℕ |𝑢𝑘| ≤ max𝑘∈ℕ |𝑢𝑘| < (𝜂1 − 𝜁)2
holds.

First, let us address why 𝜂2 < min𝑘∈ℕ |𝑢𝑘| can be assumed to hold. If 𝜃𝑘 →0, then there is nothing to prove. So, let us assume that 𝜃𝑘 does not converge
to 0. This means that there are 𝜏 > 0 and 𝑘0 such that for all 𝑘 > 𝑘0, we have

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.5. Variants of Stochastic Gradient Descent 313

|𝜃𝑘| ≥ 𝜏 > 0. Without loss of generality, we may in fact assume that for all𝑘 > 0, we have |𝜃𝑘| ≥ 𝜏 > 0 (by potentially adjusting 𝜏). Then, we obtain
𝑢𝑘+1 = 𝛿𝑘+1𝑢0 + (1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗|𝜃𝑗|2

≥ 𝛿𝑘+1𝑢0 + 𝜏2(1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗= 𝛿𝑘+1𝑢0 + 𝜏2(1 − 𝛿𝑘+1)= 𝛿𝑘+1(𝑢0 − 𝜏2) + 𝜏2≥ 𝜏2,
if (𝑢0 − 𝜏2) > 0. So, we will then obtain that if 𝜂2 < 𝜏2, then we indeed have
that for all 𝑘 ∈ ℕ, 𝜂2 < 𝜏2 < 𝑢𝑘+1. This calculation shows that even in the case
where it is assumed that 𝜃𝑘 does not converge to 0, then if 𝑢0 is sufficiently
large and 𝜂 is sufficiently small, we will indeed have that 𝜂2 < 𝑢𝑘.

The inequality max𝑘∈ℕ |𝑢𝑘| < (𝜂1−𝜁)2 is equivalent to requiring that the
sequence 𝑢𝑘 is uniformly bounded in 𝑘 ∈ ℕ. This is effectively a consequence
of the first inequality. Indeed, since we can indeed choose things so that 0 <𝜂2 < 𝑢𝑘, assuming that 𝜃0 > 0, we shall have that𝜃𝑘+1 ≤ 𝜃𝑘 ≤ 𝜃𝑘−1 ≤ ⋯ ≤ 𝜃0.

Thus, if 𝜃0 < 𝐾, we shall have that
𝑢𝑘+1 = 𝛿𝑘+1𝑢0 + (1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗|𝜃𝑗|2

≤ 𝛿𝑘+1𝑢0 + 𝐾2(1 − 𝛿) 𝑘+1∑𝑗=1 𝛿𝑘+1−𝑗= 𝛿𝑘+1𝑢0 + 𝐾2(1 − 𝛿𝑘+1)≤ 𝑢0 + 2𝐾2,
providing a uniform upper bound for 𝑢𝑘+1 and thus proving the claim.

Let us conclude this subsection with a useful, general purpose result
that can be of use beyond RMSProp. As a matter of fact, a number of algo-
rithms, such asRMSProp, depend on exponentialmoving averages. Suppose that{𝜉𝑛}𝑛∈ℕ is a bounded sequence of real numbers. Fix 𝛿 ∈ (0, 1) and defineΞ0 = 0,Ξ𝑛+1 = 𝛿Ξ𝑛 + (1 − 𝛿)𝜉𝑛+1, 𝑛 ∈ {0, 1, . . . },

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

314 18. Convergence Analysis of Stochastic Gradient Descent

where Ξ𝑛+1 is a convex combination of its prior value (memory) and the new
data 𝜉. As 𝛿 ↘ 0, Ξ forgets is prior value (no memory), while if 𝛿 ↗ 1, Ξ has
full memory, and the new data is discarded. It is easy to check that we explicitly
have Ξ𝑛 = (1 − 𝛿) 𝑛∑𝑛′=1 𝛿𝑛−𝑛′𝜉𝑛′
for all 𝑛 ∈ ℕ. The sequence Ξ is often referred to as the exponential moving
average of the 𝜉𝑛’s.

Let’s investigate this. A continuous-time Tauberian theorem suggests the
connection between exponential moving averages and regular averages.

Lemma 18.16. Assume that 𝑓 ∈ 𝐵(ℝ+) (i.e., 𝑓 is a bounded function on ℝ+) is
such that ̄𝑓 def= lim𝑇↗∞ 1𝑇 ∫𝑇

𝑡=0 𝑓(𝑡)𝑑𝑡
is well defined. Then lim𝜆↘0 𝜆∫∞

𝑡=0 𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡 = ̄𝑓.
Proof. Define 𝐹(𝑇) def= ∫𝑇

𝑡=0 𝑓(𝑡)𝑑𝑡
for 𝑇 > 0. Integrating by parts,

𝐹(𝑇)𝑒−𝜆𝑇 = −𝜆∫𝑇
𝑡=0 𝑒−𝜆𝑡𝐹(𝑡)𝑑𝑡 +∫𝑇

𝑡=0 𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡.
By assumption, ‖𝑓‖ def= sup𝑡∈(0,∞) |𝑓(𝑡)| is finite; thus

(18.6) |𝐹(𝑇)|𝑇 ≤ ‖𝑓‖
for all 𝑇 > 0. Consequently, lim𝑇↗∞𝐹(𝑇)𝑒−𝜆𝑇 = 0.

Rearranging and multiplying by 𝜆 and then changing the variable of inte-
gration, we have that

𝜆∫∞
𝑡=0 𝑒−𝜆𝑡𝑓(𝑡)𝑑𝑡 = 𝜆2∫∞

𝑡=0 𝑒−𝜆𝑡𝐹(𝑡)𝑑𝑡 = ∫∞
𝑡=0

𝐹 (𝑡/𝜆)𝑡/𝜆 𝑡𝑒−𝑡𝑑𝑡.
In light of (18.6), dominated convergence implies the result. □

This implies a corresponding result for exponential moving averages.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.5. Variants of Stochastic Gradient Descent 315

Lemma 18.17. Assume that {𝜉𝑛}𝑛∈ℕ is a bounded sequence such that̄𝜉 def= lim𝑁↗∞ 1𝑁 ∑𝑛=1 𝜉𝑛
is well defined. Then lim𝛿↗1(1 − 𝛿) ∞∑𝑛=0 𝛿𝑛𝜉𝑛 = ̄𝜉.
Proof. Let’s rewrite the sum as an integral and make the change of variables𝜆 = − ln 𝛿 (so that 𝛿 = 𝑒−𝜆). Then

(1 − 𝛿) ∞∑𝑛=0 𝛿𝑛𝜉𝑛 = (1 − 𝛿)∫∞
𝑡=0 𝛿⌊𝑡⌋𝜉⌊𝑡⌋𝑑𝑡 = (1 − 𝑒−𝜆)∫∞

𝑡=0 𝑒−𝜆⌊𝑡⌋𝜉⌊𝑡⌋𝑑𝑡.
The asymptotic 𝛿 ↗ 1 is equivalent to 𝜆 ↘ 0. Rearranging so that we can

use the previous result, we write

(1 − 𝛿) ∞∑𝑛=0 𝛿𝑛𝜉𝑛 = (1 − 𝑒−𝜆)∫∞
𝑡=0 𝑒−𝜆𝑡 exp[−𝜆 (⌊𝑡⌋ − 𝑡)] 𝜉⌊𝑡⌋𝑑𝑡

= 1 − 𝑒−𝜆𝜆 {𝜆∫∞
𝑡=0 𝑒−𝜆𝑡𝜉⌊𝑡⌋𝑑𝑡 + 𝜆∫∞

𝑡=0 𝑒−𝜆𝑡 {exp[𝜆 (𝑡 − ⌊𝑡⌋)] − 1} 𝜉⌊𝑡⌋𝑑𝑡} .
By the above standard Tauberian theorem,

lim𝜆↘0 𝜆∫∞
𝑡=0 𝑒−𝜆𝑡𝜉⌊𝑡⌋𝑑𝑡 = lim𝑇↗∞ 1𝑇 ∫𝑇

𝑡=0 𝜉⌊𝑡⌋𝑑𝑡 = ̄𝜉.
We of course also have that

lim𝜆↘0 1 − 𝑒−𝜆𝜆 = 1.
By assumption, ‖𝜉‖ def= sup𝑛∈ℕ |𝜉𝑛| is finite. Using this and rescaling,||𝜆∫∞
𝑡=0 𝑒−𝜆𝑡 {exp[𝜆 (𝑡 − ⌊𝑡⌋)] − 1} 𝜉⌊𝑡⌋𝑑𝑡|| ≤ ‖𝜉‖∫∞

𝑠=0 𝑒−𝑠 |exp[𝑠 − 𝜆⌊𝑠/𝜆⌋] − 1| 𝑑𝑠.
Since ⌊𝑥⌋ ≤ 𝑥 ≤ ⌊𝑥⌋ + 1 for all 𝑥 ≥ 0,⌊𝑠/𝜆⌋ ≤ 𝑠/𝜆 < ⌊𝑠/𝜆⌋ + 1;

multiplying by 𝜆 and subtracting,0 ≤ 𝑠 − 𝜆⌊𝑠/𝜆⌋ ≤ 𝜆.
Hence, we obtain|exp[𝑠 − 𝜆⌊𝑠/𝜆⌋] − 1| = exp[𝑠 − 𝜆⌊𝑠/𝜆⌋] − 1 ≤ 𝑒𝜆 − 1,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

316 18. Convergence Analysis of Stochastic Gradient Descent

which then leads to

lim𝜆↘0 ||𝜆∫∞
𝑡=0 𝑒−𝜆𝑡 {exp[𝜆 (𝑡 − ⌊𝑡⌋)] − 1} 𝜉⌊𝑡⌋𝑑𝑡|| ≤ lim𝜆↘0 ‖𝜉‖∫∞

𝑠=0 𝑒−𝑠 (𝑒𝜆 − 1) 𝑑𝑠
= lim𝜆↘0 ‖𝜉‖ (𝑒𝜆 − 1)= 0.

Combining things together, we get the claim. □

18.5.3. ADAM. ADAM (adaptive learning method) was introduced in [KB15].
ADAM combines RMSProp (Section 18.5.2) and the momentum method. ADAM
uses exponential moving averages to estimate first and second moments of the
gradient and then applies bias corrections. We initialize𝑚0 = 𝑢0 = 0, consider
the exponential decay rates 𝛿1, 𝛿2 ∈ (0, 1), and define the updates

𝑚𝑘+1 = 𝛿1𝑚𝑘 + (1 − 𝛿1)∇Λ(𝜃𝑘),𝑢𝑘+1 = 𝛿2𝑢𝑘 + (1 − 𝛿2)∇Λ(𝜃𝑘) ⊙ ∇Λ(𝜃𝑘).
The moments 𝑚𝑘+1 and 𝑢𝑘+1 can be thought of as biased estimates of the

first and second moments of∇Λ(𝜃) dictated by exponential moving averaging.
In particular, by iterating the updates above we get

𝑚𝑘+1 = (1 − 𝛿1) 𝑘+1∑𝑖=1 𝛿𝑘+1−𝑖1 ∇Λ(𝜃𝑖),
𝑢𝑘+1 = (1 − 𝛿2) 𝑘+1∑𝑖=1 𝛿𝑘+1−𝑖2 ∇Λ(𝜃𝑖) ⊙ ∇Λ(𝜃𝑖).

Next, we take expectations on the left and right-hand side of the formulas
above. As done in [KB15], assuming that the first and second moments of∇Λ(𝜃𝑖) are stationary, we would get that

𝔼𝑚𝑘+1 = 𝔼[(1 − 𝛿1) 𝑘+1∑𝑖=1 𝛿𝑘+1−𝑖1 ∇Λ(𝜃𝑖)] = (1 − 𝛿𝑘+11)𝔼∇Λ(𝜃𝑘+1),
𝔼𝑢𝑘+1 = 𝔼[(1 − 𝛿2) 𝑘+1∑𝑖=1 𝛿𝑘+1−𝑖2 ∇Λ(𝜃𝑖) ⊙ ∇Λ(𝜃𝑖)]

= (1 − 𝛿𝑘+12)𝔼 [∇Λ(𝜃𝑘+1) ⊙ ∇Λ(𝜃𝑘+1)] .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.5. Variants of Stochastic Gradient Descent 317

This calculation motivates the introduction of the bias-corrected first and
second raw moment estimates,

𝑚̂𝑘+1 = 11 − 𝛿𝑘+11 𝑚𝑘+1,
𝑢̂𝑘+1 = 11 − 𝛿𝑘+12 𝑢𝑘+1.

With that in mind the final recursive formula for 𝜃𝑘+1 is defined to be
𝜃𝑘+1 = 𝜃𝑘 − 𝜂 𝑚̂𝑘+1√𝑢̂𝑘+1 + 𝜖,

where 𝜖 > 0 is there to prevent dividing by zero. Typical values suggested by
the authors of [KB15] for the parameters are 𝛿1 = 0.9, 𝛿2 = 0.999, 𝜖 = 10−8,
and 𝜂 = 10−3. ADAM is very popular for neural networks.

18.5.4. AdaMax. AdaMax (adaptive maximum method) was introduced in
[KB15]. AdaMax is a variant of ADAM 18.5.3 using the infinity norm. Before
presenting the method, let us first comment on the connection with ADAM. In
ADAM, the update of 𝑢𝑘+1 is

𝑢𝑘+1 = (1 − 𝛿2) 𝑘+1∑𝑖=1 𝛿𝑘+1−𝑖2 ∇Λ(𝜃𝑖) ⊙ ∇Λ(𝜃𝑖).
This can be thought of as the update rule for individual weights scaling

their gradients inversely proportional to a scaled 𝐿2 norm of the individual cur-
rent and past gradients. One can envision generalizing the 𝐿2 norm based up-
date rule to an 𝐿𝑝 normbased update rule. Aswewill see next if we take𝑝 → ∞
one obtains a simple and stable algorithm, [KB15].

In particular, let us consider

𝑢𝑝𝑘+1 = (1 − 𝛿𝑝2) 𝑘+1∑𝑖=1 𝛿𝑝(𝑘+1−𝑖)2 ‖∇Λ(𝜃𝑖)‖𝑝𝑝.
Next, we see how this update behaves as 𝑝 → ∞. We get

𝑢𝑘+1 = lim𝑝→∞ (𝑢𝑝𝑘+1)1/𝑝 = lim𝑝→∞((1 − 𝛿𝑝2) 𝑘+1∑𝑖=1 𝛿𝑝(𝑘+1−𝑖)2 ‖∇Λ(𝜃𝑖)‖𝑝𝑝)1/𝑝

= lim𝑝→∞(𝑘+1∑𝑖=1 (𝛿(𝑘+1−𝑖)2 ‖∇Λ(𝜃𝑖)‖𝑝)𝑝)1/𝑝
= max{𝛿𝑘2 ‖∇Λ(𝜃1)‖∞, 𝛿𝑘−12 ‖∇Λ(𝜃2)‖∞, . . . , 𝛿2‖∇Λ(𝜃𝑘)‖∞, ‖∇Λ(𝜃𝑘+1)‖∞}.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

318 18. Convergence Analysis of Stochastic Gradient Descent

The latter now can be written as𝑢𝑘+1 = max{𝛿2𝑢𝑘, ‖∇Λ(𝜃𝑘+1)‖∞}
with 𝑢0 = 0 and there is no need to correct for initialization bias in this case.

Thus summarizing, we initialize 𝑚0 = 𝑢0 = 0, consider the exponential
decay rates 𝛿1, 𝛿2 ∈ (0, 1) as in Section 18.5.3, and define the updates𝑚𝑘+1 = 𝛿1𝑚𝑘 + (1 − 𝛿1)∇Λ(𝜃𝑘),𝑢𝑘 = max{𝛿2𝑢𝑘−1, ‖∇Λ(𝜃𝑘)‖∞}.

Then the parameters are updated as𝜃𝑘+1 = 𝜃𝑘 − 𝜂 11 − 𝛿𝑘+11
𝑚𝑘+1𝑢𝑘 .

18.6. Brief Concluding Remarks

The proofs of Theorems 18.6, 18.7, 18.8, and 18.9 are based on [BCN18]. Some
of the first main convergence results appeared in [BT00]. The book chap-
ter [Bot12] contains much practical advice on how to implement and make
use of SGD in practical applications. Momentum methods with SGD are dis-
cussed in [LB20,KNJK18]. The variants of SGD, such as AdaGrad, RMSProp,
ADAM, and AdaMax, all of which are routinely used in practice, were introduced
in [DHS11], [TH12], [KB15], and [KB15], respectively. The books [BPM90,
KY03] cover a range of topics in stochastic approximation and adaptive algo-
rithms in general.

18.7. Exercises

Exercise 18.1. Consider the stochastic gradient descent update𝑥𝑡+1 = 𝑥𝑡 − 𝜂(∇Λ(𝑥𝑡) + 𝜎𝜉𝑡),
where 𝜂 < 1, 𝜉𝑡 ∼ 𝑁(0, 1) i.i.d., and Λ(𝑥) = 12‖𝑥‖22. Show that as 𝑡 → ∞, 𝑥𝑡
converges in distribution to a 𝑁 (0, 𝜂2𝜍22𝜂−𝜂2) . Can you interpret the effect of the
injected noise 𝜎𝜉𝑡?
Exercise 18.2. What are the effects of the different hyperparameters in the
RMSProp algorithm? What is the advtantage of the RMSProp algorithm over
the AdaGrad algorithm?
Exercise 18.3. Suppose we randomly initialize a neural network𝔪(𝑥; 𝜃) and
train it for a long time with the final parameter estimate being 𝜃1. Suppose, we
again randomly initialize the same neural network model𝔪(𝑥; 𝜃) and train it
again with the final parameter estimate being 𝜃2. Will 𝜃1 and 𝜃2 be similar and
why?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

18.7. Exercises 319

Exercise 18.4. Suppose we randomly train 𝐾 neural network models𝔪(𝑥; 𝜃1), . . . ,𝔪(𝑥; 𝜃𝐾)
using stochastic gradient descent. Furthermore, each time we train a new
model the initial parameter is randomly initialized. Therefore, the trained𝜃1, . . . , 𝜃𝐾 are i.i.d.

Is it correct to use the ensemble model𝔪(𝑥; 1𝐾 ∑𝐾𝑘=1 𝜃𝑘), and why?
Exercise 18.5. Consider an example where the neural network will not train
(i.e., the gradient with respect to at least one of the parameters will always be
zero). It is sufficient to consider mean-square error, a single data sample (𝑥, 𝑦),
and a single ReLU hidden unit.

Exercise 18.6. Provide the details of the proof of Lemma 18.3.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 19

The Neural Tangent
Kernel Regime

19.1. Introduction

The uniform approximation theory for neural networks that we explored in
Chapter 16 shows that artificial neural networkswith sufficientlymany hidden
units can approximate any reasonable function. With that in mind, we can ask
the following natural questions:• Towhere does the optimization of artificial neural networks converge?• How does the loss surface of artificial neural networks look?• Why do neural networks typically generalize well? Namely, why do

neural networks tend to yield good results on unseen data?

A number of results in the literature (see [CHM+15,PDGB14,PB17]) sug-
gest that• Finding bad minima, i.e., local minima with a much higher cost than

global minima, is a low probability event as the number of hidden
units increase.• For large size networks, good local minima are equivalent, yield sim-
ilar performance, and are easier to find than bad local minima.

In this chapter and in Chapter 20, we will visit the questions posed above
through the lens of scaling limits for neural networks. As we shall see, proper
scaling of the neural network can lead to a well-defined limit as the number
of hidden units grows to infinity. In turn, this limit can be analyzed and offer

321

10.1090/gsm/252/20

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

322 19. The Neural Tangent Kernel Regime

valuable information on how both the limiting loss function and the limit of
the scaled neural network behave.

Before we dive into the different scaling limits, we motivate why appropri-
ate scalings make sense through an investigation of the weight initialization
scheme suggested by [GB10] in Section 19.2. The neural tangent kernel (also
called the linear) regime describes the limit of the trained neural network that
we get when the parameters are initialized motivated by a square-root weight
initialization. The neural tangent kernel (NTK) is presented in Section 19.3. In
practice during the training phase, time is discrete and SGD is used. The exact
mathematical analysis, convergence to, and convergence properties of theNTK
limit (the linear regime) are then presented in Sections 19.4–19.7. In Chapter
20 we will study a different scaling regime, the mean field scaling regime (also
called the nonlinear regime).

19.2. Weight Initialization

In this section, we discuss weight initialization. Weight initialization plays an
important role in avoiding (to a certain degree) the vanishing and exploding
gradient problems. The discussion that follows is largely heuristic, but it is
indicative of how one can think about this issue and also represents what is
often being done in practice.

In particular, we will go over the mathematics behind the so-called Xavier
initialization [GB10], which has been very influential for weight initialization
during training of neural networks; see also Remark 19.1.

Let 𝑁ℓ−1 be the number of hidden units in the (ℓ − 1)-th layer. Let us start
by considering the standard feed forward neural network

𝐻(ℓ)𝑗 = 𝜎(𝑁ℓ−1∑𝑖=1 𝑤(ℓ)𝑖,𝑗 𝐻(ℓ−1)𝑖 + 𝑏(ℓ)𝑗) .
Let us set 𝑍(ℓ−1)𝑗 = ∑𝑁ℓ−1𝑖=1 𝑤(ℓ)𝑖,𝑗 𝐻(ℓ−1)𝑖 + 𝑏(ℓ)𝑗 .
Let us see why randomness at every layer in the initialization is needed and

why proper scaling makes sense. We will make use of the following approxi-
mation. Consider a smooth function 𝑔 and a square integrable random variable𝑋 . A linear approximation of 𝑋 about 𝔼𝑋 , using a first order Taylor expansion,
suggests

Var(𝑔(𝑋)) ≈ (𝑔′(𝔼𝑋))2 Var𝑋.(19.1)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.2. Weight Initialization 323

For the sake of this heuristic discussion, let us assume momentarily that𝑤(ℓ)𝑖𝑗 , 𝑏(ℓ)𝑗 are deterministic. We would then obtain

Var(𝐻(ℓ)𝑗) ≈ (𝜎′ (𝑁ℓ−1∑𝑖=1 𝑤(ℓ)𝑖,𝑗 𝔼𝐻(ℓ−1)𝑖 + 𝑏(ℓ)𝑗))2 (𝑁ℓ−1∑𝑖=1 (𝑤(ℓ)𝑖𝑗)2 Var(𝐻(ℓ−1)𝑗)) .
Applying now the Cauchy-Schwarz inequality and assuming that ‖𝜎′‖ ≤𝐶 < ∞, we get𝑁ℓ−1∑𝑗 (Var(𝐻(ℓ)𝑗))2 ≤ 𝐶4 𝑁ℓ−1∑𝑖,𝑗 (𝑤(ℓ)𝑖𝑗)4 𝑁ℓ−1∑𝑖=1 (Var(𝐻(ℓ−1)𝑗))2 .

Thus, if∑𝑁ℓ−1𝑗 (𝑤(ℓ)𝑖𝑗)4 is small, then∑𝑁ℓ−1𝑗 (Var(𝐻(ℓ)𝑗))2 may decrease when ℓ
increases. So, in that case after passing through a few layers the signal becomes
insignificant.

If, on the other hand, |𝑤(ℓ)𝑖𝑗 | are large in magnitude, then with 𝜎(𝑥) = 𝑥 we
get that (assume momentarily that 𝑤(ℓ)𝑖𝑗 , 𝑏(ℓ)𝑗 are deterministic)

Var(𝐻(ℓ)𝑗) = 𝑁ℓ−1∑𝑖=1 (𝑤(ℓ)𝑖𝑗)2 Var(𝐻(ℓ−1)𝑖) ,
which suggests that in that case Var(𝐻(ℓ)𝑗) can increase with ℓ.

If 𝜎(𝑥) = 𝑒𝑥𝑒𝑥+1 is the sigmoid function, then large |𝑤(ℓ)𝑖𝑗 | means large∑𝑁ℓ−1𝑖=1 𝑤(ℓ)𝑖𝑗 𝐻(ℓ−1)𝑖 , in which case 𝜎 becomes saturated leading to the vanishing
gradient problem.

This then brings up the question of how do we initialize the weights in a
way that would avoid the issues just described. The idea is to findweight values
for which the variance remains fairly unchanged as the signal passes through
each layer.

The analysis will be done in two steps, the forward pass and the backward
pass. The general assumptions we will make here are the following.• All inputs, all layers, and all weights at initialization are independent

and identically distributed.• The inputs are normalized with zero means, i.e., 𝔼𝐻(0)𝑖 = 0. All
weights have mean zero at initialization, i.e., 𝔼𝑤(ℓ)𝑖,𝑗 = 0.• The activation function 𝜎 is an odd function (𝜎(−𝑥) = −𝜎(𝑥)) such
that𝜎′(0) = 1. For example𝜎(𝑥) = tanh(𝑥) satisfies these constraints.• To simplify the algebra, let us also assume that the biases are zero, i.e.,𝑏ℓ𝑗 = 0 for all 𝑗, ℓ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

324 19. The Neural Tangent Kernel Regime

19.2.1. Forward Pass. We start by applying formula (19.1) to the activation
function 𝜎. Since 𝜎 is assumed to be an odd functionwith 𝜎′(0) = 1, wemay as-
sume that 𝜎(𝑥) ≈ 𝑥 close to zero. Recall that 𝑤(ℓ)𝑖,𝑗 𝐻(ℓ−1)𝑖 will be by assumption
zero at initialization.

We have the following calculations

Var(𝐻(ℓ)𝑗) ≈ (𝜎′ (𝑁ℓ−1∑𝑖=1 𝔼 (𝑤(ℓ)𝑖,𝑗 𝐻(ℓ−1)𝑖)))2 Var(𝑁ℓ−1∑𝑖=1 𝑤(ℓ)𝑖𝑗 𝐻(ℓ−1)𝑗)
≈ Var(𝑁ℓ−1∑𝑖=1 𝑤(ℓ)𝑖𝑗 𝐻(ℓ−1)𝑗) (𝜎(𝑥) ≈ 𝑥 around 𝑥 = 0)
= 𝑁ℓ−1∑𝑖=1 Var(𝑤(ℓ)𝑖𝑗 𝐻(ℓ−1)𝑗) (𝑤(ℓ)𝑖𝑗 , 𝐻(ℓ−1)𝑗 are independent)
= 𝑁ℓ−1∑𝑖=1 [(𝔼 (𝑤(ℓ)𝑖𝑗))2 Var(𝐻(ℓ−1)𝑗) + Var(𝑤(ℓ)𝑖𝑗) (𝔼 (𝐻(ℓ−1)𝑗))2

+Var(𝑤(ℓ)𝑖𝑗)Var(𝐻(ℓ−1)𝑗)](variance of product formula for two random variables)
= 𝑁ℓ−1∑𝑖=1 [Var(𝑤(ℓ)𝑖𝑗)Var(𝐻(ℓ−1)𝑗)]

(since by assumption 𝔼 (𝑤(ℓ)𝑖𝑗) = 𝔼 (𝐻(ℓ−1)𝑗) = 0)= 𝑁ℓ−1 [Var(𝑤(ℓ)𝑖𝑗)Var(𝐻(ℓ−1)𝑗)] (i.i.d. assumption).
Requiring now that the variance of the different hidden layers is the same,

we immediately obtain that we should choose

Var (𝑤(ℓ)𝑖𝑗) = 1𝑁ℓ−1 .
19.2.2. Backward Pass. The starting point is the desire to maintain the vari-
ance of the gradient of the cost as it propagates through layers, in particular,
we would like to have

Var(𝜕Λ𝜕𝑍(ℓ−1)) = Var(𝜕Λ𝜕𝑍(ℓ)) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.2. Weight Initialization 325

Starting with the chain rule, we have the following computations:

Var(𝜕Λ𝜕𝑍(ℓ−1)𝑗) = Var(𝑁ℓ∑𝑖=1𝑤(ℓ)𝑖𝑗 𝜕Λ𝜕𝑍(ℓ)𝑖 𝜎′(𝑍(ℓ−1)𝑖)) (chain rule)
≈ 𝑁ℓ∑𝑖=1Var(𝑤(ℓ)𝑖𝑗 𝜕Λ𝜕𝑍(ℓ)𝑖)
(by independence, 𝜎(𝑥) ≈ 𝑥 around 𝑥 = 0 and 𝔼(𝑍(ℓ−1)𝑖) = 0)

= 𝑁ℓ∑𝑖=1 [(𝔼 (𝑤(ℓ)𝑖𝑗))2 Var(𝜕Λ𝜕𝑍(ℓ)𝑖) + Var(𝑤(ℓ)𝑖𝑗) (𝔼 (𝜕Λ𝜕𝑍(ℓ)𝑖))2
+Var(𝑤(ℓ)𝑖𝑗)Var(𝜕Λ𝜕𝑍(ℓ)𝑖)]
(variance of product formula for two random variables)

= 𝑁ℓ∑𝑖=1 [Var(𝑤(ℓ)𝑖𝑗)Var(𝜕Λ𝜕𝑍(ℓ)𝑖)]
(by assuming 𝔼 (𝑤(ℓ)𝑖𝑗) = 𝔼 (𝜕Λ𝜕𝑍(ℓ)𝑖) = 0)

= 𝑁ℓ [Var(𝑤(ℓ)𝑖𝑗)Var(𝜕Λ𝜕𝑍(ℓ)𝑖)] (i.i.d. assumption).
So eventually requiring that Var(𝜕Λ𝜕𝑍(ℓ−1)) = Var(𝜕Λ𝜕𝑍(ℓ)) leads to the choice

Var(𝑤(ℓ)𝑖𝑗) = 1𝑁ℓ .
19.2.3. Conclusions andMotivation for Scaling Limits. The forward and
backward calculations suggest that the variance of weights should be chosen
to be inversely proportional to the number of hidden units in the given layer
and in the previous layer too.

Even though these two expressions do not agree in the case 𝑁ℓ ≠ 𝑁ℓ−1,
one can replace them by the requirement that the variance of the weights is
proportional to the average of the two, i.e.,

Var(𝑤(ℓ)𝑖𝑗) = 2𝑁ℓ + 𝑁ℓ−1 ,
in which case the essence of themessage coming from these calculations is still
maintained. Namely, a principled choice for the weights is to initialize them
so that their variance is inversely proportional to the number of layers of the
current layer and/or of the previous layer. Even though these heuristics may

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

326 19. The Neural Tangent Kernel Regime

not be solving the vanishing or exploding gradient problems, they are at least
improving upon this issue.

For example, the following are then viable choices based on this frame-
work. • If 𝑤𝑖𝑗 are Gaussian, then we are led to choose𝑤𝑖𝑗 ∼ 𝑁 (0, 2𝑁ℓ + 𝑁ℓ−1) .• If 𝑤𝑖𝑗 are uniform, then we are led to choose

𝑤𝑖𝑗 ∼ Uniform[−√ 6𝑁ℓ−1 + 𝑁ℓ−1 ,√ 6𝑁ℓ−1 + 𝑁ℓ−1] .
The latter calculation stems from the fact that if𝑊 ∼ Uniform(−𝑎, 𝑎),
then Var(𝑊) = 13𝑎2 and then we set 13𝑎2 = 2𝑁ℓ+𝑁ℓ−1 and solve for 𝑎.

Remark 19.1. In addition to the Xavier initialization that we presented
here, another popular initialization scheme is the so-called He initialization
[HZRS15] (sometimes also referred to Kaiming initialization). The He initial-
ization suggests the choice of 12𝑁ℓ Var(𝑤(ℓ)𝑖𝑗) = 1, which leads to a zero-mean
Gaussian initialization with standard deviation√2/𝑁ℓ. The biases 𝑏(ℓ)𝑗 are ini-
tialized at zero. The difference between He initialization and Xavier initial-
ization is that while the derivation for the Xavier initialization is based on the
linear activation function, the derivation of He initialization takes into account
ReLU activation functions.

The next natural question to pose is how a neural network that incorpo-
rates such initialization behaves in the limit as 𝑁ℓ−1, 𝑁ℓ → ∞. We visit this
question in the next section and the analysis gives rise to what is referred to
in the literature as the neural tangent kernel, [JGH18]. As we shall see in the
next section, weight initialization can be thought of being equivalent to an ap-
propriate scaling of the neural network. This way of thinking gives rise to other
kinds of scaling, such as the mean field scaling that we will explore in Chapter
20.

19.3. The Linear Asymptotic Regime: Neural Tangent Kernel

The neural tangent kernel (NTK) was initially introduced in [JGH18] and has
been quite influential on how one can think about limiting theory and related
analysis for training neural networks. The motivation for the formulation that
follows comes from the weight initialization scalings that we saw in Section
19.2. In order to simplify the presentation and introduce the ideas in a more
pedagogical setting, we restrict our attention to the shallow neural network

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.3. The Linear Asymptotic Regime: Neural Tangent Kernel 327

case. An induction argument then directly gives the limit in the case of deep
neural networks.

In order to introduce the ideas, consider the simplest possible setting of a
shallow neural network where we set

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),

with 𝐶𝑛 ∈ ℝ, 𝑊𝑛 ∈ ℝ𝑑, 𝑥 ∈ ℝ𝑑, and 𝜎(⋅) ∶ ℝ → ℝ. The number of hidden
units is 𝑁. We note that even though we do not include the bias term, i.e., we
consider the model 𝔪𝑁(𝑥; 𝜃) = 1√𝑁 ∑𝑁𝑛=1 𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥) instead of 𝔪𝑁(𝑥; 𝜃) =1√𝑁 ∑𝑁𝑛=1 𝐶𝑛𝜎(𝑊𝑛 ⋅𝑥+𝑏𝑛), we do sowithout loss of generality. Indeed, one can
always consider the vector 𝑥 to have the first element being equal to 1 which
then immediately incorporates the bias term.

This formulation is slightly different from the discussion in Section 19.2,
where onewould typically have no scaling of 1√𝑁 and instead sample𝐶,𝑊 from

mean zero normal distribution with variance of order 1𝑁 . We do note here that
scaling the variance of 𝐶 by 1/𝑁 without any scaling in the neural network is
the same as scaling the neural network by 1/√𝑁 and sampling 𝐶 from mean
zero normal distribution with unit variance. The current formulation though
is key in order to obtain a consistent asymptotic behavior as 𝑁 → ∞.

This section demonstrates how the neural network behaves as𝑁 → ∞ and
shows how the NTK arises. In order to motivate things, we shall treat time in
this section as being continuous, even though in reality time evolves discretely.
In this section we also use gradient descent. In Section 19.4 we switch gears
andwewill rigorously derive the evolution in discrete time andusing stochastic
gradient descent instead of gradient descent.

Let us assume that we have𝑀 datapoints and that the loss function is

Λ𝑁(𝜃) = 12 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃))2 .
Assuming that parameters 𝜃𝑡 = (𝐶1𝑡 , . . . , 𝐶𝑁𝑡 ,𝑊1𝑡 , . . . ,𝑊𝑁𝑡) ∈ ℝ𝑁×(1+𝑑)

evolve in continuous time based on gradient descent, we have the following

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

328 19. The Neural Tangent Kernel Regime

update equations:

̇𝐶𝑖𝑡 = 𝜂√𝑁 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡)) 𝜎(𝑊𝑛𝑡 ⋅ 𝑥𝑚),
𝑊̇ 𝑖𝑡 = 𝜂√𝑁 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡)) 𝐶𝑛𝑡 𝜎′(𝑊𝑛𝑡 ⋅ 𝑥𝑚)𝑥𝑚,(19.2)

𝔪𝑁(𝑥; 𝜃𝑡) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝑡 𝜎(𝑊𝑛𝑡 ⋅ 𝑥),

with 𝜂 > 0 a given learning rate. At time 𝑡 = 0 we initialize the parameters 𝜃0
in an i.i.d. fashion, from some distribution 𝜇0 with at least two finite moments.

Let us next define the empirical measure sitting on the learned parameters𝜃𝑡,
𝜇𝑁𝑡 = 1𝑁 𝑁∑𝑛=1 𝛿𝜃𝑛𝑡 .

Differentiating now in time the model 𝔪𝑁(𝑥; 𝜃𝑡) and using the update
equations from (19.2), we obtain

𝑑𝑑𝑡𝔪𝑁(𝑥; 𝜃𝑡) = 1√𝑁
𝑁∑𝑛=1 [̇𝐶𝑛𝑡 𝜎(𝑊𝑛𝑡 ⋅ 𝑥) + 𝐶𝑛𝑡 𝜎′(𝑊𝑛𝑡 ⋅ 𝑥)𝑊̇𝑛𝑡 ⋅ 𝑥]

= 𝜂𝑁 𝑁∑𝑛=1 1𝑀
𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡))

× [𝜎(𝑊𝑛𝑡 ⋅ 𝑥𝑚)𝜎(𝑊𝑛𝑡 ⋅ 𝑥) + |𝐶𝑛𝑡 |2𝜎′(𝑊𝑛𝑡 ⋅ 𝑥𝑚)𝜎′(𝑊𝑛𝑡 ⋅ 𝑥)𝑥𝑚 ⋅ 𝑥]
= 𝜂𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡))
× ⟨𝜎(𝑤 ⋅ 𝑥𝑚)𝜎(𝑤 ⋅ 𝑥) + 𝑐2𝜎′(𝑤 ⋅ 𝑥𝑚)𝜎′(𝑤 ⋅ 𝑥)𝑥𝑚 ⋅ 𝑥, 𝜇𝑁𝑡 ⟩ .

If we now set𝐴(𝑥, 𝑥′; 𝜇) = ⟨𝜎(𝑤 ⋅ 𝑥′)𝜎(𝑤 ⋅ 𝑥) + 𝑐2𝜎′(𝑤 ⋅ 𝑥′)𝜎′(𝑤 ⋅ 𝑥)𝑥′ ⋅ 𝑥, 𝜇⟩ ,
we see that for a given measure 𝜇, the matrix 𝐴 with elements 𝐴(𝑥𝑖, 𝑥𝑗; 𝜇) for𝑖, 𝑗 = 1, . . . ,𝑀 is a symmetric and positive semidefinite matrix, see Corollary
19.6. Hence it defines a kernel and is the basis for the NTK. In particular, we
can write 𝑑𝑑𝑡𝔪𝑁(𝑥; 𝜃𝑡) = 𝜂𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡)) 𝐴(𝑥, 𝑥𝑚; 𝜇𝑁𝑡).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.3. The Linear Asymptotic Regime: Neural Tangent Kernel 329

At time 𝑡 = 0, i.e., at initialization, the i.i.d. assumption on the random
variables 𝜃0 shows that for a given 𝑥 (this is the standard central limit theorem
for i.i.d. random variables, see Appendix A),

𝔪𝑁(𝑥; 𝜃0) 𝑑→ 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ 𝑥)|2, 𝜇0⟩).
Let us denote the limit Gaussian distribution 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ 𝑥)|2, 𝜇0⟩) by𝒢(𝑥). For a finite dataset𝒟, we shall write 𝒢 for the vector with elements 𝒢(𝑥).
The next step is to investigate the behavior of the empirical measure 𝜇𝑁

as 𝑁 → ∞. We claim that 𝜇𝑁𝑡 actually converges to the distribution at initial-
ization, i.e., 𝜇𝑁𝑡 → 𝜇0 as 𝑁 → ∞. Namely, we claim that as 𝑁 gets large, the
distribution of the parameters remains very close to their distribution at initial-
ization. To see this, let us fix a smooth and bounded function 𝑔 ∈ 𝐶1𝑏(ℝ𝑑+1)
and study the evolution in time of the pairing ⟨𝑔, 𝜇𝑁𝑡 ⟩. Using (19.2), we have

𝑑𝑑𝑡 ⟨𝑔, 𝜇𝑁𝑡 ⟩ = 𝑑𝑑𝑡 1𝑁 𝑁∑𝑛=1 𝑔(𝐶𝑛𝑡 ,𝑊𝑛𝑡)
= 1𝑁 𝑁∑𝑛=1 [𝜕𝑐𝑔(𝐶𝑛𝑡 ,𝑊𝑛𝑡) ̇𝐶𝑛𝑡 + ∇𝑤𝑔(𝐶𝑛𝑡 ,𝑊𝑛𝑡) ⋅ 𝑊̇𝑛𝑡]
= 𝜂𝑁3/2

𝑁∑𝑛=1 1𝑀
𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡))

× [𝜕𝑐𝑔(𝐶𝑛𝑡 ,𝑊𝑛𝑡)𝜎(𝑊𝑛𝑡 ⋅ 𝑥𝑚) + ∇𝑤𝑔(𝐶𝑛𝑡 ,𝑊𝑛𝑡) ⋅ 𝐶𝑛𝑡 𝜎′(𝑊𝑛𝑡 ⋅ 𝑥𝑚)𝑥𝑚]
= 𝜂√𝑁 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃𝑡))
× ⟨𝜕𝑐𝑔(𝑐, 𝑤)𝜎(𝑤 ⋅ 𝑥𝑚) + ∇𝑤𝑔(𝑐, 𝑤) ⋅ 𝑐𝜎′(𝑥 ⋅ 𝑥𝑚)𝑥𝑚, 𝜇𝑁𝑡 ⟩ .

Assume now that the activation function is 𝜎 ∈ 𝐶1𝑏. The latter expres-
sion and boundedness of the components on its right-hand side (which can be
derived similarly to the corresponding statement in discrete time, see Section
19.5.1) immediately show that as 𝑁 → ∞⟨𝑔, 𝜇𝑁𝑡 ⟩ → ⟨𝑔, 𝜇0⟩ .

Hence, we then get as 𝑁 → ∞ that for fixed 𝑥, 𝑥′𝐴(𝑥, 𝑥′; 𝜇𝑁𝑡) → 𝐴(𝑥, 𝑥′; 𝜇0).
This last statement says that for large 𝑁, the scaling of the neural network

by 1/√𝑁 leads to the kernel 𝐴 being constant over time and to the distribution
of the trained parameters being close to their distribution at initialization.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

330 19. The Neural Tangent Kernel Regime

Let us now set𝔪𝑁 = (𝔪𝑁(𝑥1), . . . ,𝔪𝑁(𝑥𝑀)). The preceding calculations
show that𝔪𝑁 → 𝔪 as 𝑁 → ∞ where𝔪 satisfies

𝑑𝔪𝑡 = 𝜂𝑀𝐴(̂𝑌 − 𝔪𝑡)𝑑𝑡,𝔪0 = 𝒢,
with ̂𝑌 = (𝑦1, . . . , 𝑦𝑀).

Therefore, 𝔪𝑡 is the solution to a continuous-time gradient descent algo-
rithm which minimizes the quadratic objective function,

𝐽(̂𝑌 ,𝔪𝑡) = 12(̂𝑌 − 𝔪𝑡)⊤𝐴(̂𝑌 − 𝔪𝑡).
Therefore, even though the prelimit optimization problem is nonconvex,

the neural network’s limit will minimize a quadratic objective function.
Then as we shall see in Theorem 19.4, given that under the proper assump-

tions 𝐴 is positive definite by Corollary 19.6, we have that𝔪𝑡 = ̂𝑌 + (𝒢 − ̂𝑌) 𝑒−𝐴𝑡,
showing that𝔪𝑡 → ̂𝑌 as 𝑡 → ∞ exponentially fast. That is, in the limit of large
numbers of hidden units and many training steps, the neural network model
converges to a global minimum with zero training error. Namely, in the limit
as𝑁 → ∞ and 𝑡 → ∞, the algorithm recovers the true (at least in-sample) data.

19.4. The Linear Asymptotic Regime in the Discrete Time Case

In this sectionwe rigorously derive theNTKanalyzing the algorithm in discrete
time which is also what is actually implemented in practice. We also show this
result for the stochastic gradient descent algorithm.

To simplify the discussion we shall consider the simplest possible setting
where we set

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),

where 𝐶𝑛 ∈ ℝ, 𝑊𝑛 ∈ ℝ𝑑, 𝑥 ∈ ℝ𝑑, and 𝜎(⋅) ∶ ℝ → ℝ. The number of
hidden units is 𝑁 and the output is scaled by a factor 1√𝑁 (the widely used
Xavier initialization [GB10]). We note that the analysis that follows can be
generalized to feed forward neural networks of arbitrary depth with a little bit
more additional work.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.4. The Linear Asymptotic Regime in the Discrete Time Case 331

The objective function is

Λ𝑁(𝜃) = 12 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃))2 ,
where 𝑦𝑚 ∈ ℝ, 𝑥𝑚 ∈ ℝ𝑑, and the parameters 𝜃 = (𝐶1, . . . , 𝐶𝑁 ,𝑊1, . . . ,𝑊𝑁) ∈ℝ𝑁×(1+𝑑). For notational convenience, we may refer to 𝔪𝑁(𝑥; 𝜃) as 𝔪𝑁(𝑥) in
our analysis below.

Themodel parameters 𝜃 are trained using stochastic gradient descent. The
parameter updates are given by

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘√𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘),
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘√𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘,

𝔪𝑁𝑘 (𝑥) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝑥),(19.3)

for 𝑘 = 0, 1, . . . , ⌊𝑇𝑁⌋where 𝑇 > 0. We use 𝜂𝑁𝑘 as the learning rate (which may
depend upon 𝑁, 𝑘 or both). The data samples are (𝑥𝑘, 𝑦𝑘) and are assumed to
be i.i.d. samples from a distribution 𝜋(𝑑𝑥, 𝑑𝑦).

We impose the following assumption.

Assumption 19.2. We have the following:• The activation function 𝜎 ∈ 𝐶2𝑏(ℝ), i.e., 𝜎, is twice continuously dif-
ferentiable and bounded with bounded derivatives.• The randomly initialized parameters (𝐶𝑛0 ,𝑊𝑛0) are i.i.d., mean-zero
random variables from a distribution 𝜇0(𝑑𝑐, 𝑑𝑤).• The random variable 𝐶𝑛0 has compact support and ⟨‖𝑤‖ , 𝜇0⟩ < ∞.• The sequence of data samples (𝑥𝑘, 𝑦𝑘) is i.i.d. from the probability dis-
tribution 𝜋(𝑑𝑥, 𝑑𝑦).• There is a fixed dataset of𝑀 data samples (𝑥𝑚, 𝑦𝑚)𝑀𝑚=1 and therefore𝜋(𝑑𝑥, 𝑑𝑦) = 1𝑀 ∑𝑀𝑚=1 𝛿(𝑥𝑚,𝑦𝑚)(𝑑𝑥, 𝑑𝑦).

Note that the last assumption also implies that 𝜋(𝑑𝑥, 𝑑𝑦) has compact sup-
port.

We will study the limiting behavior of the network output 𝔪𝑁𝑘 (𝑥) for 𝑥 ∈𝒟 = {𝑥1, . . . , 𝑥𝑀} as the number of hidden units 𝑁 and stochastic gradient
descent steps 𝑘 = ⌊𝑁𝑡⌋ simultaneously become large.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

332 19. The Neural Tangent Kernel Regime

In particular, we view the network output𝔪𝑁⌊𝑁𝑡⌋(𝑥) as a stochastic process.
We shall prove that it converges in distribution to the solution of a randomODE
as 𝑁 → ∞.

For this purpose, we define the empirical measure

𝜈𝑁𝑘 = 1𝑁 𝑁∑𝑛=1 𝛿𝐶𝑛𝑘 ,𝑊𝑛𝑘 ,
and we observe that𝔪𝑁𝑘 can be written as the inner-product𝔪𝑁𝑘 (𝑥) = ⟨𝑐𝜎(𝑤 ⋅ 𝑥),√𝑁𝜈𝑁𝑘 ⟩ .

For each fixed for 𝑥 ∈ 𝒟, Assumption 19.2 allows us to use the standard
central limit theorem (see Appendix A) to obtain that as 𝑁 → ∞,

𝔪𝑁0 (𝑥) 𝑑→ 𝒢(𝑥),
where 𝒢 ∈ ℝ𝑀 is the Gaussian random variable 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ 𝑥)|2, 𝜇0⟩). For
the same reasons, the standard law of large numbers also gives𝜈𝑁0 𝑝→ 𝜈0 ≡ 𝜇0.

Next, we define the scaled processesℎ𝑁𝑡 = 𝔪𝑁⌊𝑁𝑡⌋,𝜇𝑁𝑡 = 𝜈𝑁⌊𝑁𝑡⌋,
where 𝔪𝑁𝑘 = (𝔪𝑁𝑘 (𝑥1), . . . ,𝔪𝑁𝑘 (𝑥𝑀)), ℎ𝑁𝑡 = (ℎ𝑁𝑡 (𝑥1), . . . , ℎ𝑁𝑡 (𝑥𝑀)), where we
set ℎ𝑁𝑡 (𝑥) = 𝔪𝑁⌊𝑁𝑡⌋(𝑥).

We observe that (𝜇𝑁𝑡 , ℎ𝑁𝑡) is a pair of stochastic processes. We are interested
in its behavior as 𝑁 → ∞. For this purpose, we will study its convergence in
distribution as 𝑁 → ∞ in the space 𝐷𝐸([0, 𝑇]) where 𝐸 = ℳ(ℝ1+𝑑) × ℝ𝑀 .𝐷𝐸([0, 𝑇]) is the Skorokhod space (see Section A.4 for definitions) andℳ(𝑆) is
the space of probability measures on 𝑆.

We prove in this chapter that a neural network with Xavier initialization
and trained with stochastic gradient descent converges in distribution to a ran-
domODE as the number of units and training steps become large. In addition,
the convergence analysis will also address several interesting questions:• The results provide a rigorous convergence guarantee for Xavier ini-

tialization (i.e., the 1√𝑁 normalization factor), which is almost uni-
versally used in deep learning models. A priori it is unclear if the
neural network 𝔪𝑁𝑘 (𝑥) will converge as 𝑁 → ∞ since, for 𝑘 > 0,
the 𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥) is correlated with 𝐶𝑗𝜎(𝑊 𝑗 ⋅ 𝑥) and therefore a limit
may not exist. If a limit did not exist, this would imply that the neural

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.4. The Linear Asymptotic Regime in the Discrete Time Case 333

network model could have poor numerical behavior for large 𝑁. We
prove that a limit does exist.• Although the prelimit problem of optimizing a neural network with
respect to its parameters is nonconvex (and therefore the neural net-
work may converge to a local minimum), the limit equation mini-
mizes a quadratic objective function when viewed as a function of the
limit empirical measure of parameters.• We show that thematrix in the limiting quadratic objective function is
positive definite, and therefore the neural network (in the limit) will
converge to a global minimum with zero loss on the training set.

The main convergence results are presented below and their proofs follow
in Section 19.7.

Theorem 19.3. Assume that Assumption 19.2 holds and choose the learning
rate to be 𝜂𝑁𝑘 = 𝜂𝑁 for 0 < 𝜂 < ∞, a fixed constant. Then, the process (𝜇𝑁𝑡 , ℎ𝑁𝑡)
converges in distribution in the space 𝐷𝐸([0, 𝑇])1 as 𝑁 → ∞ to (𝜇𝑡, ℎ𝑡) which
satisfies, for every 𝑓 ∈ 𝐶𝑏2 (ℝ1+𝑑), the random ODE

ℎ𝑡(𝑥) = ℎ0(𝑥) + 𝜂∫𝒳×𝒴(𝑦 − ℎ𝑡(𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥)𝜎(𝑤 ⋅ 𝑥′), 𝜇𝑡⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑡
+ 𝜂∫𝒳×𝒴(𝑦 − ℎ𝑡(𝑥′)) ⟨𝑐2𝜎′(𝑤 ⋅ 𝑥′)𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ 𝑥′, 𝜇𝑡⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑡,ℎ0(𝑥) = 𝒢(𝑥),

⟨𝑓, 𝜇𝑡⟩ = ⟨𝑓, 𝜇0⟩ .(19.4)

Recall that 𝒢 ∈ ℝ𝑀 is a Gaussian random variable with elements𝒢(𝑥) ∼ 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ 𝑥)|2, 𝜇0⟩).
In addition, note that 𝜇̄𝑡 in the limit equation (19.4) is a constant, i.e., 𝜇𝑡 =𝜇0 for 𝑡 ∈ [0, 𝑇]. Therefore, (19.4) reduces to

ℎ𝑡(𝑥) = ℎ0(𝑥) + 𝜂∫𝑡
0 ∫𝒳×𝒴(𝑦 − ℎ𝑠(𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥)𝜎(𝑤 ⋅ 𝑥′), 𝜇0⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠

+ 𝜂∫𝑡
0 ∫𝒳×𝒴(𝑦 − ℎ𝑠(𝑥′)) ⟨𝑐2𝜎′(𝑤 ⋅ 𝑥′)𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ 𝑥′, 𝜇0⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠,

ℎ0(𝑥) = 𝒢(𝑥).(19.5)

1𝐷𝐸([0, 𝑇]) is the set of maps from [0, 𝑇] into 𝐸 which are right-continuous and which have left-hand
limits. Here, we have 𝐸 = ℳ(ℝ1+𝑑) × ℝ𝑀 andℳ(ℝ1+𝑑) is the space of probability measures in ℝ1+𝑑 (see
also Section A.4).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

334 19. The Neural Tangent Kernel Regime

Since (19.5) is a linear equation in 𝐶ℝ𝑀 ([0, 𝑇]), the solution ℎ𝑡 is unique.
Equation (19.5) can be written more compactly in terms of the matrix 𝐴 ∈ℝ𝑀×𝑀 where𝐴(𝑥, 𝑥′) = 𝜂𝑀 ⟨𝜎(𝑤 ⋅ 𝑥)𝜎(𝑤 ⋅ 𝑥′), 𝜇0⟩ + 𝜂𝑀 ⟨𝑐2𝜎′(𝑤 ⋅ 𝑥′)𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ 𝑥′, 𝜇0⟩ ,

where 𝑥, 𝑥′ ∈ 𝒟. 𝐴 is finite-dimensional since we fixed a training set of size𝑀
in the beginning. 𝐴 is called in the literature the NTK and notice that it is fixed
in time, i.e., it does not change dynamically. Note that we can write

ℎ𝑡(𝑥) = 𝒢(𝑥) +∫𝑡
0 𝐴(𝑥, 𝑥′)(𝑦 − ℎ𝑡(𝑥′))𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠.

Then, (19.5) becomes 𝑑ℎ𝑡 = 𝐴(̂𝑌 − ℎ𝑡)𝑑𝑡,ℎ0 = 𝒢,
where ̂𝑌 = (𝑦1, . . . , 𝑦𝑀).

Therefore, ℎ𝑡 is the solution to a continuous-time gradient descent algo-
rithm which minimizes a quadratic objective function.𝑑ℎ𝑡𝑑𝑡 = −12∇ℎ𝐽(̂𝑌 , ℎ𝑡),𝐽(𝑦, ℎ) = (𝑦 − ℎ)⊤𝐴(𝑦 − ℎ),ℎ0 = 𝒢.
Therefore, even though the prelimit optimization problem is nonconvex, the
neural network’s limit will minimize a quadratic objective function.

The question of global convergence then translates to whether ℎ𝑡 → ̂𝑌 as𝑡 → ∞ or not. That is, in the limit of large numbers of hidden units and many
training steps, does the neural network model converge to a global minimum
with zero training error? The answer to this question is yes!

Theorem 19.4 shows that indeed we have that ℎ𝑡 → ̂𝑌 as 𝑡 → ∞ if 𝐴
is positive definite. Then Corollary 19.6 demonstrates that, under reasonable
hyperparameter choices and if the data samples are in distinct directions (see
[Ito96]), 𝐴 will be positive definite.

Theorem 19.4. If 𝐴 is positive definite, thenℎ𝑡 → ̂𝑌 as 𝑡 → ∞.
Proof. Consider the transformation ̃ℎ𝑡 = ℎ𝑡 − ̂𝑌 . Then,𝑑 ̃ℎ𝑡 = −𝐴 ̃ℎ𝑡𝑑𝑡,̃ℎ0 = 𝒢 − ̂𝑌 .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.5. Preliminary Bounds and Existence of a Limit 335

Then, ̃ℎ𝑡 → 0 (and consequently ℎ𝑡 → ̂𝑌) as 𝑡 → ∞ if 𝐴 is positive definite. □

Under the proper assumptions the matrix A is positive definite. This is the
content of Corollary 19.6. Before stating that result, we need to introduce the
notion of data samples being in distinct directions following [Ito96].

Definition 19.5 (Distinct directions). For𝑥 ∈ ℝ𝑑 nonzero, define the line𝐿𝑥 ={𝑦 ∈ ℝ𝑑 ∶ 𝑦 = 𝑡𝑥, 𝑡 ∈ ℝ}. The vectors 𝑥(𝑖) are said to be in distinct directions if
they are not zero and if the lines 𝐿𝑥(𝑖) meet at the origin only.
Corollary 19.6. AssumeAssumption 19.2. A sufficient condition for𝐴 to be posi-
tive definite is𝜎(⋅) is non-polynomial and slowly increasing (i.e., lim𝑥→∞ 𝜍(𝑥)𝑥𝑎 = 0
for every 𝑎 > 0), 𝜇0 is positive when evaluated on sets of positive Lebesgue mea-
sure, and the data samples 𝑥(𝑖) are in distinct directions, per Definition 19.5.

Examples of activation units 𝜎(⋅) satisfying the conditions in Corollary 19.6
include sigmoid functions and hyperbolic tangent functions. Using a normal
distribution for the initialization of the parameters in the neural network is a
common choice in practice (covered by the requirements of Corollary 19.6).

Remark 19.7. For presentation purposes we have not explicitly denoted the
bias term in the model. However, it is clear that this can be handled by requir-
ing the first component of the vector 𝑥 to be equal to one for example. This
would result in the neural network taking the form

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥 + 𝑏𝑛).

19.5. Preliminary Bounds and Existence of a Limit

19.5.1. Preliminary Bounds. Before we begin with the preliminary bounds,
let us first define a notation that will be frequently used in this and in the sub-
sequent chapters.

Definition 19.8. For a sequence of random variables {𝐴𝑁}𝑁∈ℕ and a sequence
of real numbers {𝛽𝑁}𝑁∈ℕ we will write:• 𝐴𝑁 = 𝒪𝑝(𝛽𝑁) if 𝐴𝑁/𝛽𝑁 is stochastically bounded. This means that

for arbitrary 𝜖 > 0, there is 𝑀 < ∞ and some 𝑁𝑜 < ∞ large enough
so that ℙ(||𝐴𝑁𝛽𝑁 || > 𝑀) < 𝜖 for all 𝑁 > 𝑁𝑜.• 𝐴𝑁 = 𝒪(𝛽𝑁) if 𝐴𝑁/𝛽𝑁 is bounded. This means that there exists a
finite constant 𝐶𝑜 < ∞, which is independent of 𝑁 so that|𝐴𝑁 | ≤ 𝐶𝑜𝛽𝑁 for all 𝑁 ∈ ℕ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

336 19. The Neural Tangent Kernel Regime

The first a priori bounds we establish involve the parameters (𝐶𝑛𝑘 ,𝑊 𝑖𝑘).
Lemma 19.9. Let 𝑇 < ∞ be given. There is a universal constant 𝐶𝑜 < ∞, such
that for all 𝑛 ∈ ℕ and all 𝑘 with 𝑘/𝑁 ≤ 𝑇,|𝐶𝑛𝑘 | < 𝐶𝑜 < ∞,𝔼 ‖‖𝑊𝑛𝑘 ‖‖ < 𝐶𝑜 < ∞.
Proof. The unimportant finite constant 𝐶𝑜 < ∞may change from line to line.
Recall the choice 𝜂𝑁𝑘 = 𝜂𝑁 for 0 < 𝜂 < ∞ a constant. We first observe that|𝐶𝑛𝑘+1| ≤ |𝐶𝑛𝑘 | + 𝜂𝑁−3/2 ||𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)|| |𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)|

≤ |𝐶𝑛𝑘 | + 𝐶𝑜|𝑦𝑘|𝑁3/2 + 𝐶𝑜𝑁2
𝑁∑𝑛=1 |𝐶𝑛𝑘 |,

where the last inequality follows from the definition of𝔪𝑁𝑘 (𝑥) and the uniform
boundedness assumption on 𝜎(⋅).

Then, we subsequently obtain that

|𝐶𝑛𝑘 | = |𝐶𝑛0 | + 𝑘∑𝑗=1 [|𝐶𝑛𝑗 | − |𝐶𝑛𝑗−1|]
≤ |𝐶𝑛0 | + 𝑘∑𝑗=1 𝐶𝑜𝑁3/2 + 𝐶𝑜𝑁2

𝑘∑𝑗=1
𝑁∑𝑛=1 |𝐶𝑛𝑗−1|

≤ |𝐶𝑛0 | + 𝐶𝑜√𝑁 + 𝐶𝑜𝑁2
𝑘∑𝑗=1

𝑁∑𝑛=1 |𝐶𝑛𝑗−1|.(19.6)

This implies that1𝑁 𝑁∑𝑛=1 |𝐶𝑛𝑘 | ≤ 1𝑁 𝑁∑𝑛=1 |𝐶𝑛0 | + 𝐶𝑜√𝑁 + 𝐶𝑜𝑁2
𝑘∑𝑗=1

𝑁∑𝑛=1 |𝐶𝑛𝑗−1|.
Let us now define 𝛾𝑁𝑘 = 1𝑁 ∑𝑁𝑛=1 |𝐶𝑛𝑘 |. Since the random variables 𝐶𝑖0 take

values in a compact set, we have that 1𝑁 ∑𝑁𝑛=1 |𝐶𝑛0 | + 𝐶𝑜√𝑁 < 𝐶𝑜 < ∞. Then,

𝛾𝑁𝑘 ≤ 𝐶𝑜 + 𝐶𝑜𝑁 𝑘∑𝑗=1 𝛾𝑁𝑗−1.
By the discrete Gronwall lemma and using 𝑘/𝑁 ≤ 𝑇,

𝛾𝑁𝑘 ≤ 𝐶𝑜 exp (𝐶𝑜𝑘𝑁) ≤ 𝐶𝑜.(19.7)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.5. Preliminary Bounds and Existence of a Limit 337

We can now combine the bounds (19.7) and (19.6) to yield, for any 0 ≤ 𝑘 ≤𝑇𝑁,
|𝐶𝑛𝑘 | ≤ |𝐶𝑛0 | + 𝐶𝑜√𝑁 + 𝐶𝑜𝑁 𝑘∑𝑗=1 𝛾𝑁𝑗−1

≤ |𝐶𝑛0 | + 𝐶𝑜√𝑁 + 𝐶𝑜𝑁 𝑘∑𝑗=1𝐶𝑜≤ |𝐶𝑛0 | + 𝐶𝑜√𝑁 + 𝐶𝑜≤ 𝐶𝑜,(19.8)

where the last inequality follows from the randomvariables𝐶𝑛0 taking values in
a compact set. Note that the constant 𝐶𝑜 < ∞may depend on 𝑇 and it changes
from line to line.

Now, we turn to the bound for ∥ 𝑊𝑛𝑘 ∥. We start with the bound (using
Young’s inequality),

∥ 𝑊𝑛𝑘+1 ∥ ≤∥ 𝑊𝑛𝑘 ∥ + 𝐶𝑜𝑁3/2 (|𝑦𝑘| + 1√𝑁
𝑁∑𝑛=1 |𝐶𝑛𝑘 |) |𝐶𝑛𝑘 ||𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)| ∥ 𝑥𝑘 ∥

≤∥ 𝑊𝑛𝑘 ∥ +𝐶𝑜 (1𝑁 |𝑦𝑘|2 + 1𝑁2
𝑁∑𝑛=1 |𝐶𝑛𝑘 |2 + 1𝑁 |𝐶𝑛𝑘 |2 ∥ 𝑥𝑘 ∥2)

≤∥ 𝑊𝑛𝑘 ∥ +𝐶𝑜 (1𝑁 |𝑦𝑘|2 + 1𝑁2
𝑁∑𝑛=1 |𝐶𝑛𝑘 |2 + 1𝑁 |𝐶𝑛𝑘 |4 + 1𝑁 ∥ 𝑥𝑘 ∥4) ,

for a constant𝐶𝑜 < ∞ thatmay change from line to line. Taking an expectation,
using Assumption 19.2, the bound (19.8), and using the fact that 𝑘/𝑁 ≤ 𝑇, we
obtain 𝔼 ∥ 𝑊𝑛𝑘 ∥≤ 𝐶𝑜 < ∞,
for all 𝑖 ∈ ℕ and all 𝑘 such that 𝑘/𝑁 ≤ 𝑇, which concludes the proof of the
lemma. □

Note that for any given 𝑇 < ∞, the bounds of Lemma 19.9 are uniform
in 𝑘/𝑁 ≤ 𝑇 and 𝑁 ∈ ℕ. Using the bounds from Lemma 19.9, we can now
establish a bound for𝔪𝑁𝑘 (𝑥) for 𝑥 ∈ 𝒟.
Lemma 19.10. Let 𝑇 < ∞ be given. There is a universal constant 𝐶𝑜 < ∞, such
that for all 𝑘 ∈ ℕ such that 𝑘/𝑁 ≤ 𝑇, and any 𝑥 ∈ 𝒟,

𝔼[|𝔪𝑁𝑘 (𝑥)|2] < 𝐶𝑜 < ∞.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

338 19. The Neural Tangent Kernel Regime

Proof. Thefirst step is to represent the evolution of the network output𝔪𝑁𝑘 (𝑥).
In particular, we notice that

𝔪𝑁𝑘+1(𝑥) = 𝔪𝑁𝑘 (𝑥) + 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝑘+1𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥) − 1√𝑁

𝑁∑𝑛=1𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝑥)
= 𝔪𝑁𝑘 (𝑥) + 1√𝑁

𝑁∑𝑛=1 (𝐶𝑛𝑘+1𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥) − 𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝑥))
= 𝔪𝑁𝑘 (𝑥)
+ 1√𝑁

𝑁∑𝑛=1 ((𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥) + (𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥) − 𝜎(𝑊𝑛𝑘 ⋅ 𝑥))𝐶𝑛𝑘)
= 𝔪𝑁𝑘 (𝑥)
+ 1√𝑁

𝑁∑𝑛=1 ((𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)[𝜎(𝑊𝑛𝑘 ⋅ 𝑥) + 𝜎′(𝑊𝑛,∗𝑘 ⋅ 𝑥𝑘)𝑥 ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘)]
+ [𝜎′(𝑊𝑛𝑘 ⋅ 𝑥)𝑥 ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘) + 12𝜎″(𝑊𝑛,∗∗𝑘+1 ⋅ 𝑥) ((𝑊𝑛𝑘+1 −𝑊𝑛𝑘) ⋅ 𝑥)2]𝐶𝑛𝑘)

(19.9)

for points𝑊𝑛,∗𝑘 and𝑊𝑛,∗,∗𝑘 in the line segment connecting the points𝑊𝑛𝑘 and𝑊𝑛𝑘+1. Recall that 𝜂𝑁𝑘 = 𝜂𝑁 . Substituting (19.3) into (19.9) yields

𝔪𝑁𝑘+1(𝑥) = 𝔪𝑁𝑘 (𝑥) + 𝜂𝑁2
𝑁∑𝑛=1(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝜎(𝑊𝑛𝑘 ⋅ 𝑥)

+ 𝜂𝑁2
𝑁∑𝑛=1𝜎′(𝑊𝑛𝑘 ⋅ 𝑥)(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘 ⋅ 𝑥(𝐶𝑛𝑘)2 + 𝒪(𝑁−3/2),

(19.10)

where we recall Definition 19.8 for the remainder term 𝒪(𝑁−3/2).
This leads to the bound

|𝔪𝑁𝑘+1(𝑥)| ≤ |𝔪𝑁𝑘 (𝑥)| + 𝜂𝑁2
𝑁∑𝑛=1 |𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)| + 𝜂𝑁2

𝑁∑𝑛=1 |𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)|(𝐶𝑛𝑘)2
+ 𝐶𝑜𝑁3/2≤ |𝔪𝑁𝑘 (𝑥)| + 𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥𝑘)| + 𝐶𝑜𝑁 .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.5. Preliminary Bounds and Existence of a Limit 339

We now square both sides of the above inequality.|𝔪𝑁𝑘+1(𝑥)|2 ≤ (|𝔪𝑁𝑘 (𝑥)|+𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥𝑘)|+𝐶𝑜𝑁)2
≤ |𝔪𝑁𝑘 (𝑥)|2+2|𝔪𝑁𝑘 (𝑥)|(𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥𝑘)|+𝐶𝑜𝑁)+(𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥𝑘)|+𝐶𝑜𝑁)2
≤ |𝔪𝑁𝑘 (𝑥)|2+𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥)|2+𝐶𝑜𝑁 ,

where the last line used Young’s inequality. Therefore, we have|𝔪𝑁𝑘+1(𝑥)|2 − |𝔪𝑁𝑘 (𝑥)|2 ≤ 𝐶𝑜𝑁 |𝔪𝑁𝑘 (𝑥𝑘)|2 + 𝐶𝑜𝑁 .
Then, using a telescoping series,

|𝔪𝑁𝑘 (𝑥)|2 = |𝔪𝑁0 (𝑥)|2 + 𝑘∑𝑗=1 (|𝔪𝑁𝑗 (𝑥)|2 − |𝔪𝑁𝑗−1(𝑥)|2)
≤ |𝔪𝑁0 (𝑥)|2 + 𝑘∑𝑗=1 (𝐶𝑜𝑁 |𝔪𝑁𝑗−1(𝑥𝑗−1)|2 + 𝐶𝑁)
≤ |𝔪𝑁0 (𝑥)|2 + 𝐶𝑜 + 𝐶𝑜𝑁 𝑘∑𝑗=1 |𝔪𝑁𝑗−1(𝑥𝑗−1)|2.

Taking expectations,

𝔼[|𝔪𝑁𝑘 (𝑥)|2] ≤ 𝔼[|𝔪𝑁0 (𝑥)|2] + 𝐶𝑜 + 𝐶𝑜𝑁 𝑘∑𝑗=1𝔼[|𝔪𝑁𝑗−1(𝑥𝑗−1)|2].
Taking advantage of the fact that 𝑥𝑗 is sampled from a fixed dataset𝒟 of𝑀

data samples,

𝔼[|𝔪𝑁𝑘 (𝑥)|2] ≤ 𝔼[|𝔪𝑁0 (𝑥)|2] + 𝐶𝑜 + 𝐶𝑜𝑁 𝑘∑𝑗=1 ∑𝑥′∈𝒟 𝔼[|𝔪𝑁𝑗−1(𝑥′)|2],(19.11)

and therefore

∑𝑥∈𝒟 𝔼[|𝔪𝑁𝑘 (𝑥)|2] ≤ ∑𝑥∈𝒟 𝔼[|𝔪𝑁0 (𝑥)|2] + 𝑀𝐶𝑜 + 𝐶𝑜𝑀𝑁 𝑘∑𝑗=1 ∑𝑥′∈𝒟 𝔼[|𝔪𝑁𝑗−1(𝑥′)|2]
≤ ∑𝑥∈𝒟 𝔼[|𝔪𝑁0 (𝑥)|2] + 𝐶𝑜 + 𝐶𝑜𝑁 𝑘∑𝑗=1 ∑𝑥∈𝒟 𝔼[|𝔪𝑁𝑗−1(𝑥)|2].(19.12)

Recall that

𝔪𝑁0 (𝑥) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛0𝜎(𝑊𝑛0 ⋅ 𝑥),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

340 19. The Neural Tangent Kernel Regime

where (𝐶𝑛0 ,𝑊𝑛0) are i.i.d., mean-zero random variables. Then,

𝔼[|𝔪𝑁0 (𝑥)|2] ≤ 𝔼[(1√𝑁
𝑁∑𝑛=1𝐶𝑛0𝜎(𝑊𝑛0 ⋅ 𝑥))2]

≤ 𝐶𝑜𝑁 𝑁∑𝑛=1𝔼[(𝐶𝑛0)2]≤ 𝐶𝑜.
Combining this boundwith the bound (19.12) and using the discrete Gron-

wall lemma yields, for any 0 ≤ 𝑘 ≤ 𝑇𝑁,
∑𝑥∈𝒟 𝔼[|𝔪𝑁𝑘 (𝑥)|] ≤ 𝐶𝑜.

Substituting this bound into equation (19.11) produces the desired bound

𝔼[|𝔪𝑁𝑘 (𝑥)|2] ≤ 𝐶𝑜
for any 0 ≤ 𝑘 ≤ 𝑇𝑁. □

19.5.2. Tightness of the Scaled Empirical Measure. The first step into es-
tablishing that the family {(𝜇𝑁𝑡 , ℎ𝑁𝑡), 𝑡 ∈ [0, 𝑇]}𝑁∈ℕ has a limit as 𝑁 grows to
infinity is to prove a form of compact containment, which in our case translates
into showing that there is a compact set that contains (𝜇𝑁𝑡 , ℎ𝑁𝑡) for all 𝑁 ∈ ℕ
and 𝑡 ∈ [0, 𝑇]. Recall that (𝜇𝑁𝑡 , ℎ𝑁𝑡) ∈ 𝐷𝐸([0, 𝑇]), where 𝐷𝐸([0, 𝑇]) is the set of
maps from [0, 𝑇] into 𝐸 which are right-continuous and which have left-hand
limits, 𝐸 = ℳ(ℝ1+𝑑) × ℝ𝑀 andℳ(ℝ1+𝑑) is the space of probability measures
in ℝ1+𝑑 (see also Section A.4).
Lemma 19.11. For each 𝛿 > 0, there is a compact subset𝒦 of E such thatsup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[(𝜇𝑁𝑡 , ℎ𝑁𝑡) ∉ 𝒦] < 𝛿.
Proof. For each 𝐿 > 0, define 𝐾𝐿 = [−𝐿, 𝐿]1+𝑑. Then, we have that 𝐾𝐿 is a
compact subset of ℝ1+𝑑, and for each 𝑡 ≥ 0 and 𝑁 ∈ ℕ,

𝔼 [𝜇𝑁𝑡 (ℝ1+𝑑 ⧵ 𝐾𝐿)] = 1𝑁 𝑁∑𝑛=1ℙ [|𝐶𝑛⌊𝑁𝑡⌋|+ ∥ 𝑊𝑛⌊𝑁𝑡⌋ ∥≥ 𝐿] ≤ 𝐶𝑜𝐿 ,
where we have used Markov’s inequality and the bounds from Lemma 19.9.
We define the compact subsets ofℳ(ℝ1+𝑑)

̂𝐾𝐿 = {𝜈 ∶ 𝜈(ℝ1+𝑑 ⧵ 𝐾(𝐿+𝑗)2) < 1√𝐿 + 𝑗 for all 𝑗 ∈ ℕ}
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.5. Preliminary Bounds and Existence of a Limit 341

and we observe that

ℙ {𝜇𝑁𝑡 ∉ ̂𝐾𝐿] ≤ ∞∑𝑗=1ℙ[𝜇𝑁𝑡 (ℝ1+𝑑 ⧵ 𝐾(𝐿+𝑗)2) > 1√𝐿 + 𝑗]
≤ ∞∑𝑗=1 𝔼[𝜇

𝑁𝑡 (ℝ1+𝑑 ⧵ 𝐾(𝐿+𝑗)2)]1/√𝐿 + 𝑗
≤ ∞∑𝑗=1 𝐶𝑜(𝐿 + 𝑗)2/√𝐿 + 𝑗 ≤ ∞∑𝑗=1 𝐶𝑜(𝐿 + 𝑗)3/2 .

Given that lim𝐿→∞∑∞𝑗=1 𝐶𝑜(𝐿+𝑗)3/2 = 0, we have that, for each 𝛿 > 0, there
exists a compact set ̂𝐾𝐿 such that

sup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[𝜇𝑁𝑡 ∉ ̂𝐾𝐿] < 𝛿2 .
Due to Lemma 19.10 and Markov’s inequality, we also know that, for each𝛿 > 0, there exists a compact set 𝑈 = [−𝐵, 𝐵]𝑀 such that

sup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[ℎ𝑁𝑡 ∉ 𝑈] < 𝛿2 .
Therefore, for each 𝛿 > 0, there exists a compact set ̂𝐾𝐿 × [−𝐵, 𝐵]𝑀 ⊂ 𝐸

such that

sup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[(𝜇𝑁𝑡 , ℎ𝑁𝑡) ∉ ̂𝐾𝐿 × [−𝐵, 𝐵]𝑀] < 𝛿. □

The next step is to establish regularity of the process 𝜇𝑁 in𝐷ℳ(ℝ1+𝑑)([0, 𝑇]).
Define the function 𝑞(𝑧1, 𝑧2) = min{|𝑧1 − 𝑧2|, 1}, where 𝑧1, 𝑧2 ∈ ℝ. Let ℱ𝑁𝑡 be
the 𝜎-algebra generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 , i.e., ℱ𝑁𝑡 contains the
information generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 .

Lemma19.12. Let𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑). For any𝛿 ∈ (0, 1), there is a constant𝐶𝑜 < ∞
such that for 0 ≤ 𝑢 ≤ 𝛿, 0 ≤ 𝑣 ≤ 𝛿 ∧ 𝑡, 𝑡 ∈ [0, 𝑇],

𝔼 [𝑞(⟨𝑓, 𝜇𝑁𝑡+ᵆ⟩ , ⟨𝑓, 𝜇𝑁𝑡 ⟩)𝑞(⟨𝑓, 𝜇𝑁𝑡 ⟩ , ⟨𝑓, 𝜇𝑁𝑡−𝑣⟩)||ℱ𝑁𝑡] ≤ 𝐶𝑜𝛿 + 𝐶𝑜𝑁3/2 .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

342 19. The Neural Tangent Kernel Regime

Proof. We start by noticing that a Taylor expansion gives for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,
| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ | = | ⟨𝑓, 𝜈𝑁⌊𝑁𝑡⌋⟩ − ⟨𝑓, 𝜈𝑁⌊𝑁𝑠⌋⟩ |

≤ 1𝑁 𝑁∑𝑛=1 |𝑓(𝐶𝑛⌊𝑁𝑡⌋,𝑊𝑛⌊𝑁𝑡⌋) − 𝑓(𝐶𝑛⌊𝑁𝑠⌋,𝑊𝑛⌊𝑁𝑠⌋)|
≤ 1𝑁 𝑁∑𝑛=1 |𝜕𝑐𝑓(̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋)||𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|
+ 1𝑁 𝑁∑𝑛=1 ∥ ∇𝑤𝑓(̂𝐶𝑛⌊𝑁𝑡⌋, 𝑊̂𝑛⌊𝑁𝑡⌋) ∥∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥(19.13)

for points (̄𝐶𝑛, 𝑊̄𝑛) and (̂𝐶𝑛, 𝑊̂𝑛) in the segments connecting 𝐶𝑛⌊𝑁𝑠⌋ with 𝐶𝑛⌊𝑁𝑡⌋
and𝑊𝑛⌊𝑁𝑠⌋ with𝑊𝑛⌊𝑁𝑡⌋, respectively.

Let’s now establish a bound on |𝐶𝑛⌊𝑁𝑡⌋−𝐶𝑛⌊𝑁𝑠⌋| for 𝑠 < 𝑡 ≤ 𝑇 with 0 < 𝑡−𝑠 ≤𝛿 < 1.

𝔼[|𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|||ℱ𝑁𝑠] = 𝔼[| ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)|||ℱ𝑁𝑠]
≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ |𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 1𝑁3/2𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)|||ℱ𝑁𝑠]
≤ 1𝑁3/2

⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2
≤ 𝐶𝑜√𝑁𝛿 + 𝐶𝑜𝑁3/2 ,(19.14)

where Assumption 19.2 was used as well as the bounds from Lemmas 19.9 and
19.10.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.5. Preliminary Bounds and Existence of a Limit 343

Let’s now establish a bound on ∥ 𝑊𝑛⌊𝑁𝑡⌋ − 𝑊𝑛⌊𝑁𝑠⌋ ∥ for 𝑠 < 𝑡 ≤ 𝑇 with0 < 𝑡 − 𝑠 ≤ 𝛿 < 1. We obtain
𝔼[∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥ ||ℱ𝑁𝑠] = 𝔼[∥ ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝑊𝑛𝑘+1 −𝑊𝑛𝑘) ∥ ||ℱ𝑁𝑠]
≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ ∥ 𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 1𝑁3/2𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘 ∥ ||ℱ𝑁𝑠]
≤ 1𝑁3/2

⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2
≤ 𝐶𝑜√𝑁𝛿 + 𝐶𝑜𝑁3/2 ,(19.15)

where we have again used the bounds from Lemmas 19.9 and 19.10.
Now, we return to equation (19.13). Due to Lemma 19.9, the quantities(̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋) are bounded in expectation for 0 < 𝑠 < 𝑡 ≤ 𝑇. Therefore, for0 < 𝑠 < 𝑡 ≤ 𝑇 with 0 < 𝑡 − 𝑠 ≤ 𝛿 < 1,

𝔼 [| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ |||ℱ𝑁𝑠] ≤ 𝐶𝑜𝛿 + 𝐶𝑜𝑁3/2 ,
where 𝐶𝑜 < ∞ is some unimportant finite constant that may depend on
the magnitude of the first partial derivatives of 𝑓. Then, the statement of the
lemma follows. □

We next establish regularity of the process ℎ𝑁𝑡 in 𝐷ℝ𝑀 ([0, 𝑇]). For the pur-
poses of the following lemma, let the function 𝑞(𝑧1, 𝑧2) = min{‖𝑧1 − 𝑧2‖ , 1},
where 𝑧1, 𝑧2 ∈ ℝ𝑀 and ‖𝑧‖ = |𝑧1| + ⋯ + |𝑧𝑀 |.
Lemma 19.13. For any 𝛿 ∈ (0, 1), there is a constant 𝐶𝑜 < ∞ such that for0 ≤ 𝑢 ≤ 𝛿 < 1, 0 ≤ 𝑣 ≤ 𝛿 ∧ 𝑡, 𝑡 ∈ [0, 𝑇],

𝔼 [𝑞(ℎ𝑁𝑡+ᵆ, ℎ𝑁𝑡)𝑞(ℎ𝑁𝑡 , ℎ𝑁𝑡−𝑣)||ℱ𝑁𝑡] ≤ 𝐶𝑜𝛿 + 𝐶𝑜𝑁 .
Proof. Recall that𝔪𝑁𝑘+1(𝑥) = 𝔪𝑁𝑘 (𝑥)

+ 1√𝑁
𝑁∑𝑛=1 (𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥) + 𝜎′(𝑊 𝑖,∗𝑘 ⋅ 𝑥)𝑥 ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘)𝐶𝑛𝑘).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

344 19. The Neural Tangent Kernel Regime

Therefore,ℎ𝑁𝑡 (𝑥) − ℎ𝑁𝑠 (𝑥) = 𝔪⌊𝑁𝑡⌋(𝑥) − 𝔪⌊𝑁𝑠⌋(𝑥)
= ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋(𝔪𝑁𝑘+1(𝑥) − 𝔪𝑁𝑘 (𝑥))
= ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋

1√𝑁
𝑁∑𝑛=1 ((𝐶𝑛𝑘+1−𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘+1 ⋅ 𝑥)+𝜎′(𝑊𝑛,∗𝑘 ⋅ 𝑥)𝑥 ⋅ (𝑊𝑛𝑘+1−𝑊𝑛𝑘)𝐶𝑛𝑘).

This yields the bound

|ℎ𝑁𝑡 (𝑥) − ℎ𝑁𝑠 (𝑥)| ≤ ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋ |𝔪𝑁𝑘+1(𝑥) − 𝔪𝑁𝑘 (𝑥)|
≤ ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋

1√𝑁
𝑁∑𝑛=1 (|𝐶𝑛𝑘+1 − 𝐶𝑛𝑘 | + ‖‖𝑊𝑛𝑘+1 −𝑊𝑛𝑘 ‖‖),

where we have used the boundedness of 𝜎′(⋅) (from Assumption 19.2) and the
bounds from Lemma 19.9.

Taking expectations,

𝔼[|ℎ𝑁𝑡 (𝑥) − ℎ𝑁𝑠 (𝑥)|||ℱ𝑁𝑠]
≤ 1√𝑁

𝑁∑𝑛=1
⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋𝔼[|𝐶𝑛𝑘+1 − 𝐶𝑛𝑘 | + ‖‖𝑊𝑛𝑘+1 −𝑊𝑛𝑘 ‖‖ ||ℱ𝑁𝑠].

Using the bounds (19.14) and (19.15),

𝔼[|ℎ𝑁𝑡 (𝑥) − ℎ𝑁𝑠 (𝑥)|||ℱ𝑁𝑠] ≤ 1√𝑁
𝑁∑𝑛=1 (𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2)

= 𝐶𝑜(𝑡 − 𝑠) + 𝐶𝑜𝑁 .(19.16)

The bound (19.16) holds for each 𝑥 ∈ 𝒟. Therefore,𝔼[‖‖ℎ𝑁𝑡 − ℎ𝑁𝑠 ‖‖ ||ℱ𝑁𝑠] ≤ 𝐶𝑜(𝑡 − 𝑠) + 𝐶𝑜𝑁 .
The statement of the lemma then follows. □

Last step is to combine the compact containment and regularity results in
order to claim that the family of processes {(𝜇𝑁𝑡 , ℎ𝑁𝑡), 𝑡 ∈ [0, 𝑇]} has a limit as𝑁 → ∞. Indeed, we have the following lemma.

Lemma 19.14. The family of processes {𝜇𝑁 , ℎ𝑁}𝑁∈ℕ is relatively compact in𝐷𝐸([0, 𝑇]).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.6. Alternative Representation of the Prelimit Process 345

Proof. Combining Lemmas 19.11 and 19.12 and the results of Section A.4
proves that {𝜇𝑁}𝑁∈ℕ is relatively compact in𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) (see also Theorem
8.6, Remark 8.7 B, and Theorem 9.1 of Chapter 3 of [EK86] as well as Theorem
4.6 in [Jak86] and Section 3 of [Led16]).

Similarly, combining Lemmas 19.11 and 19.13 proves that {ℎ𝑁}𝑁∈ℕ is rela-
tively compact in 𝐷ℝ𝑀 ([0, 𝑇]).

Since relative compactness is equivalent to tightness, wehave that the prob-
ability measures of the family of processes {𝜇𝑁}𝑁∈ℕ are tight. Similarly, we
have that the probability measures of the family of process {ℎ𝑁}𝑁∈ℕ are tight.
Therefore, {𝜇𝑁 , ℎ𝑁}𝑁∈ℕ is tight. Then, {𝜇𝑁 , ℎ𝑁}𝑁∈ℕ is also relatively compact.

□

19.6. Alternative Representation of the Prelimit Process

Let us now build towards identifying the limit in Theorem 19.3. Recall that𝜂𝑁𝑘 = 𝜂𝑁 and equation (19.10), which describes the evolution of𝔪𝑁𝑘 (𝑥),
𝔪𝑁𝑘+1(𝑥) = 𝔪𝑁𝑘 (𝑥) + 𝜂𝑁2

𝑁∑𝑛=1(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝜎(𝑊𝑛𝑘 ⋅ 𝑥)
+ 𝜂𝑁2

𝑁∑𝑛=1𝜎′(𝑊𝑛𝑘 ⋅ 𝑥)(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘 ⋅ 𝑥(𝐶𝑛𝑘)2 + 𝒪(𝑁−3/2).
We can rewrite the evolution of𝔪𝑁𝑘 (𝑥) in terms of the empirical measure𝜈𝑁𝑘 ,𝔪𝑁𝑘+1(𝑥) = 𝔪𝑁𝑘 (𝑥) + 𝜂𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝜎(𝑤 ⋅ 𝑥𝑘)𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩+ 𝜂𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝑥𝑘 ⋅ 𝑥 ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥𝑘)𝑐2, 𝜈𝑁𝑘 ⟩ + 𝒪(𝑁−3/2).(19.17)

Using (19.17), we can write the evolution of ℎ𝑁𝑡 for 𝑡 ∈ [0, 𝑇] as
ℎ𝑁𝑡 = ℎ𝑁0 + ⌊𝑁𝑡⌋−1∑𝑘=0 (𝔪𝑁𝑘+1 −𝔪𝑁𝑘)

= ℎ𝑁0 + 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝜎(𝑤 ⋅ 𝑥𝑘)𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩
+ 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝑥𝑘 ⋅ 𝑥 ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥𝑘)𝑐2, 𝜈𝑁𝑘 ⟩
+ 𝒪(𝑁−1/2).(19.18)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

346 19. The Neural Tangent Kernel Regime

Next, we decompose the summations into a drift and martingale compo-
nent:

ℎ𝑁𝑡 = ℎ𝑁0 + 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 ∫𝒳×𝒴(𝑦 − 𝔪𝑁𝑘 (𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥′)𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)
+ 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 ∫𝒳×𝒴(𝑦 − 𝔪𝑁𝑘 (𝑥′))𝑥 ⋅ 𝑥′ ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥′)𝑐2, 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)
+ 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 ((𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝜎(𝑤 ⋅ 𝑥𝑘)𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩

−∫𝒳×𝒴(𝑦 − 𝔪𝑁𝑘 (𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥′)𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦))
+ 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 ((𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝑥𝑘 ⋅ 𝑥 ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥𝑘)𝑐2, 𝜈𝑁𝑘 ⟩

−∫𝒳×𝒴(𝑦 − 𝔪𝑁𝑘 (𝑥′))𝑥 ⋅ 𝑥′ ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥′)𝑐2, 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦))+ 𝒪(𝑁−1/2).
For convenience, we define the martingale terms (the third and fourth

terms in the equation above) as 𝑀𝑁,1𝑡 and 𝑀𝑁,2𝑡 , respectively. The equation
for ℎ𝑁𝑡 can be rewritten in terms of a Riemann integral and the scaled measure𝜇𝑁𝑡 , yielding
ℎ𝑁𝑡 = ℎ𝑁0 + 𝜂∫𝑡

0 ∫𝒳×𝒴(𝑦 − ℎ𝑁𝑠 (𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥′)𝜎(𝑤 ⋅ 𝑥), 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠
+ 𝜂∫𝑡

0 ∫𝒳×𝒴(𝑦 − ℎ𝑁𝑠 (𝑥′))𝑥 ⋅ 𝑥′ ⟨𝜎′(𝑤 ⋅ 𝑥)𝜎′(𝑤 ⋅ 𝑥′)𝑐2, 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠
+ 𝑀𝑁,1𝑡 +𝑀𝑁,2𝑡 + 𝒪(𝑁−1/2).(19.19)

In addition, using conditional independence of the terms in the series for𝑀𝑁,1𝑡 and𝑀𝑁,2𝑡 as well as the bounds from Lemmas 19.10 and 19.9, we have for
a finite constant 𝐶𝑜 < ∞ that

𝔼[(𝑀𝑁,1𝑡)2] ≤ 𝐶𝑜𝑁 ,
𝔼[(𝑀𝑁,2𝑡)2] ≤ 𝐶𝑜𝑁 .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.6. Alternative Representation of the Prelimit Process 347

We can also analyze the evolution of the empirical measure 𝜈𝑁𝑘 in terms of
test functions 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑). Using a Taylor expansion, we find that

⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩ = 1𝑁 𝑁∑𝑛=1 (𝑓(𝐶𝑛𝑘+1,𝑊𝑛𝑘+1) − 𝑓(𝐶𝑛𝑘 ,𝑊𝑛𝑘))
= 1𝑁 𝑁∑𝑛=1 𝜕𝑐𝑓(𝐶𝑛𝑘 ,𝑊𝑛𝑘)(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘) + 1𝑁 𝑁∑𝑛=1∇𝑤𝑓(𝐶𝑛𝑘 ,𝑊𝑛𝑘)⊤(𝑊𝑛𝑘+1 −𝑊𝑛𝑘)
+ 1𝑁 𝑁∑𝑛=1 𝜕2𝑐𝑓(̄𝐶𝑛𝑘 , 𝑊̄𝑛𝑘)(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)2
+ 1𝑁 𝑁∑𝑛=1(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)∇𝑐𝑤𝑓(̂𝐶𝑛𝑘 , 𝑊̂𝑛𝑘) ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘)
+ 1𝑁 𝑁∑𝑛=1(𝑊𝑛𝑘+1 −𝑊𝑛𝑘) ⋅ ∇2𝑤𝑓(̃𝐶𝑛𝑘 , 𝑊̃𝑛𝑘)(𝑊𝑛𝑘+1 −𝑊𝑛𝑘)

(19.20)

for points (̄𝐶𝑛𝑘 , 𝑊̄𝑛𝑘), (̂𝐶𝑛𝑘 , 𝑊̂𝑛𝑘), and (̃𝐶𝑛𝑘 , 𝑊̃𝑛𝑘) in the segments connecting 𝐶𝑛𝑘+1
with 𝐶𝑛𝑘 and𝑊𝑛𝑘+1 with𝑊𝑛𝑘 , respectively.

Substituting (19.3) into (19.20) yields

⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩ = 𝑁−5/2 𝑁∑𝑛=1 𝜕𝑐𝑓(𝐶𝑛𝑘 ,𝑊𝑛𝑘)𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)
+ 𝑁−5/2 𝑁∑𝑛=1 𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)∇𝑤𝑓(𝐶𝑛𝑘 ,𝑊𝑛𝑘) ⋅ 𝑥𝑘 + 𝒪𝑝 (𝑁−2)

= 𝑁−3/2𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝜕𝑐𝑓(𝑐, 𝑤)𝜎(𝑤 ⋅ 𝑥𝑘), 𝜈𝑁𝑘 ⟩+ 𝑁−3/2𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥𝑘)∇𝑤𝑓(𝑐, 𝑤) ⋅ 𝑥𝑘, 𝜈𝑁𝑘 ⟩ + 𝒪𝑝 (𝑁−2) ,
where we recall Definition 19.8 for the definition of 𝒪𝑝 (𝑁−2). Therefore, we
have

⟨𝑓, 𝜇𝑁𝑡 ⟩ = ⟨𝑓, 𝜇𝑁0 ⟩ + ⌊𝑁𝑡⌋−1∑𝑘=0 (⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩)
= ⟨𝑓, 𝜇𝑁0 ⟩ + 𝑁−3/2 ⌊𝑁𝑡⌋−1∑𝑘=0 𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝜕𝑐𝑓(𝑐, 𝑤)𝜎(𝑤 ⋅ 𝑥𝑘), 𝜈𝑁𝑘 ⟩
+ 𝑁−3/2 ⌊𝑁𝑡⌋−1∑𝑘=0 𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥𝑘)∇𝑤𝑓(𝑐, 𝑤) ⋅ 𝑥𝑘, 𝜈𝑁𝑘 ⟩
+ 𝒪𝑝 (𝑁−1) .(19.21)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

348 19. The Neural Tangent Kernel Regime

19.7. Proof of Main Convergence Results

Intuitively, the limit then can be seen to be the claimed one by taking𝑁 → ∞ to
(19.19) and (19.21). Let us now study how to rigorously claim the convergence
result.

Let 𝜋𝑁 be the probability measure of a convergent subsequence of the se-
quence {(𝜇𝑁 , ℎ𝑁)0≤𝑡≤𝑇}. Each 𝜋𝑁 takes values in the set of probability mea-
suresℳ(𝐷𝐸([0, 𝑇])). The established relative compactness implies that there
is a subsequence 𝜋𝑁𝑘 which weakly converges. We must prove that any limit
point 𝜋 of a convergent subsequence 𝜋𝑁𝑘 will satisfy the evolution equation
(19.4).

Lemma 19.15. Let 𝜋𝑁𝑘 be a convergent subsequence with a limit point 𝜋. Then,𝜋 is a Dirac measure concentrated on (𝜇, ℎ) ∈ 𝐷𝐸([0, 𝑇]) and (𝜇, ℎ) satisfies
equation (19.4).

Proof. We define a map 𝐹(𝜇, ℎ) ∶ 𝐷𝐸([0, 𝑇]) → ℝ+ for each 𝑡 ∈ [0, 𝑇], 𝑓 ∈𝐶2𝑏(ℝ1+𝑑), 𝑔1, . . . , 𝑔𝑝 ∈ 𝐶𝑏(ℝ1+𝑑), 𝑞1, . . . , 𝑞𝑝 ∈ 𝐶𝑏(ℝ𝑀), and 0 ≤ 𝑠1 < ⋯ < 𝑠𝑝 ≤𝑡.

𝐹(𝜇, ℎ) = || (⟨𝑓, 𝜇𝑡⟩ − ⟨𝑓, 𝜇0⟩) × ⟨𝑔1, 𝜇𝑠1⟩ ×⋯ × ⟨𝑔𝑝, 𝜇𝑠𝑝⟩ ||
+ ∑𝑥∈𝒟 ||(ℎ𝑡(𝑥) − ℎ0(𝑥)
− 𝜂∫𝑡

0 ∫𝒳×𝒴(𝑦 − ℎ𝑠(𝑥′)) ⟨𝜎(𝑤 ⋅ 𝑥)𝜎(𝑤 ⋅ 𝑥′), 𝜇𝑠⟩ 𝜋(𝑑𝑥′, 𝑑𝑦)𝑑𝑠
− 𝜂∫𝑡

0 ∫𝒳×𝒴(𝑦 − ℎ𝑠(𝑥′)) ⟨𝑐2𝜎′(𝑤 ⋅ 𝑥′)𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ 𝑥′, 𝜇𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠)
× 𝑞1(ℎ𝑠1) ×⋯ × 𝑞𝑝(ℎ𝑠𝑝)||.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.7. Proof of Main Convergence Results 349

Then, using equations (19.19) and (19.21), we obtain

𝔼𝜋𝑁 [𝐹(𝜇, ℎ)] = 𝔼[𝐹(𝜇𝑁 , ℎ𝑁)]
= 𝔼 ||𝒪𝑝(𝑁−1/2) × 𝑝∏𝑖=1 ⟨𝑔𝑖, 𝜇𝑁𝑠𝑖 ⟩||
+ 𝔼 ||(𝑀𝑁,1𝑡 +𝑀𝑁,2𝑡 + 𝒪𝑝(𝑁−1/2)) × 𝑝∏𝑖=1 𝑞𝑖(ℎ𝑁𝑠𝑖)||

≤ 𝐶𝑜(𝔼[|𝑀1,𝑁(𝑡)|2] 12 + 𝔼[|𝑀2,𝑁(𝑡)|2] 12) + 𝒪(𝑁−1/2)
≤ 𝐶𝑜 (1√𝑁 + 1𝑁) ,

where we have used the Cauchy-Schwarz inequality, see Appendix B.
Therefore,

lim𝑁→∞𝔼𝜋𝑁 [𝐹(𝜇, ℎ)] = 0.
Since 𝐹(⋅) is continuous and 𝐹(𝜇𝑁) is uniformly bounded (due to the uni-

form boundedness results established earlier),

𝔼𝜋[𝐹(𝜇, ℎ)] = 0.
Since this holds for each 𝑡 ∈ [0, 𝑇], all 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑), and for all functions𝑔1, . . . , 𝑔𝑝, 𝑞1, . . . , 𝑞𝑝 ∈ 𝐶𝑏(ℝ1+𝑑), we obtain that (𝜇, ℎ) satisfies the evolution

equation (19.4). □

Proof of Theorem 19.3. We now combine the previous results, tightness and
identification results to prove Theorem 19.3. Let𝜋𝑁 be the probabilitymeasure
corresponding to (𝜇𝑁 , ℎ𝑁). Each 𝜋𝑁 takes values in the set of probability mea-
sures ℳ(𝐷𝐸([0, 𝑇])). Relative compactness implies that every subsequence𝜋𝑁𝑘 has a further subsequence 𝜋𝑁𝑘𝑚 which weakly converges. By the iden-
tification results any limit point 𝜋 of 𝜋𝑁𝑘𝑚 will satisfy the evolution equation
(19.4). Equation (19.4) is a finite-dimensional linear equation and therefore
has a unique solution. Therefore, by Prokhorov’s theorem, 𝜋𝑁 weakly con-
verges to 𝜋, where 𝜋 is the distribution of (𝜇, ℎ), the unique solution of (19.4).
That is, (𝜇𝑁 , ℎ𝑁) converges in distribution to (𝜇, ℎ). □

Let us nowproveCorollary 19.6, which shows that under reasonable hyper-
parameter choices, the matrix 𝐴 in the limit equation will be positive definite.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

350 19. The Neural Tangent Kernel Regime

Proof of Corollary 19.6 . We first show that 𝐴 is equivalent to the covariance
matrix of the random variables 𝑈 = (𝑈(𝑥1), . . . , 𝑈(𝑥𝑀)), which are defined as

𝑈(𝑥) = √ 𝜂𝑀𝜎(𝑊 ⋅ 𝑥) +√ 𝜂𝑀𝐶𝜎′(𝑊 ⋅ 𝑥)𝑥,
where (𝑊, 𝐶) ∼ 𝜇0 and 𝑥 ∈ 𝒟. Due to the fact that 𝐶 is a mean zero random
variable and independent of𝑊 , we have

𝔼[𝑈(𝑥)𝑈(𝑥′)] = 𝔼[𝜂𝑀𝜎(𝑊 ⋅ 𝑥)𝜎(𝑊 ⋅ 𝑥′) + 𝜂𝑀𝐶2𝜎′(𝑊 ⋅ 𝑥)𝜎′(𝑊 ⋅ 𝑥′)𝑥 ⋅ 𝑥′]= 𝐴(𝑥, 𝑥′).
To prove that 𝐴 is positive definite, we need to show that 𝑧⊤𝐴𝑧 > 0 for

every non-zero 𝑧 ∈ ℝ𝑀 .
𝑧⊤𝐴𝑧 = 𝑧⊤𝔼[𝑈𝑈⊤]𝑧

= 𝔼[(𝑧⊤𝑈)2]
= 𝜂𝑀𝔼[(𝑀∑𝑚=1 𝑧𝑚 (𝜎(𝑥𝑚 ⋅ 𝑊) + 𝐶𝜎′(𝑊 ⋅ 𝑥𝑚)𝑥𝑚))2].

The functions𝜎(𝑥𝑚⋅𝑊) are linearly independent since the𝑥𝑚 are in district
directions (see Remark 3.1 of [Ito96]). Therefore, for each non-zero 𝑧, there
exists a point 𝑤∗ such that

𝑀∑𝑚=1 𝑧𝑚𝜎(𝑥𝑚 ⋅ 𝑤∗) ≠ 0.
Consequently, there exists an 𝜖 > 0 such that

(𝑀∑𝑚=1 𝑧𝑚𝜎(𝑥𝑚 ⋅ 𝑤∗))2 > 𝜖.
Since 𝜎(𝑤 ⋅ 𝑥) + 𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 is a continuous function, there exists a set𝐵 = {(𝑐, 𝑤) ∶ ‖𝑤 − 𝑤∗‖ + ‖𝑐‖ < 𝜅} for some 𝜅 > 0 such that for (𝑐, 𝑤) ∈ 𝐵,

(𝑀∑𝑚=1 𝑧𝑚 (𝜎(𝑥𝑚 ⋅ 𝑤) + 𝐶𝜎′(𝑊 ⋅ 𝑥𝑚)𝑥𝑚))2 > 𝜖2.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.9. Exercises 351

Then,

𝔼[(𝑀∑𝑚=1 𝑧𝑚 (𝜎(𝑥𝑚 ⋅ 𝑊) + 𝐶𝜎′(𝑊 ⋅ 𝑥𝑚)𝑥𝑚))2]
≥ 𝔼[(𝑀∑𝑚=1 𝑧𝑚 (𝜎(𝑥𝑚 ⋅ 𝑊) + 𝐶𝜎′(𝑊 ⋅ 𝑥𝑚)𝑥𝑚))2𝟏𝑊∈𝐵]
≥ 𝔼[𝜖2𝟏(𝐶,𝑊)∈𝐵]
= 𝜖2𝐾,

for some constant 𝐾 > 0.
Therefore, for every non-zero 𝑧 ∈ ℝ𝑀 ,𝑧⊤𝐴𝑧 > 0,

and 𝐴 is positive definite, which concludes the proof of the corollary. □

19.8. Brief Concluding Remarks

Some results on the shape of the energy landscape associated with neural net-
works can be found in [CHM+15,PDGB14,PB17]. He initialization [HZRS15]
and Xavier initialization [GB10] have both been very influential initialization
schemes. Their practical success led to the NTK development (the linear
regime) that was first developed in [JGH18] and shows the convergence of
trained neural networks to the ground truth. Related results on the NTK can
also be found in [ADH+19,DLL+19].

The linear regime is further explored in [MM23,MZ22, BMR21] where
generalization bounds are also established. In those works one can also find
bounds addressing how wide a neural network should be so that the test error
is well approximated by the infinite-width limit.

The presentation of the linear regime we followed in this chapter as well as
the proofs of the results in Sections 19.5, 19.6, and 19.7 are based on the articles
[SS19,SS22].

19.9. Exercises

Exercise 19.1. Consider a one-layer neural network with sigmoid activation
function. Assume that the input is 𝑋 ∼ 𝑁(0, 1) and the output is

𝑌 = 𝑁∑𝑛=1 𝑐𝑛𝜎(𝑤𝑛𝑋 + 𝑏𝑛).
Find a formula for the variance of 𝑌 in terms of {𝑐𝑛, 𝑤𝑛, 𝑏𝑛}𝑁𝑛=1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

352 19. The Neural Tangent Kernel Regime

Exercise 19.2. Consider a shallow neural network with the bias term present.
Namely, consider the neural network model

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥 + 𝑏𝑛).

(1) Prove that for all 𝑖 ∈ ℕ and all 𝑘 such that 𝑘/𝑁 ≤ 𝑇, we have that𝔼|𝑏𝑖𝑘| < 𝐶.
(2) Rework the arguments to state the limit problem analogously to what

is in Theorem 19.3 without the bias term.
(3) Is Corollary 19.6 now true? Justify your answer.

Exercise 19.3. Let now 𝛾 ∈ (1/2, 1) be a given parameter and consider the
model 𝔪𝑁(𝑥; 𝜃) = 1𝑁𝛾

𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),
where 𝜃 = (𝐶1,𝑊1, . . . , 𝐶𝑁 ,𝑊𝑁) and with loss function

Λ(𝜃) = 12𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪(𝑥𝑚; 𝜃))2 .
(1) Write down the SGD updating equations for this model that are anal-

ogous to (19.3).
(2) Choose the learning rate to be 𝜂𝑁𝑘 = 𝜂/𝑁2(1−𝛾)with 𝜂 ∈ (0,∞). Derive

the evolution equation for the analogous ℎ𝑁𝑡 of equation (19.18) but
for this model.

(3) Prove that if we choose the learning rate to be 𝜂𝑁𝑘 = 𝜂/𝑁2(1−𝛾)with 𝜂 ∈(0,∞) some constant, then the statement of Theorem 19.3 remains
true for any given value of 𝛾 ∈ [1/2, 1).

Exercise 19.4. Consider the single layer neural network model

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),

where 𝜃 = (𝐶1,𝑊1, . . . , 𝐶𝑁 ,𝑊𝑁) and with loss function
Λ(𝜃) = 12𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪(𝑥𝑚; 𝜃))2 .

We train the model parameters 𝜃 using continuous-time gradient descent,
i.e., 𝑑𝜃𝑡𝑑𝑡 = −𝜂∇Λ(𝜃𝑡),(19.22)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

19.9. Exercises 353

where 𝜂 > 0 is the learning rate. At time 𝑡 = 0, 𝜃0 are initialized as i.i.d.
Gaussian random variables.

(1) Show that the Euler discretization of the continuous-time algorithm
(19.22) is the standard gradient-descent algorithm.

(2) Prove that 𝑡 ↦ Λ(𝜃𝑡) is monotonically decreasing.
(3) What is the limit of𝔪(𝑥; 𝜃0) as 𝑁 → ∞?
(4) Using the chain rule derive a system of ODEs for the vectorℎ𝑁(𝑡)) = (𝔪(𝑥1; 𝜃𝑡), . . . ,𝔪(𝑥𝑀 ; 𝜃𝑡)) .
(5) Show that ℎ𝑁(𝑡) converges as 𝑁 → ∞ to the solution ℎ(𝑡) of a system

of linear ODEs. Compare your answer to (19.4).
(6) Let Λ̂(ℎ) = 12𝑀 ∑𝑀𝑚=1 |𝑦𝑚 − ℎ𝑚|2 where ℎ𝑚 is the𝑚th element of the

vector ℎ. Show that lim𝑡→∞ Λ̂(ℎ(𝑡)) = 0.
(7) Explain how the analysis above shows that the neural network con-

vexifies as the number of hidden units tend to infinity.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 20

Optimization
in the Feature
Learning Regime:
Mean Field Scaling

20.1. Introduction

In Chapter 19, we studied the so-called linear asymptotic regime, i.e., the limit
as 𝑁 → ∞ of the single layer neural network

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥).

As we saw in Chapter 19, this limit gives rise to the neural tangent kernel
and can be thought of as the linear regime given the linear nature of the limit
(19.5).

The goal of this chapter is to study the so-called nonlinear regime which
rises when we scale the neural network by 1/𝑁 instead of 1/√𝑁. In particular,
let us consider

𝔪𝑁(𝑥; 𝜃) = 1𝑁 𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥).
Interestingly enough, as we shall see below, this scaling regime exhibits

different behavior thanwhatwehave seen inChapter 19, leading to a genuinely
nonlinear limiting behavior with good generalization properties.

355

10.1090/gsm/252/21

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

356 20. Optimization in the Feature Learning Regime: Mean Field Scaling

20.2. Preliminary Thoughts

Generally speaking, we can think of the model

𝔪𝑁(𝑥; 𝜃) = 1𝑁 𝑁∑𝑛=1𝜓(𝑥; 𝜃𝑛),
where 𝜓(𝑥; 𝜃) could for example be

(1) a radial basis function 𝜓(𝑥; 𝜃) = 𝑒− 𝑘2 ‖𝑥−𝜃‖2 .
(2) a shallow neural network 𝜓(𝑥; 𝜃) = 𝑐𝜎(𝑤 ⋅ 𝑥 + 𝑏), where 𝜃 = (𝑐, 𝑤, 𝑏).
(3) a deep neural network 𝜓(𝑥; 𝜃) = 𝑐𝜎(𝑤1𝜎(𝑤2 ⋅ 𝑥 + 𝑏2) + 𝑏1), where𝜃 = (𝑐, 𝑤1, 𝑤2, 𝑏1, 𝑏2).
For the sake of concreteness, let us consider the (population) loss function

to be the quadratic error loss

Λ𝑁pop(𝜃) = 12𝔼[(𝔪̄(𝑋) − 𝔪𝑁(𝑋; 𝜃))2],
where 𝔪̄(𝑥) is the target data. Notice that we deliberately expressed the loss
function in terms of the expectation operator 𝔼 associated with the underly-
ing probability measure ℙ. This is the so-called population loss function, as
opposed to the empirical loss function that has been the object of study in the
vast majority of the book so far. We study the population loss function here
as it makes some of the subsequent argument easier to present. However, as
we shall see in Section 20.3, where we analyze the mean field scaling using
the actual empirical loss function (which is what is used in practice), the in-
tuition developed in this section working with the population loss function is
consistent with what is seen when working with the empirical loss function.

For concreteness, let us focus on the shallow neural network case. Notice
that we can write

Λ𝑁pop(𝜃) = 𝐷 − 1𝑁 𝑁∑𝑖=1ℎ(𝜃𝑖) − 12𝑁2
𝑁∑𝑖,𝑗=1𝐾(𝜃𝑖, 𝜃𝑗),

where 𝐷 = 12𝔼|𝔪̄(𝑋)|2, ℎ(𝜃) = 𝐶𝔼 [𝔪̄(𝑋)𝜎(𝑊 ⋅ 𝑋)], and
𝐾(𝜃𝑖, 𝜃𝑗) = 𝐶 𝑖𝐶𝑗𝔼 [𝜎(𝑊 𝑖 ⋅ 𝑋)𝜎(𝑊 𝑗 ⋅ 𝑋)] .

Gradient descent in continuous time takes the form

̇𝜃𝑖𝑡 = ∇ℎ(𝜃𝑖𝑡) − 1𝑁 𝑁∑𝑗=1∇𝜃𝑖𝑡𝐾(𝜃𝑖𝑡, 𝜃𝑗𝑡).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.2. Preliminary Thoughts 357

As it turns out if we set

𝔪𝑁(𝑥, 𝑡) = 1𝑁 𝑁∑𝑛=1𝜓(𝑥; 𝜃𝑛𝑡),
then lim𝑁→∞𝔪𝑁(𝑥, 𝑡) = 𝔪(𝑥, 𝑡), where𝔪(𝑥, 𝑡) satisfies

𝔪̇(𝑥, 𝑡) = −∫𝒳 𝐴𝑡(𝑥, 𝑥′)(𝔪(𝑥′, 𝑡) − 𝔪̄(𝑥′))𝜋(𝑑𝑥′).(20.1)

Here 𝔪̄(𝑥) is the target data and 𝐴𝑡(𝑥, 𝑥′) is a positive semidefinite kernel,
explicitly defined in (20.3). Some remarks are now in order.

Remark 20.1. It is interesting to contrast this with the 1/√𝑁 normalization of
Chapter 19where the limit is effectively as above butwith the kernel𝐴𝑡(𝑥, 𝑥′) =𝐴(𝑥, 𝑥′) being constant in time. In that case we have the linear regime and𝐴(𝑥, 𝑥′) is called theNTK.However, in the 1/𝑁 scaling case, the kernel𝐴𝑡(𝑥, 𝑥′)
truly depends on time 𝑡 and it corresponds to the nonlinear regime.

Define the empirical measure

𝜇𝑁𝑡 = 1𝑁 𝑁∑𝑛=1 𝛿𝜃𝑛𝑡 .
Note that the neural network output can be written as the inner-product

𝔪𝑁(𝑥; 𝜃𝑡) = 1𝑁 𝑁∑𝑛=1𝐶𝑛𝑡 𝜎(𝑊𝑛𝑡 ⋅ 𝑥) = ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇𝑁𝑡 ⟩ ,
which is an affine function of the empirical measure 𝜇𝑁𝑡 . It also turns out that𝜇𝑁𝑡 converges in the appropriate sense to a measure 𝜇̄𝑡 whose density, say 𝑞𝑡(𝜃)
with 𝜃 = (𝑐, 𝑤), will satisfy the partial differential equation
(20.2) 𝜕𝑡𝑞𝑡(𝜃) = ∇ ⋅ (∇𝜃 ̃𝐾(𝜃, 𝑞𝑡)𝑞𝑡(𝜃)) ,
where ̃𝐾(𝜃, 𝑞𝑡) = −ℎ(𝜃) + ∫Θ 𝐾(𝜃, 𝜃′)𝑞𝑡(𝜃′)𝑑𝜃′.

What about the loss function? Notice thatΛ𝑁(𝜃) can also be seen as a func-
tion of the empirical measure 𝜇𝑁𝑡 . Indeed, we see thatΛ𝑁pop(𝜃) = 12𝔼[(𝔪̄(𝑋) − 𝔪𝑁(𝑋; 𝜃))2]

= 12𝔼[(𝔪̄(𝑋) − ⟨𝑐𝜎(𝑤 ⋅ 𝑋), 𝜇𝑁𝑡 ⟩)2].
So, let us write Λ𝑁pop(𝜃) = Λpop(𝜇𝑁𝑡) to emphasize the dependence on the

empirical measure 𝜇𝑁𝑡 . Now, the convergence 𝜇𝑁𝑡 → 𝜇̄𝑡 impliesΛpop(𝜇𝑁𝑡) → Λ̄(𝜇̄𝑡), as 𝑁 → ∞,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

358 20. Optimization in the Feature Learning Regime: Mean Field Scaling

where Λ̄(𝜇̄𝑡) = 12 ∫𝒳(𝔪̄(𝑋) − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇̄𝑡⟩)2𝜋(𝑑𝑥).
A simple calculation shows that𝑑𝑑𝑡 Λ̄(𝜇̄𝑡) = −∫Θ ‖∇𝜃 ̃𝐾(𝜃, 𝜇̄𝑡)‖22𝜇̄𝑡(𝑑𝜃) ≤ 0.

Remark 20.2. The latter shows that the function 𝑡 ↦ Λ̄(𝜇̄𝑡) is non-increasing.
While this does not guarantee convergence of Λ̄(𝜇̄𝑡) to zero, it is at least in the
right direction! In fact, as we shall see in Theorem 20.21 for a deep neural net-
work with mean field scaling, if it converges during training, it must converge
to the global minimum (and not a local minimum). A similar result is true for
shallow neural networks.

In order now to see, at least heuristically, that (20.1) holds, we will use
(20.2). Consider the function 𝜌(𝜃, 𝑥) = 𝑐𝜎(𝑤 ⋅ 𝑥) and recall that 𝜃 = (𝑐, 𝑤). We
have𝜕𝑡𝔪(𝑥, 𝑡) = 𝜕𝑡 ⟨𝜌(⋅, 𝑥), 𝜇̄𝑡⟩= −∫Θ∇𝜃𝜌(𝜃, 𝑥) (∫𝒳 ∇𝜃𝜌(𝜃, 𝑥′) (𝔪(𝑥′, 𝑡) − 𝔪̄(𝑥′)) 𝜋(𝑑𝑥′)) 𝜇̄𝑡(𝑑𝜃)

= −∫𝒳 𝐴𝑡(𝑥, 𝑥′) (𝔪(𝑥′, 𝑡) − 𝔪̄(𝑥′)) 𝜋(𝑑𝑥′),
where in the last part we integrated by parts and defined

𝐴𝑡(𝑥, 𝑥′) = ∫Θ∇𝜃𝜌(𝜃, 𝑥)∇𝜃𝜌(𝜃, 𝑥′)𝜇̄𝑡(𝑑𝜃),(20.3)

which is a symmetric, positive semidefinite kernel. Hence, the key is to estab-
lish (20.2). In fact, under the proper assumptions, it can be shown that the flow
converges to the target, i.e., lim𝑁,𝑡→∞𝔪𝑁(𝑥, 𝑡) = 𝔪̄(𝑥),
namely in the limit as 𝑁 → ∞ and 𝑡 → ∞ the algorithm recovers the target
data. These points are made rigorous in the sections that follow. Section 20.6
compares the scaling of Chapter 19 and of this chapter.

20.3. Mean Field Limit for Shallow Neural Networks

Let us consider the simplest possible setting where we set

𝔪𝑁(𝑥; 𝜃) = 1𝑁 𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 359

where 𝐶𝑛 ∈ ℝ, 𝑊𝑛 ∈ ℝ𝑑, 𝑥 ∈ ℝ𝑑, and 𝜎(⋅) ∶ ℝ → ℝ. The number of
hidden units is 𝑁 and the output is scaled by a factor 1𝑁 ; the so-called mean
field scaling.

We turn to the empirical objective function, and we have

Λ𝑁(𝜃) = 12 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃))2 ,
𝑦𝑚 ∈ ℝ, 𝑥𝑚 ∈ ℝ𝑑 and the parameters 𝜃 = (𝐶1, . . . , 𝐶𝑁 ,𝑊1, . . . ,𝑊𝑁) ∈ℝ𝑁×(1+𝑑). For notational convenience, we may refer to 𝔪𝑁(𝑥; 𝜃) as 𝔪𝑁(𝑥) in
our analysis below.

Themodel parameters 𝜃 are trained using stochastic gradient descent. The
parameter updates are given by

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘),
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘,

𝔪𝑁𝑘 (𝑥) = 1𝑁 𝑁∑𝑛=1𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝑥),(20.4)

for 𝑘 = 0, 1, . . . , ⌊𝑇𝑁⌋ where 𝑇 > 0. 𝜂𝑁𝑘 = 𝜂 is the learning rate (chosen to
be constant). The data samples (𝑥𝑘, 𝑦𝑘) are i.i.d. samples from a distribution𝜋(𝑑𝑥, 𝑑𝑦).

We impose the following assumption.

Assumption 20.3. We have that:• The activation function 𝜎 ∈ 𝐶2𝑏(ℝ), i.e., 𝜎 is two times continuously
differentiable and bounded. Additionally, we shall assume that 𝜎 has
two bounded derivatives.• The data (𝑋, 𝑌) ∈ 𝒳 × 𝒴 is compactly supported.• The sequence of data samples (𝑥𝑘, 𝑦𝑘) samples are i.i.d. from a distri-
bution 𝜋(𝑑𝑥, 𝑑𝑦)• The randomly initialized parameters (𝐶𝑛0 ,𝑊𝑛0) are i.i.d., mean-zero
randomvariableswith a distribution𝜇0(𝑑𝑐, 𝑑𝑤) that has compact sup-
port.

As we shall see in Remark 20.7, Assumption 20.3 can be weakened consid-
erably, but wewill present the rigorous arguments under the stronger Assump-
tion 20.3. We study the limiting behavior of the network output𝔪𝑁𝑘 (𝑥) for as
the number of hidden units 𝑁 and stochastic gradient descent steps 𝑘 = ⌊𝑇𝑁⌋

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

360 20. Optimization in the Feature Learning Regime: Mean Field Scaling

simultaneously become large. Let us nowmake this precise. Define the empir-
ical measure

𝜈𝑁𝑘 = 1𝑁 𝑁∑𝑛=1 𝛿𝐶𝑛𝑘 ,𝑊𝑛𝑘 .
Note that the neural network output can be written as the inner-product𝔪𝑁𝑘 (𝑥) = ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩ ,

i.e., it is linear in the empirical measure 𝜈𝑁𝑘 . Define the scaled processes𝜇𝑁𝑡 = 𝜈𝑁⌊𝑁𝑡⌋.
Note that under Assumption 20.3, the initial empirical measure satisfies𝜇𝑁0 𝑑→ 𝜇̄0 as 𝑁 → ∞. In addition, due to our assumption on the distribution of

the (𝑥𝑘, 𝑦𝑘) data and of the initialization (𝐶𝑛0 ,𝑊𝑛0)𝑁𝑛=1, the joint distribution of(𝐶𝑛𝑘 ,𝑊𝑛𝑘)𝑁𝑖=1 ∈ (ℝ1+𝑑)⊗𝑁 is exchangeable and, consequently, 𝜈𝑁𝑘 is a Markov
chain in the space of probability measures on 𝐸.

We are now ready to discuss the main result of this chapter.

Theorem 20.4. Assume that Assumption 20.3 holds, and let the learning rate be
given by 𝜂𝑁𝑘 = 𝜂 for 0 < 𝜂 < ∞, a fixed constant. The scaled empirical measure𝜇𝑁𝑡 converges in probability to a limitmeasure 𝜇̄𝑡with values in𝐷𝐸([0, 𝑇])as𝑁 →∞ (where 𝐸 = ℳ(ℝ1+𝑑)). For every 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑), 𝜇̄ is the unique deterministic
solution of the measure evolution equation⟨𝑓, 𝜇̄𝑡⟩ = ⟨𝑓, 𝜇̄0⟩

+∫𝑡
0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐′𝜎(𝑤′ ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝜎(𝑤 ⋅ 𝑥)𝜕𝑐𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠

+∫𝑡
0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐′𝜎(𝑤′ ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ ∇𝑤𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠= ⟨𝑓, 𝜇̄0⟩

+∫𝑡
0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐′𝜎(𝑤′ ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨∇(𝑐𝜎(𝑤 ⋅ 𝑥)) ⋅ ∇𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠,

(20.5)

where∇𝑓 = (𝜕𝑐𝑓,∇𝑤𝑓).
Corollary 20.5. Assume Assumption 20.3 holds, and for a given 𝑞(𝑡, 𝑐, 𝑤) set𝑣(𝜃, 𝑞(𝑡, ⋅))

= ∫𝒳×𝒴 ((𝑦 −∫ℝ1+𝑑 𝑐′𝜎(𝑤′ ⋅ 𝑥)𝑞(𝑡, 𝑐′, 𝑤′)𝑑𝑐′𝑑𝑤′) 𝑐𝜎(𝑤 ⋅ 𝑥)) 𝜋(𝑑𝑥, 𝑑𝑦).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 361

Suppose that 𝜇̄0 admits a density 𝑞0(𝑐, 𝑤) and there exists a unique solution to
the nonlinear partial differential equation𝜕𝑞(𝑡, 𝜃)𝜕𝑡 = −𝜂 div𝜃 (𝑞(𝑡, 𝜃)∇𝜃𝑣(𝜃, 𝑞(𝑡, ⋅)))𝑞(0, 𝜃) = 𝑞0(𝜃),(20.6)

where div𝜃 is the divergence operator with respect to the variable 𝜃 = (𝑐, 𝑤) and𝑞(𝑡, 𝑐, 𝑤) vanishes as |𝑐|, ∥ 𝑤 ∥→ ∞. Then, we have that the solution to the mea-
sure evolution equation (20.5) is such that𝜇̄𝑡(𝑑𝜃) = 𝑞(𝑡, 𝜃)𝑑𝜃.
Remark 20.6. Theorem 20.4 and Corollary 20.5 imply that the objective func-
tion Λ𝑁(𝜃) satisfies
lim𝑁→∞Λ𝑁pop(𝜃⌊𝑁𝑡⌋) = Λ̄(𝑞(𝑡, ⋅)) = 12 ∫𝒳×𝒴 (𝑦 − 𝔪̄(𝑥; 𝑞(𝑡, ⋅)))2 𝜋(𝑑𝑥, 𝑑𝑦), where

(20.7)

𝔪̄(𝑥; 𝑞(𝑡, ⋅)) = ∫ℝ1+𝑑 𝑐𝜎(𝑤 ⋅ 𝑥)𝑞(𝑡, 𝑐, 𝑤)𝑑𝑐𝑑𝑤.
Classical results in the literature (see, e.g., [AGS08,CMV03,JKO98]) show

that the PDE (20.6) is a gradient flow for the limiting objective function (20.7)
in the space of probability measures on ℝ1+𝑑 endowed with the Wasserstein
metric. This means that the trajectory’s 𝑡 ↦ 𝑞(𝑡, ⋅) goal is to minimize the
limit objective function Λ(𝑞) as defined by (20.7). More details on the optimal
transportation theory as related to the problems of interest here can be found
in [AGS08,CB18].

Remark 20.7. We note that, as [SS20b] shows, Theorem 20.4 holds with the
considerable weaker Assumption 20.8 instead of Assumption 20.3. In particu-
lar, the compact support assumption of the distributions under which the data
samples and parameters at initialization are generated is not needed and can
be replaced by appropriate moment conditions.

Assumption 20.8. We have that:• The activation function 𝜎 ∈ 𝐶2𝑏(ℝ), i.e., 𝜎 is bounded and twice con-
tinuously differentiable. We further assume that it has two bounded
derivatives.• The randomly initialized parameters (𝐶𝑛0 ,𝑊𝑛0) are i.i.d., mean-zero
random variables with a distribution 𝜇0(𝑑𝑐, 𝑑𝑤), such that for some0 < 𝑞 < ∞, we have 𝔼𝑒𝑞𝐶𝑛0 < ∞ and 𝔼 ‖𝑊𝑛0 ‖2 < ∞.• The sequence of data samples (𝑥𝑚, 𝑦𝑚) is i.i.d. from the probability
distribution 𝜋(𝑑𝑥, 𝑑𝑦) such that 𝔼𝑥4𝑚 + 𝔼𝑦4𝑚 < ∞.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

362 20. Optimization in the Feature Learning Regime: Mean Field Scaling

We present the proof under the stronger Assumption 20.3 in order to focus
on themain ideas andmain intuition. We refer the interested reader to [SS20b]
for the more involved technical details in the case of the weaker Assumption
20.8 instead of Assumption 20.3.

Proof of Theorem 20.4. Let us assume thatwe can indeed show relative com-
pactness of the family {𝜇𝑁}𝑁∈ℕ in𝐷𝐸([0, 𝑇])where 𝐸 = ℳ(ℝ1+𝑑) (this follows
exactly along the lines of the calculations in Section 19.5.2 and the calculations
are included in Section 20.3.1). This will guarantee that the family {𝜇𝑁}𝑁∈ℕ in-
deed has a limit as 𝑁 → ∞. Consider a test function 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑). By Taylor
expansion, we shall have that

⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩ = 1𝑁 𝑁∑𝑛=1 (𝑓(𝑐𝑛𝑘+1, 𝑤𝑛𝑘+1) − 𝑓(𝑐𝑛𝑘, 𝑤𝑛𝑘))
= 1𝑁 𝑁∑𝑛=1 𝜕𝑐𝑓(𝑐𝑛𝑘, 𝑤𝑛𝑘)(𝑐𝑛𝑘+1 − 𝑐𝑛𝑘) + 1𝑁 𝑁∑𝑛=1∇𝑤𝑓(𝑐𝑛𝑘, 𝑤𝑛𝑘)(𝑤𝑛𝑘+1 − 𝑤𝑛𝑘)
+ 1𝑁 𝑁∑𝑛=1 𝜕2𝑐𝑓(̄𝑐𝑛𝑘, 𝑤̄𝑛𝑘)(𝑐𝑛𝑘+1 − 𝑐𝑛𝑘)2
+ 1𝑁 𝑁∑𝑛=1(𝑐𝑛𝑘+1 − 𝑐𝑛𝑘)∇𝑐𝑤𝑓(̄𝑐𝑛𝑘, 𝑤̄𝑛𝑘)(𝑤𝑛𝑘+1 − 𝑤𝑛𝑘)
+ 1𝑁 𝑁∑𝑛=1(𝑤𝑛𝑘+1 − 𝑤𝑛𝑘)⊤∇2𝑤𝑓(̄𝑐𝑛𝑘, 𝑤̄𝑛𝑘)(𝑤𝑛𝑘+1 − 𝑤𝑛𝑘),

for points ̄𝑐𝑛𝑘, 𝑤̄𝑛𝑘 in the segments connecting 𝑐𝑛𝑘+1 with 𝑐𝑛𝑘 and 𝑤𝑛𝑘+1 with 𝑤𝑛𝑘 ,
respectively. Notice now that the uniform bounds of Exercise 20.1 and the re-
lation (20.4) imply that as 𝑁 gets large

⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩ = 1𝑁2
𝑁∑𝑛=1 𝜕𝑐𝑓(𝑐𝑛𝑘, 𝑤𝑛𝑘)𝜂(𝑦𝑘 −𝔪𝑁(𝑥𝑘; 𝜃𝑘))𝜎(𝑤𝑛𝑘 ⋅ 𝑥𝑘)

+ 1𝑁2
𝑁∑𝑛=1 𝜂(𝑦𝑘 −𝔪𝑁(𝑥𝑘; 𝜃𝑘))𝑐𝑛𝑘𝜎′(𝑤𝑛𝑘 ⋅ 𝑥𝑘)∇𝑤𝑓(𝑐𝑛𝑘, 𝑤𝑛𝑘) ⋅ 𝑥𝑘 + 𝒪𝑝 (𝑁−2) ,

where we recall Definition 19.8 for the notation 𝒪𝑝 (𝑁−2). The term 𝒪𝑝 (𝑁−2)
is a result of 𝑓 ∈ 𝐶2𝑏, the bounds from of Exercise 20.1, as well as the moment

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 363

bounds on (𝑥𝑘, 𝑦𝑘) from Assumption 19.2. We next define the components

𝐷1,𝑁𝑘 = 1𝑁 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩) ⟨𝜎(𝑤 ⋅ 𝑥)𝜕𝑐𝑓, 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦),
𝐷2,𝑁𝑘 = 1𝑁 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜈𝑁𝑘 ⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ ∇𝑤𝑓, 𝜈𝑁𝑘 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦),
𝑀1,𝑁𝑘 = 1𝑁𝜂(𝑦𝑘 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥𝑘), 𝜈𝑁𝑘 ⟩) ⟨𝜎(𝑤 ⋅ 𝑥𝑘)∇𝑐𝑓, 𝜈𝑁𝑘 ⟩ − 𝐷1,𝑁𝑘 ,
𝑀2,𝑁𝑘 = 1𝑁𝜂(𝑦𝑘 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥𝑘), 𝜈𝑁𝑘 ⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥𝑘)𝑥 ⋅ ∇𝑤𝑓, 𝜈𝑁𝑘 ⟩ − 𝐷2,𝑁𝑘 ,

which leads to the expression⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩ = 𝐷1,𝑁𝑘 + 𝐷2,𝑁𝑘 +𝑀1,𝑁𝑘 +𝑀2,𝑁𝑘 + 𝒪𝑝 (𝑁−2) .
Next, we define 𝐷1,𝑁 , 𝐷2,𝑁 ,𝑀1,𝑁 , and 𝑀2,𝑁 as sums over indexes 𝑘 ∈{0, . . . , ⌊𝑁𝑡⌋ − 1} of 𝐷1,𝑁𝑘 , 𝐷2,𝑁𝑘 ,𝑀1,𝑁𝑘 , and𝑀2,𝑁𝑘 , respectively

𝐷1,𝑁(𝑡) = ⌊𝑁𝑡⌋−1∑𝑘=0 𝐷1,𝑁𝑘 , 𝐷2,𝑁(𝑡) = ⌊𝑁𝑡⌋−1∑𝑘=0 𝐷2,𝑁𝑘 ,
𝑀1,𝑁(𝑡) = ⌊𝑁𝑡⌋−1∑𝑘=0 𝑀1,𝑁𝑘 , 𝑀2,𝑁(𝑡) = ⌊𝑁𝑡⌋−1∑𝑘=0 𝑀2,𝑁𝑘 .(20.8)

The scaled empirical measure can be written as the telescoping sum⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁0 ⟩ = ⟨𝑓, 𝜈𝑁⌊𝑁𝑡⌋⟩ − ⟨𝑓, 𝜈𝑁0 ⟩
= ⌊𝑁𝑡⌋−1∑𝑘=0 (⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩).

Therefore, the scaled empirical measure satisfies, as 𝑁 grows,

⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁0 ⟩ = ⌊𝑁𝑡⌋−1∑𝑘=0 (⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩)
= ⌊𝑁𝑡⌋−1∑𝑘=0 (𝐷1,𝑁𝑘 + 𝐷2,𝑁𝑘 +𝑀1,𝑁𝑘 +𝑀2,𝑁𝑘) + 𝒪𝑝 (𝑁−1)
= ∫𝑡

0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇𝑁𝑠 ⟩) ⟨𝜎(𝑤 ⋅ 𝑥)∇𝑐𝑓, 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
+∫𝑡

0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇𝑁𝑠 ⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ ∇𝑤𝑓, 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
+ 𝑀1,𝑁(𝑡) + 𝑀2,𝑁(𝑡) + 𝒪𝑝 (𝑁−1) .(20.9)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

364 20. Optimization in the Feature Learning Regime: Mean Field Scaling

In fact Exercise 20.2 claims 𝑀1,𝑁(𝑡) and 𝑀2,𝑁(𝑡) converge to 0 in 𝐿2 as𝑁 → ∞. Tightness together with relation (20.9) shows that (20.5) is the limit
equation, similar to the proof of Theorem 19.3.

In particular, let 𝜋𝑁 be the probability measure of a convergent subse-
quence of {𝜇𝑁}0≤𝑡≤𝑇 . Each 𝜋𝑁 takes values in the set of probability measuresℳ(𝐷𝐸([0, 𝑇])). The established relative compactness implies that there is a
subsequence 𝜋𝑁𝑘 which weakly converges. Then, as in Lemma 19.15, we get
that if 𝜋𝑁𝑘 is a convergent subsequence with a limit point 𝜋, then, 𝜋 is a Dirac
measure concentrated on 𝜇̄ ∈ 𝐷𝐸([0, 𝑇]) and 𝜇̄ satisfies equation (20.5).

Lastly, it remains to show uniqueness of the solution to (20.5). This is
proven via a contraction argument, as detailed in Section 20.3.2. This com-
pletes the proof of Theorem 20.4. □

An important consequence of Theorem 20.4 is that the neural network has
the propagation of chaos property. This is the content of Theorem 20.9, pre-
sented here without proof.
Theorem20.9 ([SS20b]). Assume that Assumption 19.2holds. Consider𝑇 < ∞
and let 𝑡 ∈ (0, 𝑇]. Define the probability measure 𝜌𝑁𝑡 ∈ ℳ(ℝ(1+𝑑)𝑁) where𝜌𝑁𝑡 (𝑑𝑥1, . . . , 𝑑𝑥𝑁) = ℙ[(𝑐1⌊𝑁𝑡⌋, 𝑤1⌊𝑁𝑡⌋) ∈ 𝑑𝑥1, . . . , (𝑐𝑁⌊𝑁𝑡⌋, 𝑤𝑁⌊𝑁𝑡⌋) ∈ 𝑑𝑥𝑁].
Then, the sequence of probability measures 𝜌𝑁⋅ is 𝜇̄⋅-chaotic. That is, for 𝑘 ∈ ℕ

lim𝑁→∞ ⟨𝑓1(𝑥1) ×⋯ × 𝑓𝑘(𝑥𝑘), 𝜌𝑁⋅ (𝑑𝑥1, . . . , 𝑑𝑥𝑁)⟩ = 𝑘∏𝑖=1 ⟨𝑓𝑖, 𝜇̄⋅⟩ ,(20.10)

for all 𝑓1, . . . , 𝑓𝑘 ∈ 𝐶2𝑏(ℝ1+𝑑).
Theorem 20.9 implies asymptotic independence of the particles as𝑁 → ∞.

Indeed, by (20.10), as𝑁 → ∞, the dynamics of theweights (𝑐𝑖𝑘, 𝑤𝑖𝑘)will become
independent of the dynamics of the weights (𝑐𝑗𝑘, 𝑤𝑗𝑘) for any 𝑖 ≠ 𝑗 in the limit
as 𝑁 → ∞. It is perhaps interesting to remark here that the dynamics (𝑐𝑖𝑘, 𝑤𝑖𝑘)
are still random due to the random initialization. Let us finally discuss insights
from the mean field limit of Theorem 20.4.
Remark 20.10. As 𝑁 → ∞, the neural network converges in probability to
a deterministic model. This is despite the fact that the neural network is ran-
domly initialized and it is trained on a random sequence of data samples via
stochastic gradient descent.
Remark 20.11. For finite 𝑁, 𝜂 must decay with the number of iterations in
order for stochastic gradient descent to converge. Despite this, the noise disap-
pears and the neural network’s parameter distribution converges to a determin-
istic evolution equation. This is due to the normalization of 1𝑁 in the hidden
layer replacing the role of the learning rate decay.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 365

Remark 20.12. As it also discussed in Remark 20.6, the partial differential
equation (20.6) is a gradient flow for the limiting objective function (20.7) in the
space of probability measures on ℝ1+𝑑 endowed with the Wasserstein metric.
Hence, the target of the limiting law of large numbers result is to minimize the
limit objective function Λ̄(𝑞) as defined by (20.7).
20.3.1. Tightness inmean field scaling. The process for establishing tight-
ness here is parallel to the process we followed in Chapter 19. The first step
into establishing that the family {𝜇𝑁𝑡 , 𝑡 ∈ [0, 𝑇]}𝑁∈ℕ has a limit as 𝑁 grows to
infinity is to prove an appropriate form of compact containment, and, in our
case, it is enough to show that there is a compact set that contains {𝜇𝑁𝑡 } for all𝑁 ∈ ℕ and 𝑡 ∈ [0, 𝑇]. Recall that 𝜇𝑁𝑡 ∈ 𝐷𝐸([0, 𝑇]), where 𝐷𝐸([0, 𝑇]) is the
set of maps from [0, 𝑇] into 𝐸 which are right-continuous and which have left-
hand limits, 𝐸 = ℳ(ℝ1+𝑑), andℳ(ℝ1+𝑑) is the space of probability measures
in ℝ1+𝑑 (see also Section A.4).
Lemma 20.13. For each 𝛿 > 0, there is a compact subset𝒦 of 𝐸 such that

sup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[𝜇𝑁𝑡 ∉ 𝒦] < 𝛿.

Proof. Given the a priori bounds established in Exercise 20.1, the proof is com-
pletely analogous to that of Lemma 19.11. □

Nextwe establish regularity of the family ofmeasures {𝜇𝑁𝑡 ∶ 𝑡 ∈ [0, 𝑇]}𝑁∈ℕ.
As inChapter 19 consider the function 𝑞(𝑧1, 𝑧2) = min{|𝑧1−𝑧2|, 1}with 𝑧1, 𝑧2 ∈ℝ. Recall thatℱ𝑁𝑡 is the𝜎-algebra generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 , i.e.,ℱ𝑁𝑡 contains the information generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 .

Lemma 20.14. Let 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑). For any 𝑝 ∈ (0, 1) and 𝛿 ∈ (0, 1), there is a
constant 𝐶𝑜 < ∞ such that for 0 ≤ 𝑢 ≤ 𝛿, 0 ≤ 𝑣 ≤ 𝛿 ∧ 𝑡, 𝑡 ∈ [0, 𝑇],

𝔼 [𝑞(⟨𝑓, 𝜇𝑁𝑡+ᵆ⟩ , ⟨𝑓, 𝜇𝑁𝑡 ⟩)𝑞(⟨𝑓, 𝜇𝑁𝑡 ⟩ , ⟨𝑓, 𝜇𝑁𝑡−𝑣⟩)||ℱ𝑁𝑡] ≤ 𝐶𝑜𝛿𝑝 + 𝐶𝑜𝑁 .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

366 20. Optimization in the Feature Learning Regime: Mean Field Scaling

Proof. The proof is parallel to that of Lemma 19.12 of Chapter 19. A Taylor
expansion gives for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇

| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ | = | ⟨𝑓, 𝜈𝑁⌊𝑁𝑡⌋⟩ − ⟨𝑓, 𝜈𝑁⌊𝑁𝑠⌋⟩ |
≤ 1𝑁 𝑁∑𝑛=1 |𝑓(𝐶𝑛⌊𝑁𝑡⌋,𝑊𝑛⌊𝑁𝑡⌋) − 𝑓(𝐶𝑛⌊𝑁𝑠⌋,𝑊𝑛⌊𝑁𝑠⌋)|
≤ 1𝑁 𝑁∑𝑛=1 |𝜕𝑐𝑓(̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋)||𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|
+ 1𝑁 𝑁∑𝑛=1 ∥ ∇𝑤𝑓(̂𝐶𝑛⌊𝑁𝑡⌋, 𝑊̂𝑛⌊𝑁𝑡⌋) ∥∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥,(20.11)

for points (̄𝐶𝑛, 𝑊̄𝑛) and (̂𝐶𝑛, 𝑊̂𝑛) in the segments connecting 𝐶𝑛⌊𝑁𝑠⌋ with 𝐶𝑛⌊𝑁𝑡⌋
and𝑊𝑛⌊𝑁𝑠⌋ with𝑊𝑛⌊𝑁𝑡⌋, respectively.

The next step is to establish a bound on |𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋| for 𝑠 < 𝑡 ≤ 𝑇 with0 < 𝑡 − 𝑠 ≤ 𝛿 < 1. For 𝑝 ∈ (0, 1) we have
𝔼 [|𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|||ℱ𝑁𝑠] = 𝔼[| ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)|||ℱ𝑁𝑠]

≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ |𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 1𝑁 𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)|||ℱ𝑁𝑠]
≤ 1𝑁 ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜(𝑡 − 𝑠) + 𝐶𝑜𝑁≤ 𝐶𝑜(𝑡 − 𝑠)𝑝𝟏𝑡−𝑠<1 + 𝐶𝑜(𝑡 − 𝑠)𝑝𝑇1/𝑝𝟏𝑡−𝑠≥1 + 𝐶𝑜𝑁≤ 𝐶𝑜𝛿𝑝 + 𝐶𝑜𝑁 ,(20.12)

where Assumption 20.3 and the bounds from Exercise 20.1 were used. Also,0 < 𝐶𝑜 < ∞ is an unimportant finite constant that may change from line to
line.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 367

Let’s now establish a bound on ∥ 𝑊𝑛⌊𝑁𝑡⌋ − 𝑊𝑛⌊𝑁𝑠⌋ ∥ for 𝑠 < 𝑡 ≤ 𝑇 with0 < 𝑡 − 𝑠 ≤ 𝛿 < 1. We obtain
𝔼[∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥ ||ℱ𝑁𝑠] = 𝔼[∥ ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝑊𝑛𝑘+1 −𝑊𝑛𝑘) ∥ ||ℱ𝑁𝑠]

≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ ∥ 𝜂(𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 1𝑁𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘 ∥ ||ℱ𝑁𝑠]
≤ 1𝑁 ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜𝛿𝑝 + 𝐶𝑜𝑁 ,

where we have again used the bounds from Exercise 20.1.
Thus, going back to (20.11), due to the a priori bounds from Exercise 20.1,

the quantities (̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋) are bounded in expectation for 0 < 𝑠 < 𝑡 ≤ 𝑇.
Therefore, for 0 < 𝑠 < 𝑡 ≤ 𝑇 with 0 < 𝑡 − 𝑠 ≤ 𝛿 < 1

𝔼 [| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ |||ℱ𝑁𝑠] ≤ 𝐶𝑜𝛿𝑝 + 𝐶𝑜𝑁 ,
where 𝐶𝑜 < ∞ is some unimportant finite constant which may depend on the
magnitude of the first partial derivatives of 𝑓. This concludes the proof of the
lemma. □

We can now establish that the family of processes {𝜇𝑁𝑡 , 𝑡 ∈ [0, 𝑇]} has a
limit as 𝑁 → ∞. Indeed, we have the following lemma.

Lemma 20.15. The family of processes {𝜇𝑁}𝑁∈ℕ is relatively compact in𝐷𝐸([0, 𝑇]).
Proof. Combining Lemmas 20.13 and 20.14 and the results of Section A.4,
proves that {𝜇𝑁}𝑁∈ℕ is relatively compact in𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) (see also Theorem
8.6, Remark 8.7 B and Theorem 9.1 of Chapter 3 of [EK86], as well as Theorem
4.6 in [Jak86] and Section 3 of [Led16]). □

20.3.2. Uniqueness in mean field scaling. The goal of this section is to
prove uniqueness of the evolution equation (20.5). The strategy is to set up

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

368 20. Optimization in the Feature Learning Regime: Mean Field Scaling

a Picard type of iteration and prove that it has a unique fixed point in the ap-
propriate space through a contraction mapping. To this end, notice that⟨𝑓, 𝜇̄𝑡⟩ = ⟨𝑓, 𝜇̄0⟩

+∫𝑡
0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐′𝜎(𝑤′ ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝜎(𝑤 ⋅ 𝑥)𝜕𝑐𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠

+∫𝑡
0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐′𝜎(𝑤′ ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥∇𝑤𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠.

= ⟨𝑓, 𝜇̄0⟩ +∫𝑡
0 ⟨𝐺(𝑧, 𝑄(𝜇̄𝑠, ⋅)) ⋅ ∇𝑓, 𝜇̄𝑠⟩ 𝑑𝑠,

(20.13)

where for 𝑧 = (𝑐, 𝑤1, . . . , 𝑤𝑑) ∈ ℝ1+𝑑, 𝑄(𝜇̄, 𝑥) = ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇̄⟩ we have𝐺(𝑧, 𝑄(𝜇̄, ⋅)) = (𝐺1(𝑧, 𝑄(𝜇̄, ⋅)), 𝐺2(𝑧, 𝑄(𝜇̄, ⋅))) ∈ ℝ1+𝑑,
with

𝐺1(𝑧, 𝑄(𝜇̄, ⋅)) = ∫𝒳×𝒴 𝜂(𝑦 − 𝑄(𝜇̄, 𝑥))𝜎(𝑤 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦) ∈ ℝ,
𝐺2(𝑧, 𝑄(𝜇̄, ⋅)) = ∫𝒳×𝒴 𝜂(𝑦 − 𝑄(𝜇̄, 𝑥))𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥𝜋(𝑑𝑥, 𝑑𝑦) ∈ ℝ𝑑.

A solution to (20.13), 𝜇̄⋅, is associated to the nonlinear random process 𝑍𝑡
(see for example [Kol14]) satisfying the random ordinary differential equation

𝑍𝑡 = 𝑍0 +∫𝑡
0 𝐺(𝑍𝑠, 𝑄(𝜇̄𝑠, ⋅))𝑑𝑠,𝑍0 ∼ 𝜇̄(0, 𝑐, 𝑤),𝜇̄𝑡 = Law(𝑍𝑡).(20.14)

This ODE is random due to the random initial data. Let us define the
mapping 𝐹 ∶ 𝐷ℝ([0, 𝑇]) ↦ 𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) such that for a path (𝑅𝑡)𝑡∈[0,𝑇] ∈𝐷ℝ([0, 𝑇]), we have 𝐹(𝑅⋅) = Law(𝑌⋅) where 𝑌⋅ is given by

𝑌𝑡 = 𝑌0 +∫𝑡
0 𝐺(𝑌𝑠, 𝑅𝑠)𝑑𝑠,𝑌0 ∼ 𝜇̄(0, 𝑐, 𝑤).

Next, define the map 𝐿 ∶ 𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) ↦ 𝐷ℝ([0, 𝑇]) taking a measure
valued process 𝜇𝑡 and mapping it to 𝑄(𝜇𝑡, 𝑥) = 𝐿(𝜇), where𝑄(𝜇𝑡, 𝑥) = ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇𝑡⟩ ,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 369

and the map 𝐻 ∶ 𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) ↦ 𝐷ℳ(ℝ1+𝑑)([0, 𝑇]) via the composition of
the mappings 𝐹 and 𝐿, i.e., we set𝐻 = 𝐹 ∘𝐿. Oftentimes, if we want to empha-
size the dependence on 𝑇, we may write 𝐻𝑇 for 𝐻.

The discussion above show that if (𝜇𝑡)𝑡∈[0,𝑇] is a fixed point of 𝐻, thenLaw(𝑍𝑡) = 𝐻𝑡(𝜇⋅) is a solution to (20.13). In the reverse direction, if (𝑍𝑡)𝑡∈[0,𝑇]
is a solution to (20.14), then its law will be a fixed point of 𝐻, implying thatLaw(𝑍𝑡) = 𝐻𝑡(𝜇). It is also a fact that if 𝜇 is a weak measure valued solution to
(20.13), then it must be a fixed point of 𝐻, satisfying (20.14) and consequently
proving our result.

We next show that 𝐻 is a contraction mapping for 𝑡 ∈ [0, 𝑇]. For this pur-
pose, we first show that in order to study the fixed point of 𝐻, it is enough
to consider 𝐻 ∶ 𝐶([0, 𝑇];𝑀(ℝ1+𝑑)) ↦ 𝐶([0, 𝑇];𝑀(ℝ1+𝑑)). Then this will al-
low us to work in 𝐶([0, 𝑇];𝑀(ℝ1+𝑑)) instead of working in the larger space𝐷ℳ(ℝ1+𝑑)([0, 𝑇]), which in turn simplifies some of the arguments.

Therefore, we derive in Lemma 20.16 appropriate a priori bounds for the
parameters 𝑐𝑡 and 𝑤𝑡 and study their regularity in time. If we denote by 𝔼 the
expectation operator takenwith respect to themeasure governing the evolution
of parameters (notice that here (𝑥, 𝑦) are considered to be integration variables)
we have the following system of random ODEs.

𝑐𝑡 = 𝑐0 +∫𝑡
0 𝛼∫𝒳×𝒴(𝑦 − 𝔼[𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)])𝜎(𝑤𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠,

𝑤𝑡 = 𝑤0 +∫𝑡
0 𝛼∫𝒳×𝒴(𝑦 − 𝔼[𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)])𝑐𝑠𝜎′(𝑤𝑠 ⋅ 𝑥)𝑥𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.

(𝑐0, 𝑤0) ∼ 𝜇̄(0, 𝑐, 𝑤).(20.15)

Lemma 20.16 provides us with the necessary a priori uniform bounds on
the parameters and also shows that there is regularity in time.

Lemma 20.16. There is a constant 𝐶𝑜 < ∞, depending on 𝑇, such that
sup𝑡∈[0,𝑇] (|𝑐𝑡|+ ∥ 𝑤𝑡 ∥) ≤ 𝐶𝑜,

and for every 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 we have that
|𝑐𝑡 − 𝑐𝑠|+ ∥ 𝑤𝑡 − 𝑤𝑠 ∥≤ 𝐶𝑜(𝑡 − 𝑠).

Proof. Let’s examine 𝑐𝑡 first and establish a bound on its growth. The finite
constant 𝐶𝑜 < ∞ may change from line to line, and it may also depend upon

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

370 20. Optimization in the Feature Learning Regime: Mean Field Scaling

the final time 𝑇.
𝑐𝑡 = 𝑐0 +∫𝑡

0 𝜂∫𝒳×𝒴(𝑦 − 𝔼[𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)])𝜎(𝑤𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥) = 𝜎(𝑤𝑡 ⋅ 𝑥)𝑐0
+ 𝜎(𝑤𝑡 ⋅ 𝑥)∫𝑡

0 𝜂∫𝒳×𝒴(𝑦 − 𝔼[𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)])𝜎(𝑤𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.
|𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥)| ≤ 𝐶𝑜|𝑐0| + 𝐶𝑜∫𝑡

0 ∫𝒳×𝒴 |(𝑦 − 𝔼[𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)])𝜎(𝑤𝑠 ⋅ 𝑥)|𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.
(20.16)

We have used the fact that 𝜎(⋅) is bounded. Now, we will use the facts that𝑐0, 𝑋 , and 𝑌 have compact support.

|𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥)| ≤ 𝐶𝑜 + 𝐶𝑜∫𝑡
0 ∫𝒳×𝒴 𝔼[|𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥)|]𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.

|𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥)| ≤ 𝐶𝑜 + 𝐶𝑜∫𝑡
0 ∫𝒳×𝒴 sup𝑥′∈𝒳 𝔼[|𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥′)|]𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.

sup𝑥∈𝒳 𝔼[|𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥)|] ≤ 𝐶𝑜 + 𝐶𝑜∫𝑡
0 sup𝑥′∈𝒳 𝔼[|𝑐𝑠𝜎(𝑤𝑠 ⋅ 𝑥′)|]𝑑𝑠.

Therefore, by Gronwall’s inequality,sup𝑥∈𝒳 𝔼[|𝑐𝑡𝜎(𝑤𝑡 ⋅ 𝑥)|] ≤ 𝐶𝑜
for 0 ≤ 𝑡 ≤ 𝑇. Therefore, going back to (20.16) and recalling Assumption 19.2,
we get that uniformly in 𝑡 ∈ [0, 𝑇],|𝑐𝑡| ≤ 𝐶𝑜.

Similarly, now from (20.15) we also obtain that there is a constant 𝐶𝑜 < ∞,
uniform in 𝑡 ∈ [0, 𝑇] such that ∥ 𝑤𝑡 ∥≤ 𝐶𝑜.

The latter statements imply the first statement of the lemma. Let us now
prove the second statement of the lemma. Similarly to the calculations above
and using the uniform bounds on 𝑐𝑡 and𝑤𝑡 together with Assumption 19.2, we
have

|𝑐𝑡 − 𝑐𝑠| = ||∫𝑡
𝑠 𝜂∫𝒳×𝒴(𝑦 − 𝔼[𝑐ᵆ𝜎(𝑤ᵆ ⋅ 𝑥)])𝜎(𝑤ᵆ ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑢||≤ 𝐶𝑜(𝑡 − 𝑠).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 371

The corresponding statement ∥ 𝑤𝑡−𝑤𝑠 ∥≤ 𝐶𝑜(𝑡−𝑠) follows along the same
lines, concluding the proof of the lemma. □

As a consequence of the regularity result in Lemma 20.16, (20.15) is a con-
tinuous process. Therefore, we can prove a contraction in 𝐶([0, 𝑇];𝑀(ℝ1+𝑑))
(instead of studying the process in the larger space 𝐷ℳ(ℝ1+𝑑)([0, 𝑇])).

Now that we have established this a priori boundedness and regularity re-
sult, let us go back to the proof of uniqueness. Notice that Lemma 20.16 shows
that 𝑐𝑡 and 𝑤𝑡 are bounded on [0, 𝑇]. Motivated by this fact, let us define the
bump function 𝑏(𝑧) ∈ 𝐶∞, which is one for |𝑧| ≤ 𝐵 and zero for |𝑧| ≥ 2𝐵. If,
for example, sup𝑡∈[0,𝑇] |𝑐𝑡| ≤ 𝐶𝑜, then we set 𝐵 = 2𝐶𝑜. Lemma 20.16 allows us
to do so.

Let us define for notational convenience 𝐶𝑇 = 𝐶([0, 𝑇], ℝ1+𝑑) and let 𝑀𝑇
be the set of probability measures on 𝐶𝑇 . Consider an element 𝜅 ∈ 𝑀𝑇 . Moti-
vated by the discussion before Lemma 20.16, let us set Law(𝑌) = 𝐻(𝜅⋅), where,
slightly abusing notation, 𝑌 = (𝑐, 𝑤) with

𝑐𝑡 = 𝑐0 +∫𝑡
0 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝐺𝑠,𝑥, 𝜅⟩)𝜎(𝑤𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠,

𝑤𝑡 = 𝑤0 +∫𝑡
0 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝐺𝑠,𝑥, 𝜅⟩)𝑐𝑠𝜎′(𝑤𝑠 ⋅ 𝑥)𝑥𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠,𝐺𝑠,𝑥 = 𝑐′𝑠𝜎(𝑤′𝑠 ⋅ 𝑥)𝑏(𝑐′𝑠),(𝑐0, 𝑤0) ∼ 𝜇̄(0, 𝑐, 𝑤).(20.17)

We next show existence and uniqueness of a fixed point Law(𝑐𝑡, 𝑤𝑡) for the
mapping 𝐻, as defined via (20.17). For 𝜅, 𝜅′ ∈ 𝑀𝑇 and 𝑝 ≥ 1 define the metric

𝐷𝑇,𝑝(𝜅, 𝜅′) = inf {(∫𝐶𝑇×𝐶𝑇
sup𝑠≤𝑇 ‖𝑥𝑠 − 𝑦𝑠‖𝑝𝑝 ∧ 1𝑑𝜈(𝑥, 𝑦))1/𝑝, 𝜈 ∈ 𝑃(𝜅, 𝜅′)},

where 𝑃(𝜅, 𝜅′) is the set of probability measures on 𝐶𝑇 ×𝐶𝑇 such that the mar-
ginal distributions are 𝜅 and 𝜅′, respectively. The space𝑀𝑇 endowed with the
metric 𝐷𝑇 is a complete metric space.

If a solution to (20.14) exists, then it must be a fixed point of𝐻 (defined via
equation (20.17)). This is an immediate consequence of Lemma 20.16. There-
fore, if𝐻 has a unique solution, there can be at most one solution to (20.14). If
(20.14) has at most one solution, (20.13) has at most one solution. Therefore,
if 𝐻 has a unique fixed point, this proves uniqueness for (20.13).

Now, for two elements 𝜅1, 𝜅2 ∈ 𝑀𝑇 , let us set Law(𝑌 𝑖⋅) = Law((𝑐𝑖⋅ , 𝑤𝑖⋅)) =𝐻(𝜅𝑖⋅) for 𝑡 ∈ [0, 𝑇]with 𝑖 = 1, 2. So, let (𝑐1𝑡 , 𝑤1𝑡) satisfy (20.17) with 𝜅 = 𝜅1, and
let (𝑐2𝑡 , 𝑤2𝑡) satisfy (20.17) with 𝜅 = 𝜅2. The processes (𝑐1𝑡 , 𝑤1𝑡) and (𝑐2𝑡 , 𝑤2𝑡) have

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

372 20. Optimization in the Feature Learning Regime: Mean Field Scaling

the same initial conditions. That is,

(𝑐10, 𝑤10) = (𝑐20, 𝑤20) = (𝑐0, 𝑤0),(𝑐0, 𝑤0) ∼ 𝜇̄(0, 𝑐, 𝑤).
We now prove a contraction for the mapping 𝐻 for some 0 < 𝑇0 < 𝑇. By

definition, (𝑐1𝑡 , 𝑤1𝑡) and (𝑐2𝑡 , 𝑤2𝑡) have marginal distributions 𝐻(𝜅1) and 𝐻(𝜅2),
respectively, on the time interval [0, 𝑇0]. Once this is proven, we can extend this
to the entire interval [0, 𝑇] since 𝑇0 is not affected by the input measures 𝜅1, 𝜅2
or by which subinterval of [0, 𝑇] we are considering. The following lemma is
going into this direction.

Lemma 20.17. Let 𝜅1, 𝜅2 ∈ 𝑀𝑇 and 𝑇 < ∞. Then there exists a finite constant𝐶𝑜 < ∞ that may depend on 𝑇 such that
𝐷𝑡,1(𝐻(𝜅1), 𝐻(𝜅2)) ≤ 𝐶𝑜∫𝑡

0 𝐷ᵆ,1(𝜅1, 𝜅2)𝑑𝑢
for any 0 < 𝑡 < 𝑇.
Proof. The formula (20.17) yields

𝑐1𝑡 − 𝑐2𝑡 = ∫𝑡
0 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝐺𝑠,𝑥, 𝜅1⟩)𝜎(𝑤1𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
−∫𝑡

0 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝐺𝑠,𝑥, 𝜅2⟩)𝜎(𝑤2𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
= ∫𝑡

0 ∫𝒳×𝒴 𝜂𝑦(𝜎(𝑤1𝑠 ⋅ 𝑥) − 𝜎(𝑤2𝑠 ⋅ 𝑥))𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
+∫𝑡

0 ∫𝒳×𝒴 𝜂 ⟨𝐺𝑠,𝑥, 𝜅2⟩ 𝜎(𝑤2𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
−∫𝑡

0 ∫𝒳×𝒴 𝜂 ⟨𝐺𝑠,𝑥, 𝜅1⟩ 𝜎(𝑤1𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
= ∫𝑡

0 ∫𝒳×𝒴 𝜂𝑦(𝜎(𝑤1𝑠 ⋅ 𝑥) − 𝜎(𝑤2𝑠 ⋅ 𝑥))𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
+∫𝑡

0 ∫𝒳×𝒴 𝜂 ⟨𝐺𝑠,𝑥, 𝜅2⟩ (𝜎(𝑤2𝑠 ⋅ 𝑥) − 𝜎(𝑤1𝑠 ⋅ 𝑥)) 𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠
+∫𝑡

0 ∫𝒳×𝒴 𝜂 ⟨𝐺𝑠,𝑥, 𝜅2 − 𝜅1⟩ 𝜎(𝑤1𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.3. Mean Field Limit for Shallow Neural Networks 373

In order to address the mean-field term, we recall that 𝑐′𝑠𝜎(𝑤′𝑠𝑥)𝑏(𝑐′𝑠) and𝜎′(⋅) are bounded and that 𝑋, 𝑌 have compact support. Therefore, we get that||∫𝑡
0 ∫𝒳×𝒴 ⟨𝑐′𝑠𝜎(𝑤′𝑠𝑥)𝑏(𝑐′𝑠), 𝜅2⟩(𝜎(𝑤2𝑠 ⋅ 𝑥) − 𝜎(𝑤1𝑠 ⋅ 𝑥))𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠||

≤ 𝐶𝑜∫𝑡
0 ∥ 𝑤2𝑠 − 𝑤1𝑠 ∥ 𝑑𝑠.

We next bound the term||∫𝑡
0 ∫(⟨𝑐′𝑠𝜎(𝑤′𝑠𝑥)𝑏(𝑐′𝑠), 𝜅2 − 𝜅1⟩ 𝜎(𝑤1𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠||.

Since the map (𝑐, 𝑤) ↦ 𝑐𝜎(𝑤 ⋅ 𝑥)𝑏(𝑐) is globally Lipschitz, we have that|𝑐2𝜎(𝑤2 ⋅ 𝑥)𝑏(𝑐2) − 𝑐1𝜎(𝑤1 ⋅ 𝑥)𝑏(𝑐1)| ≤ 𝐾(|𝑐2 − 𝑐1| + ‖‖𝑤2 − 𝑤1‖‖),
where the constant 𝐾 < ∞ does not depend upon 𝑥 (since 𝑋 has compact
support). Then, for 0 ≤ 𝑠 ≤ 𝑇,||∫𝑡

0 ∫𝒳×𝒴 (⟨𝑐′𝑠𝜎(𝑤′𝑠𝑥)𝑏(𝑐′𝑠), 𝜅2 − 𝜅1⟩)𝜎(𝑤1𝑠 ⋅ 𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠||
≤ 𝐾∫𝑡

0 𝐷𝑠,1(𝜅1, 𝜅2)𝑑𝑠.
Similar calculations also give the necessary bound for the difference𝑤1𝑡 − 𝑤2𝑡 . Hence, for 0 ≤ 𝑠 ≤ 𝑇, we eventually have the bound
supᵆ≤𝑠 [|𝑐1ᴂ − 𝑐2ᴂ |+ ∥ 𝑤1ᴂ − 𝑤2ᴂ ∥] ≤ 𝐶1∫𝑠

0 (|𝑐2ᴂ − 𝑐1ᴂ |+ ∥ 𝑤2ᴂ − 𝑤1ᴂ ∥)𝑑𝑢
+ 𝐶2∫𝑠

0 𝐷ᵆ,1(𝜅1, 𝜅2)𝑑𝑢,
for finite constants 𝐶1, 𝐶2 < ∞. We then also have that𝔼[supᵆ≤𝑠 [|𝑐1ᴂ − 𝑐2ᴂ |+ ∥ 𝑤1ᴂ − 𝑤2ᴂ ∥]]

≤ 𝐶1∫𝑠
0 𝔼[sup𝜏≤ᵆ [|𝑐2𝜏 − 𝑐1𝜏|+ ∥ 𝑤2𝜏 − 𝑤1𝜏 ∥]]𝑑𝑢

+ 𝐶2∫𝑠
0 𝐷ᵆ,1(𝜅1, 𝜅2)𝑑𝑢.

By Gronwall’s inequality, we then get for 𝑠 ≤ 𝑇,
𝔼[supᵆ≤𝑠 [|𝑐1ᴂ − 𝑐2ᴂ |+ ∥ 𝑤1ᴂ − 𝑤2ᴂ ∥]] ≤ 𝐶2 exp(𝐶1𝑠)∫𝑠

0 𝐷ᵆ,1(𝜅1, 𝜅2)𝑑𝑢.
The latter display immediately implies the statement of the lemma. □

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

374 20. Optimization in the Feature Learning Regime: Mean Field Scaling

Lemma 20.17 immediately proves there is a contraction on the interval[0, 𝑇0].
𝐷𝑡,1(𝐻(𝜅1), 𝐻(𝜅2)) ≤ 𝐶𝑜∫𝑡

0 𝐷ᵆ,1(𝜅1, 𝜅2)𝑑𝑢
≤ 𝐶𝑜∫𝑡

0 𝐷𝑡,1(𝜅1, 𝜅2)𝑑𝑢≤ 𝐶𝑜𝑡𝐷𝑡,1(𝜅1, 𝜅2).
Then, choose 𝑇0 such that 𝐶𝑜𝑇0 < 1. In fact we have Lemma 20.18.

Lemma 20.18. Let 𝑇 < ∞. The mapping 𝐻𝑇 = (𝐹 ∘ 𝐹)𝑇 has a unique fixed
point.

Proof. By Lemma 20.17 and the Banach fixed-point theorem we obtain that
there is 0 < 𝑇0 < ∞ such that𝐻𝑇0(𝑚)will be a contraction map. This then im-
plies that (20.17) has a unique solution on [0, 𝑇0]. We can then extend this con-
struction to the whole interval [0, 𝑇] by dividing the interval [0, 𝑇] into subin-
tervals [0, 𝑇0], [𝑇0, 2𝑇0], . . . , [𝑇−𝑇0, 𝑇]. In each subinterval, it can be shown that
the solution is unique by proving a contraction as was done in Lemma 20.17,
which can be done as 𝑇0 can be always taken to be of the same magnitude, i.e.,
it does not depend onwhich subinterval is being examined. This concludes the
proof of the lemma. □

20.4. Central Limit Theorem Behavior for Shallow Neural
Networks

In this subsection we show that shallow neural networks satisfy a central limit
type of theorem as the size of the network and the number of training steps
become large. The central limit theorem (CLT) quantifies the speed of conver-
gence of the finite neural network to its mean-field limit as well as how the
finite neural network fluctuates around the mean-field limit for large 𝑁. In-
stead of presenting the full details, we shall only present the main elements
that will allow us to guess what the limit would be and refer the interested
reader to [SS20a] for the proof details.

We start by defining the fluctuation process𝛼𝑁𝑡 = √𝑁(𝜇𝑁𝑡 − 𝜇̄𝑡).
Then 𝛼𝑁 𝑑→ 𝛼̄, where 𝛼̄ satisfies a stochastic partial differential equation.

This result characterizes the fluctuations of the finite empirical measure 𝜇𝑁
around its mean-field limit 𝜇̄ for large𝑁. Interestingly, the limit 𝛼̄ has a Gauss-
ian distribution.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.4. Central Limit Theorem Behavior for Shallow Neural Networks 375

In order tomotivate the result, let us recall the formula for ⟨𝑓, 𝜇𝑁𝑡 ⟩ by (20.9)
and the formula for ⟨𝑓, 𝜇̄𝑡⟩ by (20.5). Let us take the difference of the two for-
mulas, scaling the result by√𝑁, in order to get a formula for ⟨𝑓, 𝛼𝑁𝑡 ⟩:
⟨𝑓, 𝛼𝑁𝑡 ⟩ − ⟨𝑓, 𝛼𝑁0 ⟩
= ∫𝑡

0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝜎(𝑤 ⋅ 𝑥)𝜕𝑐𝑓, 𝛼𝑁𝑠 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
−∫𝑡

0 (∫𝒳×𝒴 𝜂 ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝛼𝑁𝑠 ⟩ ⟨𝜎(𝑤 ⋅ 𝑥)𝜕𝑐𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
+∫𝑡

0 (∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ ∇𝑤𝑓, 𝛼𝑁𝑠 ⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
−∫𝑡

0 (∫𝒳×𝒴 𝜂 ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝛼𝑁𝑠 ⟩) ⟨𝑐𝜎′(𝑤 ⋅ 𝑥)𝑥 ⋅ ∇𝑤𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦))𝑑𝑠
+ √𝑁 (𝑀1,𝑁𝑡 +𝑀2,𝑁𝑡) + 𝑅𝑁𝑡 ,

where it can be shown that the remainder term 𝑅𝑁𝑡 goes to zero as 𝑁 → ∞
uniformly in 𝑡 ∈ [0, 𝑇], while √𝑁 (𝑀1,𝑁𝑡 +𝑀2,𝑁𝑡) behaves asymptotically as𝑁 → ∞ as a Gaussian martingale.

In particular, for test functions in the appropriate space we have that the
following stochastic partial differential equation characterizes the Gaussian
evolution of the limit 𝛼𝑡,
⟨𝑓, 𝛼̄𝑡⟩ = ⟨𝑓, 𝛼̄0⟩

+∫𝑡
0 ∫𝒳×𝒴 𝜂(𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇̄𝑠⟩) ⟨∇(𝑐𝜎(𝑤 ⋅ 𝑥)) ⋅ ∇𝑓, 𝛼̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠

−∫𝑡
0 ∫𝒳×𝒴 𝜂 ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝛼̄𝑠⟩ ⟨∇(𝑐𝜎(𝑤 ⋅ 𝑥)) ⋅ ∇𝑓, 𝜇̄𝑠⟩ 𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑠 + ⟨𝑓, 𝑀̄𝑡⟩ .

(20.18)

𝑀̄𝑡 is a mean-zero Gaussian process with variance-covariance structure
given explicitly as follows. For 𝜇 ∈ ℳ(ℝ1+𝑑) and ℎ ∈ 𝒞10(ℝ1+𝑑) define the
operator

ℛ𝑥,𝑦,𝜇[ℎ] = (𝑦 − ⟨𝑐𝜎(𝑤 ⋅ 𝑥), 𝜇⟩) ⟨∇(𝑐𝜎(𝑤 ⋅ 𝑥)) ⋅ ∇ℎ, 𝜇⟩ .
Then, we shall have that (√𝑁 ⟨𝑓,𝑀𝑁𝑡 ⟩ , √𝑁 ⟨𝑔,𝑀𝑁𝑡 ⟩) ∈ 𝐷ℝ2([0, 𝑇]) con-

verges to a distribution valuedmean-zeroGaussianmartingalewith covariance

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

376 20. Optimization in the Feature Learning Regime: Mean Field Scaling

function

Cov [⟨𝑓, 𝑀̄𝑡⟩ , ⟨𝑔, 𝑀̄𝑡⟩]
= 𝜂2∫𝑡

0 [∫𝒳×𝒴 (ℛ𝑥,𝑦,𝜇̄𝑠[𝑓] −∫𝒳×𝒴 ℛ𝑥,𝑦,𝜇̄𝑠[𝑓]𝜋(𝑑𝑥, 𝑑𝑦))
× (ℛ𝑥,𝑦,𝜇̄𝑠[𝑔] −∫𝒳×𝒴 ℛ𝑥,𝑦,𝜇̄𝑠[𝑔]𝜋(𝑑𝑥, 𝑑𝑦))𝜋(𝑑𝑥, 𝑑𝑦)]𝑑𝑠.

Finally, the stochastic evolution equation (20.18) has a unique solution,
which implies that 𝛼̄ is unique.

The CLT stochastic evolution equation (20.18) is coupled with the mean-
field limit PDE. The stochastic evolution equation (20.18) is linear in 𝛼̄ and
driven by a Gaussian process; therefore, the limit 𝛼̄𝑡 itself is a Gaussian process.

The convergence of the fluctuation process 𝛼𝑁𝑡 indicates that for large 𝑁
the empirical distribution of the neural network’s parameters behaves as

𝜈𝑁⌊𝑁⋅⌋ = 𝜇𝑁⋅ ≈ 𝜇̄⋅ + 1√𝑁 𝛼̄⋅,
where 𝛼̄ has a Gaussian distribution. Combined, the fluctuations result and
the law of large numbers results show that the relation between the number of
particles (hidden units, in the language of neural networks) and the number of
stochastic gradient steps should be of the same order to have convergence and
statistically good behavior. Under this scaling, as ameasure valued process, the
empirical distribution of the parameters behaves as a Gaussian distribution.

20.5. Deep Neural Networks in Mean Field Scaling

In this section we shall briefly consider the ideas behind the mean field limits
for deep neural networks. For illustration purposes, let us consider a multi-
layer neural network with two hidden layers. The extension to even deeper
neural networks with more layers is analogous.

𝔪𝑁1,𝑁2(𝑥; 𝜃) = 1𝑁2
𝑁2∑𝑖=1𝐶 𝑖𝜎(1𝑁1

𝑁1∑𝑗=1𝑊2,𝑖,𝑗𝜎 (𝑊1,𝑗 ⋅ 𝑥)) .(20.19)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.5. Deep Neural Networks in Mean Field Scaling 377

Notice now that (20.19) can be also written as

𝐻1,𝑗(𝑥) = 𝜎(𝑊1,𝑗 ⋅ 𝑥), 𝑗 = 1, . . . , 𝑁1,
𝑍2,𝑖(𝑥) = 1𝑁1

𝑁1∑𝑗=1𝑊2,𝑖,𝑗𝐻1,𝑗(𝑥), 𝑖 = 1, . . . , 𝑁2,
𝐻2,𝑖(𝑥) = 𝜎(𝑍2,𝑖(𝑥)),

𝔪𝑁1,𝑁2𝜃 (𝑥) = 1𝑁2
𝑁2∑𝑖=1𝐶 𝑖𝐻2,𝑖(𝑥),(20.20)

where 𝐶 𝑖,𝑊2,𝑖,𝑗 ∈ ℝ and 𝑥,𝑊1,𝑗 ∈ ℝ𝑑. The neural networkmodel has param-
eters

𝜃 = (𝐶1, . . . , 𝐶𝑁2 ,𝑊2,1,1, . . . ,𝑊2,𝑁1,𝑁2 ,𝑊1,1, . . . ,𝑊1,𝑁1),
which must be estimated from data. The number of hidden units in the first
layer is𝑁1 and the number of hidden units in the second layer is𝑁2. Themulti-
layer neural network (20.20) includes a normalization factor of 1𝑁1 in the first
hidden layer and 1𝑁2 in the second hidden layer.

Consider the mean square error loss again given by

Λ𝑁1,𝑁2pop (𝜃) = 12𝔼𝑋,𝑌[(𝑌 −𝔪𝑁1,𝑁2(𝑋; 𝜃))2]
for the population loss function, where the data (𝑋, 𝑌) ∼ 𝜋(𝑑𝑥, 𝑑𝑦), and

Λ𝑁1,𝑁2(𝜃) = 12 1|𝒟| ∑(𝑥,𝑦)∈𝒟(𝑦 − 𝔪𝑁1,𝑁2(𝑥; 𝜃))2(20.21)

for the empirical loss function used in practice. The goal is to estimate a set of
parameters 𝜃 which minimizes the objective function (20.21).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

378 20. Optimization in the Feature Learning Regime: Mean Field Scaling

The stochastic gradient descent algorithm for estimating the parameters 𝜃
is, for 𝑘 ∈ ℕ,

𝐶𝑖𝑘+1 = 𝐶𝑖𝑘 + 𝜂𝑁1,𝑁2𝐶𝑁2 (𝑦𝑘 −𝔪𝑁1,𝑁2(𝑥𝑘; 𝜃𝑘))𝐻2,𝑖𝑘 (𝑥𝑘),
𝑊1,𝑗𝑘+1 = 𝑊1,𝑗𝑘 + 𝜂𝑁1,𝑁2𝑊,1𝑁1 (𝑦𝑘 −𝔪𝑁1,𝑁2(𝑥𝑘; 𝜃𝑘))

× (1𝑁2
𝑁2∑𝑖=1𝐶𝑖𝑘𝜎′(𝑍2,𝑖𝑘 (𝑥𝑘))𝑊2,𝑖,𝑗𝑘)𝜎′(𝑊1,𝑗𝑘 ⋅ 𝑥𝑘)𝑥𝑘,

𝑊2,𝑖,𝑗𝑘+1 = 𝑊2,𝑖,𝑗𝑘 + 𝜂𝑁1,𝑁2𝑊,2𝑁1𝑁2 (𝑦𝑘 −𝔪𝑁1,𝑁2(𝑥𝑘; 𝜃𝑘))𝐶𝑖𝑘𝜎′(𝑍2,𝑖𝑘 (𝑥𝑘))𝐻1,𝑗𝑘 (𝑥𝑘),𝐻1,𝑖𝑘 (𝑥𝑘) = 𝜎(𝑊1,𝑖𝑘 ⋅ 𝑥𝑘),
𝑍2,𝑖𝑘 (𝑥𝑘) = 1𝑁1

𝑁1∑𝑗=1𝑊2,𝑖,𝑗𝑘 𝐻1,𝑗𝑘 (𝑥𝑘),
𝐻2,𝑖𝑘 (𝑥𝑘) = 𝜎(𝑍2,𝑖𝑘 (𝑥𝑘)),

𝔪𝑁1,𝑁2(𝑥𝑘; 𝜃𝑘) = 1𝑁2
𝑁2∑𝑖=1𝐶𝑖𝑘𝐻2,𝑖𝑘 (𝑥𝑘),

where 𝜂𝑁1,𝑁2𝐶 , 𝜂𝑁1,𝑁2𝑊,1 , and 𝜂𝑁1,𝑁2𝑊,2 are the learning rates. The learning rates may
depend upon 𝑁1 and 𝑁2. The parameters at step 𝑘 are𝜃𝑘 = (𝐶1𝑘, . . . , 𝐶𝑁2𝑘 ,𝑊2,1,1𝑘 , . . . ,𝑊2,𝑁1,𝑁2𝑘 ,𝑊1,1𝑘 , . . . ,𝑊1,𝑁1𝑘).(𝑥𝑘, 𝑦𝑘) are samples of the random variables (𝑋, 𝑌).
Assumption 20.19. We assume the following conditions.• 𝜎(⋅) ∈ 𝐶2𝑏, i.e., it is twice continuously differentiable and bounded.

Additionally, we shall assume that 𝜎 has two bounded derivatives.• The distribution 𝜋(𝑑𝑥, 𝑑𝑦) has compact support, i.e., the data (𝑥𝑘, 𝑦𝑘)
takes values in the compact set 𝒳 × 𝒴.• The random initialization of the parameters, i.e., {𝐶𝑖∘}𝑖, {𝑊2,𝑖,𝑗∘ }𝑖,𝑗 and{𝑊1,𝑗∘ }𝑗, are i.i.d. and take values in compact sets 𝒞,𝒲1, and𝒲2.• The probability distribution of initial parameters (𝐶𝑖∘,𝑊2,𝑖,𝑗∘ ,𝑊1,𝑗∘)𝑖,𝑗
admits continuous probability density functions.

We denote by 𝜇𝑐(𝑑𝑐), 𝜇𝑊2(𝑑𝑢), and 𝜇𝑊1(𝑑𝑤) the probability distributions
of {𝐶𝑖∘}𝑖, {𝑊2,𝑖,𝑗∘ }𝑖,𝑗, and {𝑊1,𝑗∘ }𝑗, respectively.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.5. Deep Neural Networks in Mean Field Scaling 379

Theorem 20.20. Let 𝑇 > 0 be given, let Assumption 20.19 hold, and choose the
learning rates to be

𝜂𝑁1,𝑁2𝐶 = 𝑁2𝑁1 , 𝜂𝑁1,𝑁2𝑊,1 = 1, and 𝜂𝑁1,𝑁2𝑊,2 = 𝑁2.
Then, for any 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝒳,lim𝑁2→∞ lim𝑁1→∞𝔪𝑁1,𝑁2(𝑥; 𝜃⌊𝑁1𝑡⌋) = 𝔪𝑡(𝑥),
in probability, where we have that

𝔪𝑡(𝑥) = ∫𝒞 ̃𝐶𝑐𝑡 𝐻̃2,𝑐𝑡 (𝑥)𝜇𝑐(𝑑𝑐),
with

𝑑 ̃𝐶𝑐𝑡 = ∫𝒳×𝒴 (𝑦 − 𝔪𝑡(𝑥))𝐻̃2,𝑐𝑡 (𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑡, ̃𝐶𝑐0 = 𝑐,
𝑑𝑊̃1,𝑤𝑡 = ∫𝒳×𝒴 (𝑦 − 𝔪𝑡(𝑥))𝑉𝑤𝑡 (𝑥)𝜎′(𝑊̃1,𝑤𝑡 ⋅ 𝑥)𝑥𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑡, 𝑊̃1,𝑤0 = 𝑤,

𝑑𝑊̃2,𝑐,𝑤,ᵆ𝑡 = ∫𝒳×𝒴 (𝑦 − 𝔪𝑡(𝑥)) ̃𝐶𝑐𝑡𝜎′(̃𝑍𝑐𝑡 (𝑥))𝐻̃1,𝑤𝑡 (𝑥)𝜋(𝑑𝑥, 𝑑𝑦)𝑑𝑡, 𝑊̃2,𝑐,𝑤,ᵆ0 = 𝑢,
𝐻̃1,𝑤𝑡 (𝑥) = 𝜎(𝑊̃1,𝑤𝑡 ⋅ 𝑥),̃𝑍𝑐𝑡 (𝑥) = ∫𝒲1 ∫𝒲2 𝑊̃2,𝑐,𝑤,ᵆ𝑡 𝐻̃1,𝑤𝑡 (𝑥)𝜇𝑊2(𝑑𝑢)𝜇𝑊1(𝑑𝑤),
𝐻̃2,𝑐𝑡 (𝑥) = 𝜎(̃𝑍𝑐𝑡 (𝑥)),
𝑉𝑤𝑡 (𝑥) = ∫𝒞 ̃𝐶𝑐𝑡𝜎′(̃𝑍𝑐𝑡 (𝑥)) (∫𝒲2 𝑊̃2,𝑐,𝑤,ᵆ𝑡 𝜇𝑊2(𝑑𝑢)) 𝜇𝑐(𝑑𝑐).

(20.22)

The system in (20.22) has a unique solution.

Notice that we can also write that𝔪𝑡(𝑥) satisfies
𝔪𝑡(𝑥) = ∫𝒞 ̃𝐶𝑐𝑡𝜎 (∫𝒲1 ∫𝒲2 𝑊̃2,𝑐,𝑤,ᵆ𝑡 𝜎(𝑊̃1,𝑤𝑡 ⋅ 𝑥)𝜇𝑊2(𝑑𝑢)𝜇𝑊1(𝑑𝑤)) 𝜇𝑐(𝑑𝑐).

(20.23)

Note that the learning rates in the second layer are trained faster than the
other parameters. This choice of learning rates is necessary for convergence to
a non-trivial limit as𝑁1, 𝑁2 →∞. If the parameters in all the layers are trained
with the same learning rate, it can be shown that the network will not train as𝑁1, 𝑁2 become large. The proof of Theorem 20.20 can be found in [SS21]; see
also the papers [AOY19,Ngu19,NP23] for related results.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

380 20. Optimization in the Feature Learning Regime: Mean Field Scaling

20.5.1. Convergence Properties of the Limit as Time Grows. Let us now
conclude this section by discussing the convergence properties of 𝔪𝑡(𝑥) as𝑡 → ∞.

Let us denote Θ𝑡(𝑐, 𝑤, 𝑢) = (̃𝐶𝑐𝑡 , 𝑊̃1,𝑤𝑡 , 𝑊̃2,𝑐,𝑤,ᵆ𝑡) for the components
of the ODE in (20.22). For notational convenience, we shall often write𝜃 = (𝑐, 𝑤, 𝑢). Then, we obviously have that 𝔪𝑡(𝑥) depends on 𝑡 only through[Θ𝑡] = {Θ𝑡(𝜃)}𝜃∈𝒞×𝒲1×𝒲2 . In order to emphasize that, we shall write𝔪𝑡(𝑥) =𝑔(𝑥; [Θ𝑡]).

Analogously, we will denote[Θ𝑡(𝑐, ⋅)] = {Θ𝑡(𝑐, 𝑤, 𝑢)}(𝑤,ᵆ)∈𝒲1×𝒲2 and [Θ𝑡(⋅, 𝑤, ⋅)] = {Θ𝑡(𝑐, 𝑤, 𝑢)}(𝑐,ᵆ)∈𝒞×𝒲2 ,
which then leads to the notatioñ𝑍𝑐𝑡 (𝑥) = ̃𝑍(𝑥; [Θ𝑡(𝑐, ⋅, ⋅)]) and 𝑉𝑤𝑡 (𝑥) = 𝑉(𝑥; [Θ𝑡(⋅, 𝑤, ⋅)]).
For notational convenience let us also denote ℎ(𝑥; [Θ𝑡]) = (𝔪̄(𝑥) − 𝔪𝑡(𝑥)).

Then, for (𝑐, 𝑤) ∈ 𝒞 ×𝒲1, we also define
𝑅1([Θ𝑡], 𝑐) = ∫𝒳 ℎ(𝑥; [Θ𝑡])𝜎(̃𝑍(𝑥; [Θ𝑡(𝑐, ⋅)]))𝜋(𝑑𝑥),

𝑅2([Θ𝑡], 𝑊̃1,𝑤𝑡 , 𝑤) = ∫𝒳 ℎ(𝑥; [Θ𝑡])𝑉(𝑥; [Θ𝑡(⋅, 𝑤, ⋅)])𝜎′(𝑊̃1,𝑤𝑡 ⋅ 𝑥)𝑥𝜋(𝑑𝑥),
𝑅3([Θ𝑡], ̃𝐶𝑐𝑡 , 𝑊̃1,𝑤𝑡 , 𝑐) = ∫𝒳 ℎ(𝑥; [Θ𝑡]) ̃𝐶𝑐𝑡𝜎′(̃𝑍(𝑥; [Θ𝑡(𝑐, ⋅)])))𝜎(𝑊̃1,𝑤𝑡 ⋅ 𝑥)𝜋(𝑑𝑥),
and we set𝐻([Θ𝑡], Θ𝑡(𝜃), 𝜃) = (𝑅1([Θ𝑡], 𝑐), 𝑅2([Θ𝑡], 𝑊̃1,𝑤𝑡 , 𝑤), 𝑅3([Θ𝑡], ̃𝐶𝑐𝑡 , 𝑊̃1,𝑤𝑡 , 𝑐)).

The notation used above makes it clear that the functions 𝐻(⋅) depend on[Θ𝑡], on Θ𝑡(𝜃), and on 𝜃 separately. The ODE system in (20.22) can be written
in the form Θ̇𝑡(Θ0) = 𝐻([Θ𝑡], Θ𝑡(Θ0), Θ0), such that Θ0 = (𝑐, 𝑤, 𝑢).(20.24)

The limiting objective function can be written asΛ̄(Θ𝑡) = lim𝑁2→∞ lim𝑁1→∞Λ𝑁1,𝑁2pop (𝜃⌊𝑁1𝑡⌋)
= lim𝑁2→∞ lim𝑁1→∞ 12𝔼𝑋[(𝔪̄(𝑋) − 𝔪𝑁1,𝑁2(𝑋; 𝜃⌊𝑁1𝑡⌋))2]
= 12 ∫𝒳 [(𝔪̄(𝑥) − 𝔪(𝑥; [Θ𝑡]))2]𝜋(𝑑𝑥),

where 𝔪(𝑥; [Θ𝑡]) = 𝔪𝑡(𝑥) is given by (20.23) and 𝔪̄(𝑥) is the target function
of 𝑥.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.6. In Between the Linear and the Nonlinear Regime 381

By inspection of the previous formula, we see that the function Θ ↦ Λ̄(Θ)
is non-negative and becomes zero only at the global minimum.

In fact, aswe shall now see, under the appropriate conditions and as 𝑡 → ∞,
the global minimum is achieved. Namely, we have thatlim𝑡→∞ 𝑔(𝑥; [Θ𝑡]) = 𝔪̄(𝑥) for almost all 𝑥 ∈ 𝒳.

The limiting loss function Λ̄ acts as a Lyapunov function for the dynamical
system (20.24) (see Exercise 20.4)𝑑𝑑𝑡 Λ̄(Θ𝑡) = ∇ΘΛ̄(Θ𝑡) ⋅ Θ̇𝑡 = ∇Θ𝐿̄(Θ𝑡) ⋅ 𝐻(Θ𝑡) ≤ 0.(20.25)

The fact that 𝑑𝑑𝑡 Λ̄(Θ𝑡) ≤ 0means that Λ̄(Θ𝑡) is at least decreasing (albeit not
strictly) in the gradient direction of the paths governing the limiting behavior
of the weights.

Let us define 𝜁0 to be the joint measure for the random initialization of the
parameters, i.e., for {𝐶𝑖∘}𝑖, {𝑊1,𝑗∘ }𝑗, {𝑊2,𝑖,𝑗∘ }𝑖,𝑗. By Assumption 20.19we have that
this is the productmeasure 𝜁0 = 𝜇𝑐×𝜇𝑊1×𝜇𝑊2 . By analogy, let us nowdefine 𝜁𝑡
to be the probability measure at time 𝑡 of the random vectorΘ𝑡 = (̃𝐶𝑡, 𝑊̃1𝑡 , 𝑊̃2𝑡)
as governed by the solution to the random ODE system (20.22). Then, 𝜁𝑡 is the
pushforward of 𝜁0 under Θ𝑡 given by (20.24), i.e.,𝜁𝑡 = (Θ𝑡)♯ 𝜁0;
see for example Chapter 8 in [AGS08]. Then, we have the following result.

Theorem 20.21. Let us assume that support(𝜁0) = 𝒞 × 𝒲1 × 𝒲2 and that
the activation function 𝜎(⋅) is real analytic, bounded, and 𝜎′(⋅) > 0. If 𝜁𝑡 → 𝜁∗
weakly, where 𝜁∗ is a non-degenerate measure that admits a density with finite
first moments, then we have that 𝜁∗ is a global minimum with zero loss.

The proof of Theorem 20.21 can be found in [SS21].

Remark 20.22. We mention here that perhaps what is important is not so
much the exact form of the limit formula for 𝔪𝑡(𝑥), but rather the fact that
for the right choice of the learning rates, such a limit exists.

20.6. In Between the Linear and the Nonlinear Regime

Let us consider now the same setup as in Section 20.3 but instead of mean-field
scaling, consider the model

𝔪𝑁(𝑥; 𝜃) = 1𝑁𝛾
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),(20.26)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

382 20. Optimization in the Feature Learning Regime: Mean Field Scaling

where now 𝛾 ∈ (1/2, 1) and as a before 𝐶𝑛 ∈ ℝ, 𝑊𝑛 ∈ ℝ𝑑, 𝑥 ∈ ℝ𝑑, and𝜎(⋅) ∶ ℝ → ℝ.
In Chapter 19 we studied the behavior of (20.26) under stochastic gradient

descent when 𝛾 = 1/2whereas in this chapter we studied it in the case of 𝛾 = 1.
Hence, natural questions arise:• What happens in between (i.e., for 𝛾 ∈ (1/2, 1))?• How do the different scalings behave?• How does that behavior extend to multi-layer neural networks?

Let us first investigate the situation in the case of a shallow neural network.
We continue working with the mean square error loss function

Λ𝑁(𝜃) = 12 1𝑀 𝑀∑𝑚=1 (𝑦𝑚 −𝔪𝑁(𝑥𝑚; 𝜃))2 ,
and the model parameters 𝜃 are trained by stochastic gradient descent:

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 𝜎(𝑊𝑛𝑘 𝑥𝑘),
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 𝑥𝑘)𝑥𝑘,

for 𝑘 ∈ {0, 1, 2, . . . }, 𝜂𝑁𝑘 is the learning rate. As usual, we set

𝔪𝑁𝑘 (𝑥) = 1𝑁𝛾
𝑁∑𝑛=1𝐶𝑖𝑘𝜎(𝑊𝑛𝑘 𝑥),

define the empirical measure

𝜈𝑁𝑘 = 1𝑁 𝑁∑𝑛=1 𝛿𝐶𝑛𝑘 ,𝑊𝑛𝑘 ,
and define the usual scaled processes𝜇𝑁𝑡 = 𝜈𝑁⌊𝑁𝑡⌋, ℎ𝑁𝑡 = 𝔪𝑁⌊𝑁𝑡⌋,
where 𝔪𝑁𝑘 = (𝔪𝑁𝑘 (𝑥1), . . . ,𝔪𝑁𝑘 (𝑥𝑀)), ℎ𝑁𝑡 = (ℎ𝑁𝑡 (𝑥1), . . . , ℎ𝑁𝑡 (𝑥𝑀)), and we
have defined ℎ𝑁𝑡 (𝑥) = 𝔪𝑁⌊𝑁𝑡⌋(𝑥).

Under Assumption 19.2, as 𝑁 → ∞ and for 𝑥 ∈ 𝒟,
𝔪𝑁0 (𝑥) 𝑑→ 𝒢(𝑥),(20.27)

where 𝒢 ∈ ℝ𝑀 is the Gaussian random variable such that𝒢(𝑥) ∼ 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ 𝑥)|2, 𝜇0⟩).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.6. In Between the Linear and the Nonlinear Regime 383

We also of course have that 𝜈𝑁0 𝑝→ 𝜈0 ≡ 𝜇0.
Following the procedure developed in Chapter 19 (see also Exercise 19.3

for the derivation), we get

Theorem 20.23. Let 𝑇 < ∞ be given, and assume that Assumption 19.2 holds.
Fix some 𝛾 ∈ [1/2, 1) and let the learning rate be 𝜂𝑁 = 𝜂/𝑁2(1−𝛾) with constant0 < 𝜂 < ∞. Then, as 𝑁 → ∞, the process (𝜇𝑁𝑡 , ℎ𝑁𝑡) converges in probability in
the space 𝐷𝐸([0, 𝑇]) to (𝜇𝑡, ℎ𝑡), which for 𝑡 ∈ [0, 𝑇], satisfies (19.4) in Theorem
19.3.

Essentially, Theorem 20.23 says that no matter the value of 𝛾 ∈ [1/2, 1), for𝛾 in that range, the limit of (𝜇𝑁𝑡 , ℎ𝑁𝑡) as 𝑁 → ∞ will be the same.
Hence, one cannot really infer anything useful in terms of comparing the

different 𝛾 scalings from Theorem 20.23. The idea that we explore here is to
view ℎ𝑁𝑡 as a stochastic process, and as such it has randomness. For any value
of 𝛾 the limit of ℎ𝑁𝑡 as 𝑁 → ∞ is the same. Natural questions arise:• What about the error in the convergence?• What about the variance of ℎ𝑁𝑡 for large, but fixed 𝑁?• What about the behavior as 𝑡 grows?

Clearly, smaller variance would imply less error in the approximation and
perhaps also lead to better generalization properties.

That is the point of view taken in [SY21], which goes one step further from
Theorem 20.23. In [SY21], the fluctuation corrections to the limit for any 𝛾 ∈(1/2, 1) are being derived, and in the end one obtains that in distribution an
asymptotic expansion of ℎ𝑁𝑡 in 𝑁 as 𝑁 → ∞ holds. In particular, for a given
but fixed 𝜈 ∈ {1, 2, 3, . . . } and for any 𝛾 ∈ (2𝜈−12𝜈 , 2𝜈+12𝜈+2) ⊂ (12 , 1), we have, in
distribution as 𝑁 → ∞,

ℎ𝑁,𝛾𝑡 ≈ ℎ𝑡 + 𝜈−1∑𝑗=1𝑁−𝑗(1−𝛾)𝑄𝑗𝑡 + 𝑁−(𝛾−1/2)𝑒−𝐴𝑡𝒢 + lower order terms in 𝑁,
(20.28)

where ℎ𝑡 is the limit of ℎ𝑁,𝛾𝑡 as𝑁 → ∞ per Theorem 20.23,𝑄𝑗𝑡 are deterministic
quantities defined recursively, 𝐴 is a positive definite matrix (same as in the
NTK case of Chapter 19) and 𝒢 is a Gaussian vector of mean zero and known
variance-covariance structure (composed of the elements 𝒢(𝑥) of (20.27)). In
addition, the quantities ℎ𝑡, 𝑄𝑗𝑡 , 𝐴, and 𝒢 are independent of 𝑁 < ∞ and 𝛾 > 0.
For fixed 𝑗 ∈ ℕ, one can also show that 𝑄𝑗𝑡 → 0 exponentially fast as 𝑡 → ∞,
see [SY21] for proofs.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

384 20. Optimization in the Feature Learning Regime: Mean Field Scaling

Notice that the asymptotic expansion (20.28) leads to an important con-
clusion. In particular, for fixed (but large) 𝑁 < ∞ and 𝑡 < ∞, the mag-
nitude of the variance of the neural network output to leading order in 𝑁 is𝑁−2(𝛾−1/2)‖𝑒−𝐴𝑡 Var(𝒢)𝑒−𝐴⊤𝑡‖. This is monotonically decreasing as 𝛾 → 1. In
addition, in the case of 𝛾 = 1/2, the variance to the leading order in 𝑁, is of
order ‖𝑒−𝐴𝑡 Var(𝒢)𝑒−𝐴⊤𝑡‖, i.e., it is independent of 𝑁.

This suggests that even though for any 𝛾 ∈ [1/2, 1) the limit of the neural
network model as 𝑁 → ∞ is the same, the variance to the leading order in 𝑁
is not the same. In particular, the variance decays as 𝛾 → 1.

The next natural question is how this variance reduction translates to per-
formance and generalization, i.e., to out-of-sample accuracy. To answer the
question, shallow neural networks of the form (20.26) were trained via
both cross-entropy loss and via mean-square error loss for the MNIST dataset
[LBBH98]. We recall that the MNIST dataset includes 70,000 images of hand-
written integers from 0 to 9. In the MNIST dataset, each image has 784 pixels,
60,000 images are used as training images and 10,000 images are testing images.
The learning rate is taken to be 𝛼𝑁 = 1/𝑁2−2𝛾, as suggested by the theoretical
results. The neural networks are trained to identify the handwritten numbers
using the image pixels as an input. As this is about a categorical problem (im-
age recognition), cross-entropy is a more appropriate loss function, but given
that the theory has been developed formean square error loss, we present both.

We observe that test accuracy for each network increases as 𝛾 ∈ [1/2, 1]
increases (see Figure 20.1).

So in conclusion, in the case of shallow neural networks we have observed,

• The variance of the stochastic process governing the behavior of the
neural network (to leading order in𝑁) is monotonically decreasing in𝛾 ∈ (1/2, 1).• Generalization properties and out-of-sample performance increases
monotonically in 𝛾 ∈ (1/2, 1).

Hence, there is evidence to suggest that the mean-field scaling has certain ad-
vantages in regards to the generalization performance of shallow neural net-
works trainedwith stochastic gradient descent for the regression problem, even
though its mathematical analysis is more complicated.

Finally, we discuss what happens in the case of deep neural networks. In
particular, let us consider the following neural networkwith two hidden layers:

𝔪𝑁1,𝑁2(𝑥; 𝜃) = 1𝑁𝛾22
𝑁2∑𝑖=1𝐶 𝑖𝜎(1𝑁𝛾11

𝑁1∑𝑗=1𝑊2,𝑗,𝑖𝜎(𝑊1,𝑗𝑥)) ,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.6. In Between the Linear and the Nonlinear Regime 385

(a) 𝑁 = 1, 000 hidden units, cross entropy loss

(b) 𝑁 = 1, 000 hidden units, mean square loss
Figure 20.1. Performance of scaled neural networks on MNIST test dataset;
see [SY21]. The top figure is for cross-entropy loss, and the bottom figure is
for mean-square loss. Accuracy increases monotonically in 𝛾 in both figures.

where 𝐶 𝑖,𝑊2,𝑗,𝑖 ∈ ℝ, 𝑥,𝑊1,𝑗 ∈ ℝ𝑑, and 𝛾1, 𝛾2 ∈ [1/2, 1) are fixed scaling
parameters. The neural network model has parameters𝜃 = (𝐶1, . . . , 𝐶𝑁2 ,𝑊2,1,1, . . . ,𝑊2,𝑁1,𝑁2 ,𝑊1,1, . . . ,𝑊1,𝑁1) ,
which are to be estimated from data (𝑋, 𝑌) ∼ 𝜋(𝑑𝑥, 𝑑𝑦).

This problem has been recently studied in [YS23] for deep neural networks
of arbitrary depth. Albeit more complicated analysis and notation, it is demon-
strated there that an asymptotic expansion in the spirit of (20.28), as 𝑁2 grows
to infinity, holds with the same conclusion for variance reduction. Namely,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

386 20. Optimization in the Feature Learning Regime: Mean Field Scaling

variance of𝔪𝑁1,𝑁2⌊𝑁2𝑡⌋ to leading order in 𝑁2 (and 𝑁1) is smaller when 𝛾1, 𝛾2 → 1,
i.e., when the scalings tend to the mean field scaling.

To make the discussion below simpler and more intuitive, we will set 𝑁1 =𝑁2 = 𝑁, which is what is typically done in practice. For the standard mean-
square error loss, the standard SGD yields the update equations

𝐶𝑖𝑘+1 = 𝐶𝑖𝑘 + 𝜂𝑁𝐶𝑁𝛾2 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝐻2,𝑖𝑘 (𝑥𝑘),
𝑊1,𝑗𝑘+1 = 𝑊1,𝑗𝑘 + 𝜂𝑁𝑊,1𝑁𝛾1 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) (1𝑁𝛾2

𝑁∑𝑖=1𝐶𝑖𝑘𝜎′(𝑍2,𝑖𝑘 (𝑥𝑘))𝑊2,𝑗,𝑖𝑘)
× 𝜎′(𝑊1,𝑗𝑘 𝑥𝑘)𝑥𝑘,

𝑊2,𝑗,𝑖𝑘+1 = 𝑊2,𝑗,𝑖𝑘 + 𝜂𝑁𝑊,2𝑁𝛾1𝑁𝛾2 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘)) 𝐶𝑖𝑘𝜎′(𝑍2,𝑖𝑘 (𝑥𝑘))𝐻1,𝑗𝑘 (𝑥𝑘),
where

𝐻1,𝑗𝑘 (𝑥) = 𝜎(𝑊1,𝑗𝑘 𝑥), 𝑍2,𝑖𝑘 (𝑥) = 1𝑁𝛾1
𝑁∑𝑗=1𝑊2,𝑗,𝑖𝑘 𝐻1,𝑗𝑘 (𝑥), 𝐻2,𝑖𝑘 (𝑥) = 𝜎(𝑍2,𝑖𝑘 (𝑥)).

and 𝜂𝑁𝑐 , 𝜂𝑁𝑊,1, 𝜂𝑁𝑊,2 are the learning rates.
As demonstrated in [YS23], the asymptotic analysis goes through if the

learning rates are chosen to be of specific order with respect to the number
of hidden units per layer and the 𝛾1, 𝛾2 scalings. In particular, in the usual case
in practice where 𝑁1 = 𝑁2 = 𝑁, one would pick
(20.29) 𝜂𝑁𝐶 = 𝜂𝐶𝑁2−2𝛾2 , 𝜂𝑁𝑊,1 = 𝜂𝑊,1𝑁4−2(𝛾1+𝛾2) , 𝜂𝑁𝑊,2 = 𝜂𝑊,2𝑁3−2(𝛾1+𝛾2) ,
where the coefficients 𝜂𝐶 , 𝜂𝑊,1, 𝜂𝑊,2 ∈ (0,∞) are chosen to be of order 1 with
respect to 𝑁.

The numerical studies of [YS23] for deep neural networks also demonstrate
improved out-of-sample performance when 𝛾1 = 𝛾2 = 1 in a monotonic way
in 𝛾1, 𝛾2 ∈ (1/2, 1). In addition, the same conclusions hold for deep neural net-
works of arbitrary (but fixed) depthwith the appropriate choice for the learning
rates.

The results presented here were derived for feed forward neural networks
trained with standard stochastic gradient descent. The papers [SY21, YS23]
also contain numerical studies for theCIFAR10 dataset [KH09], another image
recognition dataset, which contains 60,000 color images in 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck). For that dataset,
convolutional neural networks (see Chapter 14) were applied (as opposed to
feed forward neural networks) and the conclusions in regards to the effect of
the 𝛾-scalings were the same.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.7. Elements of Generalization Performance 387

Also, we note that no attempt was made in these numerical studies to fur-
ther optimize the out-of-sample accuracy. This is an apples-to-apples com-
parison of the effect of scaling, which was the only parameter varied in these
studies. This means that mean-field scaling gives a good initial architecture
and then out-of-sample accuracy could be further optimized by tweaking the
learning rate (e.g., the constant coefficients 𝜂𝐶 , 𝜂𝑊,1, 𝜂𝑊,2 ∈ (0,∞) in (20.29))
for instance.

Therefore, the conclusion is that in deep neural networks of arbitrary (but
fixed) depth trained with stochastic gradient descent for the regression prob-
lem, there is bothmathematical (variance reduction) and numerical (improved
out-of-sample accuracy, generalization performance) evidence that the mean-
field scaling 𝛾𝑖 = 1has certain advantages compared to the scalingswith 𝛾𝑖 < 1.
However, themathematical analysis formean field scaling is certainlymore in-
volved.

We highlight that one important practical conclusion of the mathematical
analysis is that it suggests a closed form formula for the choice of the learning
rates hyperparameters; see in this section for neural networks of depth 1 and 2
and Section 4 of [YS23] for neural networks of arbitrary depth.

20.7. Elements of Generalization Performance

Based on the discussion of the previous section, the specific chosen neural net-
work architecture can have a profound effect on how the model behaves on
unseen data, stated otherwise on its generalization performance properties. In
fact characterizing the generalization performance of models is a very active
area of research in deep learning. Below we comment on some of its main
elements.

For the purposes of this section, it is instructive to view the loss functionΛ as a function of the model 𝔪 = 𝔪(𝑥; 𝜃) instead of its parameters 𝜃. So, we
shall writeΛ(𝔪) andΛpop(𝔪) for the empirical and population loss functions,
respectively. We areminimizingΛ(𝔪)within a class ofmodels, say for𝔪 ∈ ℳ̄.
Of course, we would like to be able to solve the problem𝔪⋆pop = argmin𝔪∈ℳ̄ Λpop(𝔪).

It is important to mention the set ℳ̄ may not contain the unconstrained
minimizer of the population loss function.

For comparison purposes, let us also denote𝔪⋆ = argmin𝔪∈ℳ̄ Λ(𝔪).
In a generalization bound, the question we ask is: given a model 𝔪⋆ that

has been chosen because it performs well on training data, is it also true that

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

388 20. Optimization in the Feature Learning Regime: Mean Field Scaling

Λpop(𝔪⋆) is small? A positive answer to this question would then indicate that
the performance of the model𝔪⋆ is good on the entire distribution.

A partial answer to this question can be given by the Chernoff type bounds,
see Lemma A.30. Consider the dataset 𝒟 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1. Since the data is
assumed to be independent and identically distributed, the Chernoff bound
gives for all𝔪 ∈ ℳ̄ and all 𝛿 > 0ℙ (|Λ(𝔪) − Λpop(𝔪)| > 𝛿) ≤ 2𝑒−2𝑀𝛿2 .

Recall now that for any countable set {𝐴1, 𝐴2, 𝐴3, . . . } one has the union
bound

ℙ(⋃𝑗≥1𝐴𝑗) ≤ ∑𝑗≥1ℙ (𝐴𝑗) .
Assume that the class of available models ℳ̄ is finite. Applying first the

union bound and then the Chernoff bound yieldsℙ (There exists𝔪 ∈ ℳ̄ such that |Λ(𝔪) − Λpop(𝔪)| > 𝛿)≤ ∑𝔪∈ℳ̄ ℙ (|Λ(𝔪) − Λpop(𝔪)| > 𝛿)
≤ |ℳ̄| [2𝑒−2𝑀𝛿2] ,

where |ℳ̄| is the size of the set of allowable models. This bound shows that if
we want the upper bound for this probability to be bounded by some 𝜖 > 0, i.e.,
if we want |ℳ̄| [2𝑒−2𝑀𝛿2] ≤ 𝜖, then we would need to have

𝑀 ≥ 12𝛿2 log 2|ℳ̄|𝜖 ,
as the size of the training dataset. The Chenroff bound then yields that with
probability at least 1 − 𝜖, Λpop(𝔪⋆) − Λ(𝔪⋆) ≤ 𝛿
and that Λ(𝔪⋆pop) − Λpop(𝔪⋆pop) ≤ 𝛿.

Combining these two facts with the estimate Λ(𝔪⋆) ≤ Λ(𝔪⋆pop) (true by
definition) yields the estimateΛpop(𝔪⋆) − Λpop(𝔪⋆pop) ≤ 2𝛿.

Combining this further with the estimate

[𝑀 ≥ 12𝛿2 log 2|ℳ̄|𝜖] ⇒ [𝛿 ≤ √ 12𝑀 log 2|ℳ̄|𝜖] ,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.7. Elements of Generalization Performance 389

yields that with probability 1 − 𝜖 the bound holds
Λpop(𝔪⋆) − Λpop(𝔪⋆pop) ≤ 2√ 12𝑀 log 2|ℳ̄|𝜖 .(20.30)

Despite the attractiveness of this conclusion, this bound is not that useful
for deep learning. This is because the set of neural networks has infinite size,
i.e., |ℳ̄| = ∞ (thus the union bound is not meaningful). Hence, this line of
approach does not yield a useful result in the context of infinite possiblemodels
to choose from, as it suggests that wewould need an infinite amount of data. So
the question is whether we can still get good bounds with a finite set of training
data in the case where |ℳ̄| = ∞.

The celebrated VC theory introduced in [VC71,Vap99] was developed to
answer the latter question. The VC dimension of a given class ℳ̄ is a measure
of the expressive power of the set ℳ̄. In order to define what VC dimension
is, we first need to introduce the notion of shattering. We say that the class of
models ℳ̄ shatters a set of points {𝑥1, . . . , 𝑥𝑀} if for every possible training set𝒟 = {(𝑥𝑚, 𝑦𝑚)}𝑀𝑚=1 there exists a model 𝔪 ∈ ℳ̄ that results in zero training
error. The VC dimension of ℳ̄ is then the maximum amount of data samples𝑀 such that ℳ̄ shatters the set {𝑥1, . . . , 𝑥𝑀}. If no such maximal values exist,
then the VC dimension is defined to be infinity.

The VC dimension can be used to give a probabilistic upper bound on the
test error of a classification model. In particular, for 𝑉𝐶 ≪ 𝑀, as it is shown
in [Vap99]

Λpop(𝔪⋆) − Λpop(𝔪⋆pop) ≤ 2√√√√𝑉𝐶 (1 + log 2𝑀𝑉𝐶) − log 𝜖4𝑀 ,(20.31)

with probability at least 1− 𝜖. It is clear that (20.31) is a considerable improve-
ment over (20.30), especially when it comes to deep learning where |ℳ̄| = ∞.

The next question is whether one can understand generalization of deep
neural networks via the VC theory. The first thing to do then would be to com-
pute the VC dimension of neural networks, which however turns out to not
be a trivial task. Typically, one can get lower and upper bounds for the VC di-
mension in the spirit of [BHLM19]. In [BHLM19] lower and upper bounds
for the VC dimension of deep neural networks with 𝖱𝖾𝖫𝖴 activation functions
are computed. In particular, it is shown in that paper that if there are𝑊 many
weights and 𝐿 many layers, then the VC dimension of such a neural network
will be of the order of VC= 𝑂(𝑊𝐿 log(𝑊)). Unfortunately, such bounds are not
necessarily useful in the context of VC theory. For instance if 𝐿 = 3,𝑊 = 103,𝑀 = 105, and 𝜖 = 0.01, then one has 𝑉𝐶 ≈ 2 ∗ 104 and (20.31) givesΛpop(𝔪⋆) − Λpop(𝔪⋆pop) ≤ 1.63,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

390 20. Optimization in the Feature Learning Regime: Mean Field Scaling

which is not necessarily that informative. However, as we show in Section
20.6 for example and as it is indisputably the case in the empirical literature,
deep neural networks have very good out-of-sample accuracy. Closing this gap
between theory and empirical evidence is currently an active research area.
Beyond the VC-dimension approach (that we briefly discussed in this section)
to understanding generalization, there are other methods too. One of those is
the Rademacher complexity approach (see for example [SSBD14]), which has
also been well developed. A nice review book chapter summarizing the main
methods is [JGR19]. A nice related literature review that goes over some of the
main strategies for obtaining bounds for the statistical risk can also be found in
[SH17]. The paper [LFK+22] describes a PAC-Bayes (Probably Approximately
Correct Bayes) framework approach for obtaining generalization bounds for
deep learning models.

20.8. Brief Concluding Remarks

The mean field scaling for shallow neural networks was studied by various au-
thors around the same time, each one using a slightly different set of tools, see
[CB18,MMN18,RVE18,SS20b]. In the exposition that we followed here, we
largely adopted the presentation of [SS20b] which is based mainly on stochas-
tic analysis and weak convergence types of arguments. Modulo Remark 20.7,
the proofs of Section 20.3 are based on [SS20b]. The mean field scaling for
deep neural networks was analyzed in [AOY19,Ngu19,NP23, SS21], and the
presentation that we followed was based on [SS21].1 The investigation of the
regimes between the linear and the nonlinear regime was studied in [SY21] for
the shallow case and in [YS23] for the deep neural network case.

In [MMM19] bounds are established quantifying the accuracy of
mean field scaling in terms of regularity properties of the data. In addition, in
[MMM19] it is shown that the mean field scaling recovers the kernel ridge
regression as a special limit case.

In this chapter we also argued that there is theoretical and empirical evi-
dence to support the hypothesis that neural network architectures with mean
field scaling generalize better than neural network architectures with square-
root scaling for example. Affirmatively answering this question is part of the re-
search on generalization theory, which is an active area of research, see [VC71,
Vap99,BHLM19,JGR19,Yar17,SH17,SSBD14,LFK+22] for a nonexhaustive
list of earlier and more recent related works.

1Copyrighted to INFORMS and republished with permission.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

20.9. Exercises 391

20.9. Exercises

Exercise 20.1. Consider the system

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘),
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁 (𝑦𝑘 −𝔪𝑁𝑘 (𝑥𝑘))𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘,

𝔪𝑁𝑘 (𝑥) = 1𝑁 𝑁∑𝑛=1𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝑥),
for 𝑘 = 0, 1, . . . , ⌊𝑇𝑁⌋, where 𝑇 > 0. 𝜂𝑁𝑘 = 𝜂 is the learning rate with 0 < 𝜂 < ∞
a fixed constant. Prove that, for 𝑘 ≤ ⌊𝑇𝑁⌋ and uniformly in 𝑘, 𝑁 ∈ ℕ, there
exists a constant 𝐶𝑜 < ∞ such that

sup𝑁∈ℕ,𝑘/𝑁≤𝑇
1𝑁 𝑁∑𝑛=1𝔼 [|𝐶𝑛𝑘 |+ ∥ 𝑊𝑛𝑘 ∥] ≤ 𝐶𝑜.

Exercise 20.2. Let 𝑀1,𝑁(𝑡) and 𝑀2,𝑁(𝑡) be defined by (20.8) in Section 20.3.
Prove that lim𝑁→∞ [𝔼 ((𝑀1,𝑁(𝑡))2) + 𝔼 ((𝑀2,𝑁(𝑡))2)] = 0.
Exercise 20.3. Let 𝛼𝑁𝑡 = √𝑁(𝜇𝑁𝑡 − 𝜇̄𝑡) be the fluctuation process. For a test
function 𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑) derive exactly the formula for ⟨𝑓, 𝛼𝑁𝑡 ⟩ as indicated in
Section 20.4 characterizing the remainder term 𝑅𝑁𝑡 .
Exercise 20.4. Show that (20.25) holds, i.e., show that 𝑑𝑑𝑡 Λ̄(Θ𝑡) ≤ 0 holds.
Exercise 20.5. Consider the multilayer feed forward neural network in the
mean field scaling

𝔪𝑁1,𝑁2,𝑁3(𝑥; 𝜃) = 1𝑁3
𝑁3∑𝑖=1𝐶 𝑖𝜎(1𝑁2

𝑁2∑𝑗=1𝑊3,𝑖,𝑗𝜎(1𝑁1
𝑁1∑𝜈=1𝑊2,𝑗,𝜈𝜎 (𝑊1,𝜈 ⋅ 𝑥))) ,

where 𝐶 𝑖,𝑊2,𝑗,𝜈,𝑊3,𝑖,𝑗 ∈ ℝ, and 𝑥,𝑊1,𝜈 ∈ ℝ𝑑. For the quadratic costΛ𝑁1,𝑁2,𝑁3(𝜃) = 12 1|𝒟| ∑(𝑥,𝑦)∈𝒟(𝑦 − 𝔪𝑁1,𝑁2,𝑁3(𝑥; 𝜃))2,
derive the SGD updating equations.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 21

Reinforcement
Learning

21.1. Introduction

Reinforcement learning is a subfield of artificial intelligence that has enjoyed
a lot of success in recent years, ranging from mastering the game of Go, to
robotics, to video games and self-driving cars; see [SSS+17,KP12,MKS+15,
MKS+13] for a non-comprehensive list of application examples.

Our goal in this chapter is not to exhaust this very rich and deep topic but
rather to lay down the main framework and discuss convergence properties of
deep reinforcement learning where a neural network is trained to learn the op-
timal action given the current state. We start with amotivating example in Sec-
tion 21.2 where we build from scratch and step by step the basic𝑄-learning for-
mulation. Deep reinforcement learning is studied in Section 21.3, 𝑄-learning
in Section 21.4, and the convergence analysis of𝑄-learning is presented in Sec-
tion 21.5.

21.2. Motivating Reinforcement Learning Through an Example

Suppose we are driving on a hill with profile𝑈(𝑞) = 0.45 sin(3𝑞) + 0.55, 𝑞 ∈ ℝ,
in a car with mass 𝑚. Our goal is to drive the car from a given location, say𝑞 = −0.5, to another location, say 𝑞+ = 0.45; see Figure 21.1.

Our car has three control settings:• moving forward; a unit force to the right (control is set to +1).
393

10.1090/gsm/252/22

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

394 21. Reinforcement Learning

≈

Figure 21.1. Profile of the hill and target

• moving backward; a unit force to the left (control is set to −1).• neutral; zero force (control is set to 0).
How canwe learn to drive the car in order to best reach the goal? To answer

the question, let us first mathematically formalize the previous word descrip-
tion.

Let us set the acceleration at time 𝑡 to be 𝛼(𝑡) ∈ 𝖠 = {−1, 0, 1}. By the
second law of Newton, the position and velocity of the car will be given by the
system of equationṡ𝑞(𝑡) = 𝑣(𝑡) (horizontal position and velocity),𝑚 ̇𝑣(𝑡) = horizontal component of acceleration and gravity.

Let us now compute the horizontal component of acceleration and gravity
in this case. First we observe that the component of gravitational force that is
tangent to the curve 𝑦 = 𝑈 ′(𝑞) is

(𝐹𝑔)𝑇(𝑞) = −𝑔𝑈 ′(𝑞)√(𝑈 ′(𝑞))2 + 1,

Figure 21.2. Gravitational force tangent to the curve 𝑦 = 𝑈 ′(𝑞)
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 395

Figure 21.3. Tangential to horizontal force

where 𝑔 = 9.81m/ sec2 or 𝑔 = 32ft/sec2 is the gravitational constant (see Figure
21.2).

The force tangential to 𝑈 at time 𝑡 takes the form
𝐹𝑇(𝑡) = 𝛼(𝑡) + (𝐹𝑔)𝑇(𝑞(𝑡))= 𝛼(𝑡) − 𝑔𝑈 ′(𝑞(𝑡))√(𝑈 ′(𝑞(𝑡)))2 + 1.

By projection, the horizontal force to 𝑈 becomes, Figure 21.3,

𝐹𝐻(𝑞(𝑡)) = 𝐹𝑇(𝑡)√(𝑈 ′(𝑞(𝑡)))2 + 1= 𝛼(𝑡)√(𝑈 ′(𝑞(𝑡)))2 + 1 − 𝑔 𝑈 ′(𝑞(𝑡))√(𝑈 ′(𝑞(𝑡)))2 + 1.
Note now that if sup𝑞 |𝑈 ′(𝑞)| ≪ 1, then we can approximate

𝐹𝐻(𝑞(𝑡)) ≈ 𝛼(𝑡) − 𝑔𝑈 ′(𝑞(𝑡)).
So, we have arrived at the following set of equations

̇𝑞(𝑡) = 𝑣(𝑡),
𝑚 ̇𝑣(𝑡) = 𝛼(𝑡)√(𝑈 ′(𝑞(𝑡)))2 + 1 − 𝑔 𝑈 ′(𝑞(𝑡))√(𝑈 ′(𝑞(𝑡)))2 + 1,

the former being the horizontal position and velocity and the latter being the
horizontal component of acceleration and gravity.

If the condition |𝑈 ′| ≪ 1 is valid in the region of interest, then we can
simplify the previous equations by
(21.1)̇𝑞(𝑡) = 𝑣(𝑡) (horizontal position and velocity),𝑚 ̇𝑣(𝑡) = 𝛼(𝑡)−𝑔𝑈 ′(𝑞(𝑡)) (horizontal component of acceleration and gravity).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

396 21. Reinforcement Learning

Introducing a timestep parameter 𝛿 > 0, we can discretize the previous
system of equations as

(21.2)
𝑞(𝑡 + 𝛿) = 𝑞(𝑡) + 𝑣(𝑡)𝛿 + 𝛼(𝑡)2𝑚 𝛿2,
𝑣(𝑡 + 𝛿) = 𝑣(𝑡) + 𝛿𝑚 (𝛼(𝑡) − 𝑔𝑈 ′(𝑞(𝑡))) .

(we have included the second-order 𝛿2 term in the discretization of (21.1) to
ensure that the control acts tranversally the boundary of 𝖡).

In our specific example 𝑈(𝑞) = 0.45 sin(3𝑞) + 0.55, which gives 𝑈 ′(𝑞) =1.35 cos(3𝑞). As we discussed 𝑔 = 9.81m/sec2 or 𝑔 = 32ft/sec2 is the gravita-
tional constant,𝑚 is the mass of the object, and 𝛿 is the descritization step.

How do we choose 𝛼(𝑡) to best achieve our goal? Let us define the state
vector 𝑥 = (𝑞, 𝑣) ∈ 𝖷 = ℝ2 and an action 𝛼 ∈ 𝖠. We setΦ𝛼(𝑥) = (𝑞 + 𝑣𝛿 + 𝛼2𝑚𝛿2, 𝑣 + 𝛿𝑚 (𝛼 − 𝑔𝑈 ′(𝑞))) ,
which describes the one-step dynamics if we use action 𝛼 ∈ 𝖠.

Having this description in mind as motivation and a concrete example, let
us start now building towards a more abstract setup.

A control policy 𝜆 ∶ ℝ2 ↦ 𝖠 amounts to taking a certain action based on the
state we are currently in. Let us denote by 𝒫 the collection of all policies. For𝜆 ∈ 𝒫 and initial state 𝑥 = (𝑞, 𝑣) ∈ ℝ2, let us denote by ℛ𝑛(𝑥; 𝜆) the dynamics
of the vehicle when we use policy 𝜆 at the current state 𝑥 during time-iteration𝑛 ∈ ℕ. In particular, we haveℛ𝑛+1(𝑥; 𝜆) = Φ𝜆(ℛ𝑛(𝑥;𝜆)) (ℛ𝑛(𝑥; 𝜆)) ,ℛ𝑛(𝑥; 𝜆) = 𝑥.

The best policy is the one achieving the quickest time to reach the target
set 𝖡 = (𝑞+,∞) × ℝ. Hence, for 𝑥 ∈ 𝖷 and 𝜆 ∈ 𝒫 we define the map𝑇𝜆(𝑥) = min{𝑛𝛿 ≥ 0,ℛ𝑛(𝑥; 𝜆) ∈ 𝖡} (min ∅ = ∞)
(recall that 𝛿 is our timestep), which gives rise to the value function𝑉(𝑥) = inf𝜆∈𝒫 {𝑇𝜆(𝑥)} .

Hence, the goal is to find 𝜆∗ ∈ 𝒫 so that 𝑉(𝑥) = 𝑇𝜆∗(𝑥). In order to demon-
strate that there are different ways to reach the goal, let us consider the follow-
ing three scenarios.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 397

Strategy 1. Applying positive force when the velocity is already positive and to
the left of the minimum, see Figure 21.4.

Figure 21.4. Strategy 1: Force is positivewhen the velocity is already positive
and to the left of the minimum. Goal is reached in 374 steps.

Strategy 2. Applying positive force when the velocity is already positive, see
Figure 21.5.

Figure 21.5. Strategy 2: Force is positive when the velocity is already posi-
tive. Goal is reached in 161 steps.

Strategy 3. Applying a force which agrees with the sign of the velocity, see Fig-
ure 21.6.

Figure 21.6. Strategy 3: Force agrees with the sign of the velocity. Goal is
reached in81 steps.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

398 21. Reinforcement Learning

In this demonstration, the conclusion is that Strategy 3 (see Figure 21.6)
reaches the goal in fewer steps compared to the other two strategies.

Now treating ℛ as a dynamical system, we can do things in an iterative
manner by restarting the system. In particular, if we fix momentarily 𝜆 ∈ 𝒫
and 𝑥 ∈ 𝖷, we haveℛ1(𝑥; 𝜆) = Φ𝜆(𝑥) (𝑥) = ℛ0 (Φ𝜆(𝑥) (𝑥) ; 𝜆) .

Proceeding now iteratively, if for some 𝑛 ∈ ℕ, we haveℛ𝑛(𝑥; 𝜆) = ℛ𝑛−1 (Φ𝜆(𝑥) (𝑥) ; 𝜆) = ℛ𝑛−1 (ℛ1(𝑥; 𝜆); 𝜆) .
Hence, we subsequently have the following restart dynamicsℛ𝑛+1(𝑥; 𝜆) = Φ𝜆(ℛ𝑛(𝑥;𝜆)) (ℛ𝑛(𝑥; 𝜆))= Φ𝜆(ℛ𝑛−1(Φ𝜆(𝑥)(𝑥);𝜆) (ℛ𝑛−1 (Φ𝜆(𝑥) (𝑥) ; 𝜆))= ℛ𝑛 (Φ𝜆(𝑥) (𝑥) ; 𝜆) .
Thus in general, for 𝑛 ∈ ℕ, we can writeℛ𝑛(𝑥; 𝜆) = ℛ𝑛−1 (Φ𝜆(𝑥) (𝑥) ; 𝜆) .
Let us next derive an iterative equation for 𝑇𝜆(𝑥). Fix 𝜆 ∈ 𝒫 and 𝑥 ∉ 𝖡. We

certainly have that 𝐽(𝑥; 𝜆) ≥ 1. In addition, we also have𝑇𝜆(𝑥)=min{𝑛𝛿 ∶ 𝑛≥0,ℛ𝑛(𝑥; 𝜆)∈𝖡} (by definition of 𝑇𝜆(𝑥))=min{𝑛𝛿 ∶ 𝑛≥1,ℛ𝑛−1(Φ𝜆(𝑥)(𝑥); 𝜆)∈𝖡} (because 𝑥 ∉ 𝖡)=𝛿 +min{(𝑛 − 1)𝛿 ∶ 𝑛 − 1≥0,ℛ𝑛−1(Φ𝜆(𝑥)(𝑥); 𝜆)∈𝖡} (𝑛 = 1 + 𝑛 − 1)=𝛿 + 𝑇𝜆(Φ𝜆(𝑥)) (by definition of 𝑇𝜆(Φ𝜆(𝑥))).
Hence, collecting the calculations above we have for 𝜆 ∈ 𝒫

𝑇𝜆(𝑥) = {𝛿 + 𝑇𝜆(Φ𝜆(𝑥)) if 𝑥 ∉ 𝖡 (restart dynamics)0 if 𝑥 ∈ 𝖡 (boundary condition).
Now, we are ready to derive the Bellman equation for this setting. Notice

that we can write

𝑇𝜆(𝑥) = {𝛿 + 𝑇𝜆(Φ𝜆(𝑧)(𝑥)) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡
≥ {𝛿 + 𝑉(Φ𝜆(𝑥)(𝑥)) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡
≥ {min𝛼∈𝖠 {𝛿 + 𝑉(Φ𝛼(𝑥))} if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 399

Minimizing over 𝜆 ∈ 𝒫 on the left-hand side, we obtain

(21.3) 𝑉(𝑥) ≥ {min𝛼∈𝖠 {𝛿 + 𝑉(Φ𝛼(𝑥))} if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
This finally suggests the Bellman equation for the value function

𝑉(𝑥) = {min𝛼∈𝖠 {𝛿 + 𝑉(Φ𝛼(𝑥))} if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.(21.4)

The best policy then is

(21.5) 𝜆∗(𝑥) = argmin𝛼∈𝖠 {𝛿 + 𝑉(Φ𝛼(𝑥))} .
21.2.1. Basic formulation of𝑄-learning. Now that we have formulated the
Bellman equation (21.4) and the associated optimal policy (21.5), we can turn
this into a learning problem.

Let us define the so-called 𝑄 function

(21.6) 𝑄(𝑥, 𝛼) = 𝛿 + 𝑉(Φ𝛼(𝑥))
for 𝑥 ∉ 𝖡. If the Bellman equation is satisfied, then𝑉(𝑥) = min𝛼∈𝖠 𝑄(𝑥, 𝛼)
for 𝑥 ∉ 𝖡. Using this fact in the right-hand side of (21.6), we have that𝑉(Φ𝛼(𝑥)) = inf𝛼′∈𝖠𝑄(Φ𝛼(𝑥), 𝛼′)
if Φ𝛼(𝑥) ∉ 𝖡. On the other hand, 𝑉(Φ𝛼(𝑥)) = 0 if Φ𝛼(𝑥) ∈ 𝖡, so if (and only if)𝑉 satisfies the Bellman equation,

(21.7)
𝑄(𝑥, 𝛼) = {𝛿 + min𝛼′∈𝖠 𝑄(Φ𝛼(𝑥), 𝛼′) if Φ𝛼(𝑥) ∉ 𝖡𝛿 if Φ𝛼(𝑥) ∈ 𝖡= 𝛿 + 𝟏{Φ𝛼(𝑥)∉𝖡}min𝛼′∈𝖠𝑄(Φ𝛼(𝑥), 𝛼′).

If we have solved (21.7), the equation (21.5) for our best policy will then be

(21.8) 𝜆∗(𝑥) = argmin𝛼∈𝖠 𝑄(𝑥, 𝛼).
Let’s convert (21.7) to a deep learning problem; let’s try to find a function𝑄 ∶ 𝖷 × 𝖠 ↦ ℝ which minimizes

(21.9) ||𝑄(𝑥, 𝛼) − {𝛿 + 𝟏{Φ𝛼(𝑥)∉𝖡} inf𝛼′∈𝖠𝑄(Φ𝛼(𝑥), 𝛼′)}||2
over (in some appropriate sense) all (𝑥, 𝛼) ∈ 𝖷 × 𝖠.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

400 21. Reinforcement Learning

Let’s think through a computational framework. Let’s assume that we have• Ahistoryℋ of state-action-next state triples. Namely,ℋ is a (multi)set
of points in 𝖷 × 𝖠 × 𝖷. Each (𝑥, 𝛼, 𝑥′) inℋ is of the form Φ𝛼(𝑥) = 𝑥′.
We want to understand how to get to 𝖡, so none of the 𝑥’s themselves
are in 𝖡. We may have to initially observe the system to buildℋ.• A parametrized map 𝑄 ∶ 𝖷 × 𝖠 × 𝒫 → ℝ, where 𝒫 is some Euclidean
parameter space.

We would like to find a 𝜃 ∈ 𝒫 such that 𝑄(⋅, ⋅, 𝜃∗) satisfies (21.7) (as much as
possible).

Let’s make some definitions based onℋ. Define

(21.10) Πℋ def= {(𝑥, 𝛼) ∶ (𝑥, 𝛼, 𝑥′) ∈ ℋ}
as the (multi)set of state-action points. In our deterministic case, the state-
action-next state triples also implies that
(21.11) Φℋ𝛼 (𝑥) = 𝑥′
is well defined for (𝑥, 𝛼) ∈ Πℋ (and we know Φℋ only for (𝑥, 𝛼) ∈ Πℋ).

Let’s next assume that we have some current value 𝜃𝑛 at iteration 𝑛 (per-
haps 𝜃0 is random). Let’s construct the cost function
(21.12)

Λ𝑛(𝜃) def= 1|ℋ|{ ∑(𝑥,𝛼)∈Πℋ |𝑄(𝑥, 𝛼, 𝜃)
− {𝛿 + 𝟏{Φℋ𝑎 (𝑥)∉𝖡} inf𝛼′∈𝖠𝑄(Φℋ𝛼 (𝑥), 𝛼′, 𝜃𝑛)}||2 }

(reflecting the minimization problem (21.9)). We can then compute ∇Λ𝑛(𝜃𝑛)
and, given some learning rate 𝜂, define
(21.13) 𝜃𝑛+1 def= 𝜃𝑛 − 𝜂∇Λ𝑛(𝜃𝑛).

After𝑁 steps (e.g., when we want to stop our iteration), our approximation
of the optimal policy will be𝜆𝑁(𝑥) def= argmin𝛼∈𝖠 (𝑥, 𝛼′, 𝜃𝑁).

Several broad comments are in order.• The size of ℋ and the complexity of 𝑄 are related; a more complex
collection 𝑄 of parametrized maps will in general require more data-
points to optimize (21.9).• We may of course increase or modifyℋ as our iteration proceeds. At
each step, we might randomly choose an action (i.e., explore) to build
a more comprehensive history. Conversely, at some point we may fix
our history and focus more on minimizing (21.9) (i.e., exploiting).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 401

• We are ultimately interested in (21.8). Assuming at 𝖠 is finite, we can
divide 𝖷 up into regions where we would use the different elements of𝖠. Informally, we would likeℋ to give us information about changes
in the optimal action, i.e., in the boundaries of the different regions.

21.2.2. IntroducingRandomness in theBasicFramework. Let us go back
to our basic car driving example earlier in Section 21.2 and introduce random-
ness. In particular, let 𝜁𝑛, 𝑛 ∈ ℕ be a sequence of i.i.d. random variables taking
values in some countable subset Ζ of ℝ and with probability mass function 𝑝.
Let us consider the following modification to the dynamics (21.2):

𝑞(𝑛 + 𝛿) = 𝑞(𝑛) + 𝑣(𝑛)𝛿 + 𝛼(𝑛)2𝑚 𝛿2,
𝑣(𝑛 + 𝛿) = 𝑣(𝑛) + 𝛿𝑚 (𝛼(𝑛) − 𝑔𝑈 ′(𝑞(𝑛))) + 𝜁𝑛+1.

This leads to the mappingΦ𝛼(𝑥, 𝜁) = (𝑞 + 𝑣𝛿 + 𝛼2𝑚𝛿2, 𝑣 + 𝛿𝑚 (𝛼 − 𝑔𝑈 ′(𝑞)) + 𝜁) ,
which describes the one-step dynamics with action 𝛼 ∈ 𝖠. The random recur-
sion reads as followsℛ𝑛+1(𝑥; 𝜆) = Φ𝜆(ℛ𝑛(𝑥;𝜆)) (ℛ𝑛(𝑥; 𝜆), 𝜁𝑛+1) ,ℛ𝑛(𝑥; 𝜆) = 𝑥.

The time to reach 𝖡 is now random (due to the randomness via {𝜁𝑛}𝑛∈ℕ):𝑇𝜆(𝑥) = min{𝑛𝛿 ≥ 0,ℛ𝑛(𝑥; 𝜆) ∈ 𝖡} (min ∅ = ∞)
and, thus, it makes sense to define the cost function as the expected time to
reach the target set 𝖡: 𝑊𝜆(𝑥) = 𝔼 [𝑇𝜆(𝑥)] .

Let us now follow the procedure of Section 21.2 to derive the Bellman equa-
tion in this case. Fix 𝜆 ∈ 𝒫 and 𝑥 ∈ 𝖷. For a given vector (𝑥1, . . . , 𝑥𝑛) ∈ 𝖷𝑛,ℙ {ℛ1(𝑥; 𝜆) = 𝑥1, ℛ2(𝑥; 𝜆) = 𝑥2, . . . , ℛ𝑛(𝑥; 𝜆) = 𝑥𝑛}= ℙ {Φ𝜆(𝑥) (𝑥, 𝜁1) = 𝑥1, Φ𝜆(𝑥1) (𝑥1, 𝜁2) = 𝑥2, . . . , Φ𝜆(𝑥𝑛−1) (𝑥𝑛−1, 𝜁𝑛) = 𝑥𝑛}= ∑𝜁∈Ζℙ {Φ𝜆(𝑥) (𝑥, 𝜁) = 𝑥1, Φ𝜆(𝑥1) (𝑥1, 𝜁1) = 𝑥2, . . . ,

Φ𝜆(𝑥𝑛−1) (𝑥𝑛−1, 𝜁𝑛−1) = 𝑥𝑛} 𝑝(𝜁)= ∑𝜁∈Ζℙ {Φ𝜆(𝑥) (𝑥, 𝜁) = 𝑥1, ℛ1(𝑥1; 𝜆) = 𝑥2, . . . , ℛ𝑛−1(𝑥𝑛−1; 𝜆) = 𝑥𝑛} 𝑝(𝜁),
where we used the fact that 𝜁1 has probability mass function 𝑝 and the vectors(𝜁1, . . . , 𝜁𝑛−1) and (𝜁2, . . . , 𝜁𝑛) have the same distribution.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

402 21. Reinforcement Learning

Let’s now generalize the previously derived equation. If 𝑥 ∉ 𝖡, we can
write ℙ {ℛ1(𝑥; 𝜆) ∈ 𝐴1, {ℛ𝑛′(𝑥; 𝜆)}𝑛𝑛′=2 ∈ 𝐴}= ∑𝜁∈Ζℙ {Φ𝜆(𝑥) (𝑥, 𝜁) ∈ 𝐴1, {ℛ𝑛′ (Φ𝜆(𝑥) (𝑥, 𝜁) ; 𝜆)}𝑛−1𝑛′=1 ∈ 𝐴}𝑝(𝜁),(21.14)

for some 𝐴1 ∈ 𝖷 and 𝐴 ∈ 𝖷𝑛−1.
If 𝑥 ∉ 𝖡, then 𝑇𝜆(𝑥) ≥ 𝛿, and for any 𝑛 ≥ 1, we get

ℙ {𝑇𝜆(𝑥) > 𝑛𝛿} = ℙ{ 𝑛⋂𝑛′=1 {ℛ𝑛′(𝑥; 𝜆) ∉ 𝖡}}
= ∑𝜁∈Ζℙ{

𝑛−1⋂𝑛′=0 {ℛ𝑛′(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆) ∉ 𝖡}}
= ∑𝜁∈Ζℙ {𝑇𝜆(Φ𝜆(𝑥)(𝑥, 𝜁)) > (𝑛 − 1)𝛿} 𝑝(𝜁)
= ∑𝜁∈Ζℙ {𝑇𝜆(Φ𝜆(𝑥)(𝑥, 𝜁)) + 𝛿 > 𝑛𝛿} 𝑝(𝜁).

Thus, we will generally haveℙ {𝑇𝜆(𝑥) ∈ 𝐴} = ∑𝜁∈Ζℙ {𝑇𝜆(Φ𝜆(𝑥)(𝑥, 𝜁)) + 𝛿 ∈ 𝐴} 𝑝(𝜁).
The latter relation implies𝔼 [𝑇𝜆(𝑥)] = ∑𝜁∈Ζ𝔼 [𝑇𝜆(Φ𝜆(𝑥)(𝑥, 𝜁)) + 𝛿] 𝑝(𝜁).
Therefore, we may now define𝑊𝜆(𝑥) = 𝔼 [𝑇𝜆(𝑥)]

= {∑𝜁∈Ζ {𝛿 +𝑊𝜆(Φ𝜆(𝑥)(𝑥, 𝜁))} 𝑝(𝜁) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
For the value function 𝐺(𝑥) = inf𝜆∈𝒫𝑊𝜆(𝑥) and for 𝑥 ∈ 𝖷, we shall have

𝑊𝜆(𝑥) ≥ {min𝛼∈𝖠∑𝜁∈Ζ {𝛿 + 𝐺(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
This gives the corresponding Bellman equation for the value function

𝑉(𝑥) = {min𝛼∈𝖠∑𝜁∈Ζ {𝛿 + 𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 403

The best policy then is

𝜆∗(𝑧) = argmin𝛼∈𝖠 {∑𝜁∈Ζ {𝛿 + 𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁)} .
Mimicking now the discussion in Section 21.2.1, the basic 𝑄-learning
framework is as follows. For 𝑥 ∉ 𝖡, define the so-called 𝑄 function𝑄(𝑥, 𝛼) = ∑𝜁∈Ζ {𝛿 + 𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁).

Then, we get
(21.15) 𝑄(𝑥, 𝛼) = 𝛿 + ∑𝜁∈Ζ∶Φ𝛼(𝑥,𝜁)∉𝖡 inf𝛼′∈𝖠𝑄(Φ𝛼(𝑥, 𝜁), 𝛼′)𝑝(𝜁),
with the last equality following from the observation that𝑉 (Φ𝛼(𝑥, 𝜁)) = min𝛼′∈𝖠𝑄 (Φ𝛼(𝑥, 𝜁), 𝛼′)
ifΦ𝛼(𝑥, 𝜁) ∉ 𝖡. We can then try to solve (21.15) via a sequence of loss functions
analogous to (21.12).

Given the historyℋ, we again project the history toΠℋ as in (21.10). Here,
however, the next state is random, and we would like to construct its distribu-
tion, as a function of the state-action pair (𝑥, 𝛼); i.e.,
(21.16) 𝜇ℋ(𝑥,𝛼)(𝑆) def= 1|ℋ| ∑𝑥′∈𝖷∶(𝑥,𝛼,𝑥′)∈ℋ 𝟏𝑆(𝑥′)
for all measurable subsets 𝑆 of 𝖷 and all (𝑥, 𝛼) ∈ Πℋ. Ifℋ is rich enough,
(21.17) 𝜇ℋ(𝑥,𝛼)(𝑆) ≈ ∑𝜁∈Ζ 𝟏𝑆(Φ𝛼(𝑥, 𝜁))𝑝(𝜁)
for all measurable subsets 𝑆 of 𝖷 and all (𝑥, 𝛼) ∈ Πℋ. In fact, (21.17) is only
approximate, as variations in (𝑥, 𝛼) will change the statistics of Φ𝛼(𝑥, 𝜁).

Namely, if we have a current 𝜃𝑛 ∈ 𝒫 such that 𝑄(⋅, ⋅, 𝜃𝑛) is our best current
estimate of the solution of (21.15), then let’s consider the cost function

(21.18)

Λ𝑛(𝜃) def= 1|ℋ|{ ∑(𝑥,𝛼)∈Πℋ |𝑄(𝑥, 𝛼, 𝜃𝑛)
− {𝛿 +∫𝑥′∈𝖷⧵𝖡 inf𝛼′∈𝖠𝑄(𝑥′, 𝑎′, 𝜃𝑛)𝜇ℋ(𝑥,𝛼)(𝑑𝑥′)}||2 }

and carry out a gradient descent step as in (21.13) to improve 𝜃𝑛. Of course, we
are here assuming thatℋ is rich enough that∑𝜁∶Φ𝛼(𝑥,𝜁)∉𝖡 inf𝛼′∈𝖠𝑄(Φ𝛼(𝑥, 𝜁), 𝛼′)𝑝(𝜁)
is approximated by the empirical average overℋ.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

404 21. Reinforcement Learning

21.2.3. Generalizing the Cost Functional. In the preceding discussion of
this section we introduced 𝑇𝜆(𝑥) as the time to the target set 𝖡, and we were
interested in choosing the policy 𝜆 that would minimize either 𝑇𝜆(𝑥) or its ex-
pected value (depending on whether the time 𝑇 was deterministic or random).
Let us now modify our objective, and let us replace this goal with something
more complex. In particular, let us define

• 𝑟(𝑥, 𝑥′, 𝛼)𝛿 ≥ 0 to be the cost for using action 𝛼 ∈ 𝖠 if the current
state is 𝑥 ∈ 𝖷 and the state transitions to 𝑥′ ∈ 𝖷. To emphasize simi-
laritywith our previous two cases (Sections 21.2.1 and 21.2.2), we have
scaled the cost function by the time step 𝛿.• 𝛽 > 0 is a discount factor (future cost may have different value than
present cost).

Our goal now is to minimize

𝑊𝜆(𝑥) = 𝔼 [∑𝑛∶𝑛𝛿<𝑇𝜆(𝑥) 𝛽𝑛𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝛿]
= 𝔼 [∞∑𝑛=0 𝛽𝑛𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝟏{𝑇𝜆(𝑥)>𝑛𝛿}] 𝛿.

We notice that if we set 𝑟 = 1 and 𝛽 = 1, we recover 𝔼[𝑇𝜆(𝑥)], which is
what we studied in Section 21.2.2.

Of course, we shall have that if 𝑥 ∈ 𝖡, then 𝑊𝜆(𝑥) = 0. Therefore, let us
now suppose that 𝑥 ≠ 0 and notice that we can write

𝑊𝜆(𝑥) = 𝔼 [𝑟 (𝑥,ℛ1(𝑥; 𝜆), 𝜆(𝑥))] 𝛿
+ 𝔼 [∞∑𝑛=1 𝛽𝑛𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝟏{𝑇𝜆(𝑥)>𝑛𝛿}] 𝛿= 𝔼 [𝑟 (𝑥,ℛ1(𝑥; 𝜆), 𝜆(𝑥))] 𝛿
+ ∞∑𝑛=1 𝛽𝑛𝔼 [𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝟏{𝑇𝜆(𝑥)>𝑛𝛿}] 𝛿.(21.19)

Note that we can further write

𝔼 [𝑟 (𝑥,ℛ1(𝑥; 𝜆), 𝜆(𝑥))] = ∑𝜁∈Ζ 𝑟 (𝑥, Φ𝜆(𝑥)(𝑥, 𝜁), 𝜆(𝑥)) 𝑝(𝜁).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.2. Motivating Reinforcement Learning Through an Example 405

Recalling relation (21.14) we next see that for 𝑥 ∉ 𝖡 and 𝑛 ≥ 1, we have
𝔼 [𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝟏{𝑇𝜆(𝑥)>𝑛𝛿}]
= 𝔼 [𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) { 𝑛∏𝑛′=1 𝟏{ℛ𝑛′ (𝑥;𝜆)∉𝖡}}]
= ∑𝜁∈Ζ [𝑟 (ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), ℛ𝑛(Φ𝜆(𝑧)(𝑥, 𝜁); 𝜆), 𝜆(ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆)))

× { 𝑛∏𝑛′=1 𝟏{ℛ𝑛′−1(Φ𝜆(𝑥)(𝑥,𝜁);𝜆)∉𝖡}}]𝑝(𝜁)
= ∑𝜁∈Ζ [𝑟 (ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), ℛ𝑛(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), 𝜆(ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆)))

× {𝟏𝑇𝜆(Φ𝜆(𝑥)(𝑥,𝜁))>(𝑛−1)𝛿}] 𝑝(𝜁).
Going back to (21.19), we have

∞∑𝑛=1 𝛽𝑛𝔼 [𝑟 (ℛ𝑛(𝑥; 𝜆), ℛ𝑛+1(𝑥; 𝜆), 𝜆(ℛ𝑛(𝑥; 𝜆))) 𝟏{𝑇𝜆(𝑥)>𝑛𝛿}] 𝛿
= ∞∑𝑛=1 𝛽𝑛 ∑𝜁∈Ζ× [𝑟 (ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), ℛ𝑛(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), 𝜆(ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆)))× {𝟏𝑇𝜆(Φ𝜆(𝑥)(𝑥,𝜁))>(𝑛−1)𝛿}] 𝛿𝑝(𝜁)
= 𝛽 ∑𝜁∈Ζ

∞∑𝑛=0 𝛽𝑛× [𝑟 (ℛ𝑛(Φ𝜆(𝑥)(𝑧, 𝜁); 𝜆), ℛ𝑛+1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), 𝜆(ℛ𝑛−1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆)))× {𝟏𝑇𝜆(Φ𝜆(𝑥)(𝑥,𝜁))>𝑛𝛿}] 𝛿𝑝(𝜁)= 𝛽 ∑𝜁∈Ζ ∑𝑛∶𝑛𝛿<𝑇𝜆(Φ𝜆(𝑥)(𝑥,𝜁)) 𝛽𝑛× [𝑟 (ℛ𝑛(Φ𝜆(𝑥)(𝑧, 𝜁); 𝜆), ℛ𝑛+1(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆), 𝜆(ℛ𝑛(Φ𝜆(𝑥)(𝑥, 𝜁); 𝜆)))] 𝛿𝑝(𝜁)= 𝛽 ∑𝜁∈Ζ𝑊𝜆(Φ𝜆(𝑥)(𝑥, 𝜁))𝑝(𝜁).
For 𝜆 ∈ 𝒫 we thus have

𝑊𝜆(𝑥) ≥ {∑𝜁∈Ζ {𝑟(𝑥, Φ𝜆(𝑥)(𝑥, 𝜁)); 𝜆(𝑥))𝛿 + 𝛽𝑊𝜆 (Φ𝜆(𝑥)(𝑥, 𝜁))} 𝑝(𝜁) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

406 21. Reinforcement Learning

Proceeding now in parallel with Section 21.2.2, we have the corresponding
Bellman equation for the value function

𝑉(𝑥) = {min𝛼∈𝖠∑𝜁∈Ζ {𝑟(𝑥, Φ𝛼(𝑥, 𝜁); 𝛼)𝛿 + 𝛽𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁) if 𝑥 ∉ 𝖡0 if 𝑥 ∈ 𝖡.
(21.20)

The best policy then is

𝜆∗(𝑥) = argmin𝛼∈𝖠 {∑𝜁∈Ζ {𝑟(𝑥, Φ𝛼(𝑥, 𝜁); 𝛼)𝛿 + 𝛽𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁)} .
Mimicking now the discussion in Section 21.2.1, the basic 𝑄-learning
framework is as follows. Let us define the so-called 𝑄 function𝑄(𝑥, 𝛼) = ∑𝜁∈Ζ {𝑟(𝑥, Φ𝛼(𝑥, 𝜁); 𝛼)𝛿 + 𝛽𝑉(Φ𝛼(𝑥, 𝜁))} 𝑝(𝜁)

= ∑𝜁∈Ζ {𝑟(𝑥, Φ𝛼(𝑥, 𝜁); 𝛼)𝛿 + 𝛽𝟏{Φ𝛼(𝑥,𝜁)∉𝖡} inf𝛼′∈𝖠𝑄(Φ𝛼(𝑥, 𝜁), 𝛼′)} 𝑝(𝜁),
for 𝑥 ∉ 𝖡, the last equality following from the observation 𝑉(𝑥) =min𝛼∈𝖠 𝑄(𝑥, 𝛼) if 𝑥 ∉ 𝖡. Here the analogue of (21.18) is

Λ𝑛(𝜃) def= 1|ℋ|{ ∑(𝑥,𝛼)∈Πℋ
||𝑄(𝑥, 𝛼, 𝜃𝑛) − {𝛿∫𝑥′∈𝖷 𝑟(𝑥, 𝑥′, 𝛼)𝜇ℋ(𝑥,𝛼)(𝑑𝑥′)

+∫𝑥′∈𝖷⧵𝖡 inf𝛼′∈𝖠𝑄(𝑥′, 𝑎′, 𝜃𝑛)𝜇ℋ(𝑥,𝛼)(𝑑𝑥′)}||2}.
21.3. Deep Reinforcement Learning

In Section 21.2 we introduced the basic reinforcement learning framework
through the example of driving a car on a hill. We formulated the basic opti-
mization problemwhere the function𝑄(𝑥, 𝑎), that approximates the solution to
the Bellman equation, minimizes an appropriate loss function. As mentioned
there, in typical applications, the 𝑄-function is modeled as a neural network
and the optimization problem is usually being solved with some variant of the
stochastic gradient algorithm. The subfield of reinforcement learning that is
using neural networks to learn the optimal control given the current state of
the system is called deep reinforcement learning (DRL). The goal of this section
is to lay down the generic formulation in its general case. In addition, for pre-
sentation purposes, we ignore the effect of the timestep parameter 𝛿 that was
introduced in the concrete example of Section 21.2. In Section 21.4 we will
discuss convergence properties of this algorithm in a mathematically rigorous
way.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.3. Deep Reinforcement Learning 407

Consider a Markov decision problem defined on a finite state space 𝖷 ⊂ℝ𝑑𝑥 . For every 𝑥 ∈ 𝖷, there is a finite set 𝖠 ⊂ ℝ𝑑𝑎 of actions that can be taken
such that:• 𝑝(𝑧|𝑥, 𝑎) = ℙ(𝑋𝑗+1 = 𝑧|𝑋𝑗 = 𝑥, 𝑎𝑗 = 𝑎) is the transition probability

function.• given a state 𝑥 and an action 𝑎, a reward/cost 𝑟(𝑥, 𝑎) is collected.• 𝜆 is a control policy that depends on the history up to the present.• 𝛽 ∈ (0, 1] denotes a discount factor.
Then, typically, two types of problems are being considered:
Infinite time horizon reward, which is defined to be

𝑊𝜆(𝑥) = 𝔼𝜆 [∞∑𝑗=0 𝛽𝑗𝑟(𝑥𝑗, 𝑎𝑗)|𝑋0 = 𝑥] .(21.21)

Letting 𝑉(𝑥, 𝑎) be the reward, given that we start at position 𝑥 ∈ 𝖷, action𝑎 ∈ 𝖠 is taken and the optimal value is then being used. Optimal control theory
(see for example [KY03]), max𝑎∈𝖠 𝑉(𝑥, 𝑎) = sup𝜆 𝑊𝜆(𝑥)
and the dynamic programming principle gives the Bellman equation𝑉(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽 ∑𝑧∈𝖷max𝑎′∈𝖠 𝑉(𝑧, 𝑎′)𝑝(𝑧|𝑥, 𝑎),
and the optimal policy is 𝑎∗(𝑥) = argmax𝑎∈𝖠 𝑉(𝑥, 𝑎).

Finite time horizon reward, which is defined to be

𝑊𝜆(𝐽, 𝑥) = 𝔼𝜆 [𝐽∑𝑗=0 𝛽𝑗𝑟𝑗|𝑋0 = 𝑥] ,(21.22)

where 𝑟𝑗 = 𝑟(𝑗, 𝑥𝑗, 𝑎𝑗) for 𝑗 = 0, 1, . . . , 𝐽 − 1 and 𝑟𝐽 = 𝑟(𝐽, 𝑥𝐽). Here 𝐽 is a
deterministic time horizon.

The optimal control 𝑎∗(𝐽, 𝑥) is given by the solution to the Bellman equa-
tion 𝑉(𝑗, 𝑥, 𝑎) = 𝑟(𝑗, 𝑥, 𝑎) + 𝛽∑𝑧 max𝑎′∈𝖠 𝑉(𝑗 + 1|𝑧, 𝑎′)𝑝(𝑧|𝑥, 𝑎),

𝑉(𝐽, 𝑥, 𝑎) = 𝑟(𝐽, 𝑥).
Optimal policy is 𝑎∗(𝑗, 𝑥) = argmax𝑎∈𝖠 𝑉(𝑗, 𝑥, 𝑎) and the principle of opti-

mality dictates that max𝑎∈𝖠 𝑉(0, 𝑥, 𝑎) = sup𝜆 𝑊𝜆(𝐽, 𝑥).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

408 21. Reinforcement Learning

In principle, we may be able to solve the Bellman equation, but• 𝑝(𝑧|𝑥, 𝑎)may not be known.• state space may be too high dimensional.

In this case, 𝑉(𝑥, 𝑎) would need to be approximated. To do so, one can indeed
use neural networks. Exploring this idea is the content of Sections 21.4 and
21.5.

21.4. 𝑄-learning
Reinforcement learning approximates the solution to the Bellman equation
using a function approximator. Typically, a neural network is being used,𝑄(𝑥, 𝑎, 𝜃), where 𝜃 is the parameter to be learned in training. We will focus
the discussion on the infinite time horizon reward (21.21). The case of the fi-
nite time horizon reward problem (21.22) is similar.

The goal of the 𝑄-learning algorithm is to minimize the objective function

Λ(𝜃) = 12 ∑(𝑥,𝑎)∈𝖷×𝖠 [𝑌(𝑥, 𝑎) − 𝑄(𝑥, 𝑎, 𝜃)]2 𝜋(𝑥, 𝑎),(21.23)

where 𝜋(𝑥, 𝑎) is a probability function to be specified and the target function
(for example in the infinite horizon setting) becomes𝑌(𝑥, 𝑎) = 𝑟(𝑥, 𝑎) + 𝛽 ∑𝑥′∈𝖷max𝑎′∈𝖠 𝑄(𝑥′, 𝑎′, 𝜃)𝑝(𝑥′|𝑥, 𝑎).

Notice that if Λ(𝜃) = 0, then 𝑄(𝑥, 𝑎, 𝜃) is a solution to the Bellman equa-
tion. So, it makes sense to try to find values for 𝜃 so that Λ(𝜃) is as close to zero
as possible. To do so, one may use stochastic gradient descent, which, in this
case, becomes 𝜃𝑘+1 = 𝜃𝑘 + 𝜂𝑘𝑔𝑘,
where 𝜂𝑘 is the learning rate and 𝑔𝑘 is

𝑔𝑘 = (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))∇𝜃𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘)
with (𝑥𝑘, 𝑎𝑘) being an ergodic Markov chain with 𝜋(𝑥, 𝑎) as its stationary dis-
tribution.

In its simplest form, one may define

𝑄(𝑥, 𝑎, 𝜃) = 1𝑁𝛾
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ (𝑥, 𝑎) + 𝑏𝑛),(21.24)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.4. 𝑄-learning 409

where 𝛾 ∈ [1/2, 1], 𝜃 = (𝐶1, . . . , 𝐶𝑁 ,𝑊1, . . . ,𝑊𝑁 , 𝑏1, . . . , 𝑏𝑁) ∈ ℝ(2+𝑑)𝑁 , 𝑑 =𝑑𝑥 + 𝑑𝑎. In the infinite horizon setting, the SGD algorithm reads as follows

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))(21.25) × 𝜎(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘) + 𝑏𝑛𝑘),
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘) + 𝑏𝑛𝑘)(𝑥𝑘, 𝑎𝑘),
𝑏𝑛𝑘+1 = 𝑏𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘) + 𝑏𝑛𝑘),(21.26)

where the learning rate 𝜂𝑁𝑘 may depend on both 𝑘 and𝑁. A few remarks are in
order.

Remark 21.1 (On the choice of the next action). One of the most common
choices for the distribution 𝜋 is that of pure exploration, which, at the very
beginning of training without prior knowledge, typically amounts to sampling
uniformly at random from all possible (𝑥𝑘, 𝑎𝑘) ∈ 𝖷 × 𝖠. Even though many
typical applications use pure exploration as the default choice for choosing the
action taken at time 𝑘, other choices do exist. In particular, some of the most
used ones (besides pure exploration) are

• Greedy action: 𝑎𝑘 = argmax𝑎∈𝖠𝑄(𝑥𝑘, 𝑎, 𝜃).• 𝜖-greedy algorithm, where
𝑎𝑘 = {Uniform{𝑎 ∶ 𝑎 ∈ 𝖠}, with probability 𝜖argmax𝑎∈𝖠 𝑄(𝑥𝑘, 𝑎, 𝜃), with probability 1 − 𝜖.

We note that the 𝜖-greedy algorithm typically has 𝜖 ↓ 0 as the number of
training epochs𝑚 increases. As the model 𝑄(𝑥𝑘, 𝑎, 𝜃) becomes more accurate,
we would like to more frequently take the greedy action.

For the purposes of the presentation in this chapter, it is sufficient to have
in mind the choice of pure exploration.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

410 21. Reinforcement Learning

Remark 21.2 (Actor-critic setting). A more advanced setup is the actor-critic
setting (especially useful when the action space is continuous), where both the
action and the value function are modeled as neural networks. We will not an-
alyze the actor-critic setting in this chapter, but let us briefly discuss the setting
for completeness. In the action-critic setting both the value function and the
optimal policy are being learned. In particular,• Actormodel: a neural network basedmodel𝑝((𝑥, 𝑎); 𝜃𝐴) ∶ 𝖷×𝖠 ↦ ℝ𝐾

that gives an approximation to the optimal policy. It can be
thought of as the probability of selecting action 𝑎 ∈ 𝖠 at state 𝑥 ∈ 𝖷.
The parameter 𝜃𝐴 is to be estimated during the learning process.• Critic model: a neural network 𝑄(𝑥, 𝑎; 𝜃𝑄) that gives the state-action
value function for a pair (𝑥, 𝑎) ∈ ℝ𝑑 × 𝖠.• The critic minimizes the objective functionΛ(𝜃𝑄) = (𝑌𝑘 − 𝑄(𝑋𝑘, 𝑝((𝑥𝑘, 𝑎𝑘); 𝜃𝐴); 𝜃𝑄))2 ,𝑌𝑘 = 𝑟(𝑋𝑘, 𝑎𝑘) + 𝛽𝑄(𝑥𝑘+1, 𝑝((𝑥𝑘+1, 𝑎𝑘+1); 𝜃𝐴); 𝜃𝑄),
where 𝑌𝑘 is treated as constant.• The actor maximizes the objective function

max𝜆 𝔼𝜆 [∞∑𝑗=0 𝛽𝑗𝑟(𝑥𝑗, 𝑎𝑗)] = ∑𝑥∈𝖷𝑊𝜆(𝑥)𝜌0(𝑥),
where𝑊𝜆(𝑥) is defined in (21.21) and𝜌0(𝑥) is the initial distribution of
states. In practice, when doing stochastic gradient descent, the state-
action value function is being replaced by its estimate, leading tomax-
imizing the objective function𝐺(𝜃𝐴) = 𝑄(𝑥𝑘, 𝑝((𝑥𝑘, 𝑎𝑘); 𝜃𝐴); 𝜃𝑄).

Here 𝑝((𝑥, 𝑎); 𝜃𝐴) is the actor model, which could for example
be 𝑆softmax(𝑃((𝑥, 𝑎); 𝜃𝐴)) (i.e., a probability distribution) with𝑃((𝑥, 𝑎); 𝜃𝐴) being the neural network

𝑃((𝑥, 𝑎); 𝜃𝐴) = 1𝑁𝛾
𝑁∑𝑛=1𝐵𝑛𝜎(𝑈𝑛 ⋅ (𝑥, 𝑎) + 𝑑𝑛),

where {𝐵𝑛, 𝑈𝑛, 𝑑𝑛}𝑁𝑛=1 are parameters to be estimated via the learning
process.

We do not analyze further the action-critic setting in the chapter. The
analysis in the subsequent sections of this chapter focuses on the case of pure-
exploration for the actor or more generally on the case of any (general) fixed
policy for which the Markov chain (𝑥𝑘, 𝑎𝑘) is ergodic bounded away from zero
ergodic distribution.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 411

Remark 21.3. The 𝑄-learning algorithm calculates its updates by taking the
derivative of Λ(𝜃) while treating the function 𝑌 as constant. But 𝑌 is not con-
stant and does depend on 𝜃, so there is bias in the sense that𝔼[𝑔𝑘|𝜃𝑘, 𝑥𝑘, 𝑎𝑘] ≠ 12∇𝜃 (𝑌(𝑥𝑘, 𝑎𝑘) − 𝐺(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))2 .

This fact yields certain difficulties in the proofs and it also forces the proofs
to require 𝛽 to be small in order for global convergence to be realized, see Theo-
rem 21.7. Essentially, the 𝑄-learning algorithm calculates the update by treat-
ing the target 𝑌 as a constant. Consequently, this implies that the asymptotic
dynamics of the corresponding neural network as 𝑁 and 𝑘 increase may not
move in the descent direction of the limiting objective function for an arbitrary
value of 𝛽. As we prove in Section 21.5 however, taking 𝛽 to be small does
guarantee that the algorithm is moving in the descent direction of the objec-
tive function and thus in that case convergence can be realized. At this point,
we mention that a related phenomenon has also been observed in [CYLW19].

21.5. Convergence Properties of the 𝑄-learning Algorithm
Let us now investigate how the 𝑄-learning algorithm behaves when the num-
ber of hidden units𝑁 and number of stochastic gradient descent iterates 𝑘 grow
to infinity. We shall study the behavior of single layer𝑄-networks in the case of
the infinite time horizon reward problem (21.21). We prove that the𝑄-network
(whichmodels the value function for the related optimal control problem) con-
verges to the solution of a random ordinary differential equation. We charac-
terize the limiting random ODE. We also study the behavior of the solution to
the limiting random ODE as time 𝑡 → ∞.

We start with an assumption that will be assumed throughout this section.
Without loss of generality we may and will assume that the bias terms 𝑏𝑛 = 0
for all 𝑛 = 1, . . . , 𝑁.
Assumption 21.4. We are assuming the following:

(1) (𝐶𝑛0 ,𝑊𝑛0)𝑁𝑛=1 are independent and identically distributed randomvari-
ables with mean zero and joint distribution denoted by 𝜇0(𝑑𝑐, 𝑑𝑤).

(2) 𝐶𝑛0 are bounded and ∫‖𝑤‖𝜇0(𝑑𝑐𝑑𝑤) < ∞.
(3) The cost 𝑟 is uniformly bounded.
(4) lim𝑁→∞ 1𝑁 ∑𝑁𝑛=1 𝟏𝑋𝑛=𝑥|𝑋0=𝑧 = 𝜋(𝑥) > 0 almost surely.
(5) The spaces 𝖷 and 𝖠 are finite discrete spaces.
(6) We take 𝛾 = 1/2 in (21.24).
To have a concrete example in mind, we assume that the action 𝑎 ∈ 𝖠

is sampled uniformly at random from the set of all possible actions. That is,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

412 21. Reinforcement Learning

we consider 𝜋(𝑥, 𝑎) = 1|𝖠|𝜋(𝑥). However, what we shall discuss below is more
general and the proofs go through if (𝑥𝑘, 𝑎𝑘) is assumed to be ergodic with
distribution 𝜋(𝑥, 𝑎) > 0 for all (𝑥, 𝑎) ∈ 𝖷 × 𝖠.

Next, let us define the quantities

𝜈𝑁𝑘 = 1𝑁 𝑁∑𝑛=1 𝛿𝐶𝑛𝑘 ,𝑊𝑛𝑘 ,𝜇𝑁𝑡 = 𝜈𝑁⌊𝑁𝑡⌋,ℎ𝑁𝑡 (𝑥, 𝑎) = 𝑄𝑁(𝑥, 𝑎, 𝜃⌊𝑁𝑡⌋).
Note that Assumption 21.4 guarantees that 𝜇𝑁0 → 𝜇0 andℎ𝑁0 → 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ (𝑥, 𝑎))|2, 𝜇0⟩),

i.e., ℎ𝑁0 converges to a Gaussian distribution.

Assumption 21.5. We assume that

(1) 𝜎 is non-polynomial and slowly increasing, i.e., 𝜍(𝑥)|𝑥|𝑎 → 0 for all 𝑎 > 0.
(2) 𝜇0(Γ) > 0 if Γ has positive Lebesgue measure.
Let 𝜉 = (𝑥, 𝑎) ∈ 𝖷 × 𝖠 and consider the matrix 𝐴 with elements𝐴𝜉,𝜉′ = ⟨𝜎(𝑤 ⋅ 𝜉)𝜎(𝑤 ⋅ 𝜉′) + 𝑐2𝜎′(𝑤 ⋅ 𝜉)𝜎′(𝑤 ⋅ 𝜉′)𝜉 ⋅ 𝜉′, 𝜇0⟩ .(21.27)

Then, we have the following results.

Theorem 21.6. Assume that Assumption 21.4 holds, and choose the learning
rate to be 𝜂𝑁𝑘 = 𝜂𝑁 for 0 < 𝜂 < ∞ a fixed constant. Then the process ℎ𝑁𝑡 con-
verges, as 𝑁 → ∞, in distribution in the space 𝐷ℝ|𝖷×𝖠|([0,𝑇]) to ℎ𝑡, the solution of
the ordinary differential equation

ℎ𝑡(𝑥, 𝑎) = ℎ0(𝑥, 𝑎) + 𝜂∫𝑡
0 ∑(𝑥′,𝑎′)𝜋(𝑥′, 𝑎′)𝐴(𝑥,𝑎),(𝑥′,𝑎′)

× (𝑟(𝑥′, 𝑎′) + 𝛽 ∑𝑧∈𝖷max𝑎′∈𝖠 ℎ𝑠(𝑧, 𝑎″)𝑝(𝑧|𝑥′, 𝑎′) − ℎ𝑠(𝑥′, 𝑎′)) 𝑑𝑠,
ℎ0(𝑥, 𝑎) = 𝐺(𝑥, 𝑎) ∼ 𝑁(0, ⟨|𝑐𝜎(𝑤 ⋅ (𝑥, 𝑎))|2, 𝜇0⟩).(21.28)

As a matter of fact, if 𝛽 is small enough, then ℎ𝑡(𝑥, 𝑎) is guaranteed to con-
verge to the value function 𝑉(𝑥, 𝑎) as 𝑡 → ∞. This is the content of Theorem
21.7.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 413

Theorem 21.7. Assume that 𝛽 < 21+|𝖠| , and let Assumption 21.5 hold. Then we
have that

lim𝑡→∞ sup(𝑥,𝑎)∈𝖷×𝖠 |ℎ𝑡(𝑥, 𝑎) − 𝑉(𝑥, 𝑎)| = 0.
21.5.1. Proof of Theorem 21.6. The proof of Theorem 21.6 will be split into
three steps.
21.5.1.1. Step 1: Characterization of the limit. Let us start by deriving an equiv-
alent representation for𝑄𝑁𝑘 (𝑥, 𝑎) = 𝑄𝑁(𝑥, 𝑎, 𝜃𝑘), and let us set 𝜉 = (𝑥, 𝑎). Con-
sider the neural networkmodel (21.24)with the bias term 𝑏𝑛 = 0 (for simplicity
of exposition) and 𝛾 = 1/2. Employing a Taylor expansion, we notice that

𝑄𝑁𝑘+1(𝜉) = 𝑄𝑁𝑘 (𝜉) + 1√𝑁
𝑁∑𝑛=1 (𝐶𝑛𝑘+1𝜎(𝑊𝑛𝑘+1 ⋅ 𝜉) − 𝐶𝑛𝑘𝜎(𝑊𝑛𝑘 ⋅ 𝜉))

= 𝑄𝑁𝑘 (𝜉) + 1√𝑁
𝑁∑𝑛=1 ((𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘 ⋅ 𝜉)(𝑊𝑛𝑘+1 −𝑊𝑛𝑘))

+ 1√𝑁
𝑁∑𝑛=1

𝑁∑𝑛=1𝐶𝑛𝑘 (𝜎′(𝑊𝑛,∗𝑘 ⋅ 𝜉)𝜉 ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘)
+ 12𝜎″(𝑊̃𝑛,∗𝑘 ⋅ 𝜉) (𝜉 ⋅ (𝑊𝑛𝑘+1 −𝑊𝑛𝑘))2),

where𝑊𝑛,∗𝑘 , 𝑊̃𝑛,∗𝑘 are points in the line segments that connect𝑊𝑛𝑘 and𝑊𝑛𝑘+1.
Let us now recall the SGD update (21.26) and use 𝜂𝑁𝑘 = 𝜂𝑁 for the learning rate
where 0 < 𝜂 < ∞ is a fixed constant. Plugging that into the previous display,
we subsequently obtain (with 𝜉 = (𝑥, 𝑎) and 𝜉𝑘 = (𝑥𝑘, 𝑎𝑘))
𝑄𝑁𝑘+1(𝜉) = 𝑄𝑁𝑘 (𝜉)

+ 𝜂𝑁2 (𝑟(𝜉𝑘)+𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′)−𝑄𝑘(𝜉𝑘)) 𝑁∑𝑛=1𝜎(𝑊𝑛𝑘 ⋅ 𝜉𝑘)𝜎(𝑊𝑛𝑘 ⋅ 𝜉)
+ 𝜂𝑁2 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘))

× 𝑁∑𝑛=1(𝐶𝑛𝑘)2𝜎′(𝑊𝑛𝑘 ⋅ 𝜉𝑘)𝜎′(𝑊𝑛𝑘 ⋅ 𝜉)𝜉𝑘 ⋅ 𝜉 + 𝒪𝑝 (𝑁−3/2) ,
where we recall Definition 19.8 for the notation 𝒪𝑝 (𝑁−3/2).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

414 21. Reinforcement Learning

Writing this in terms of the empirical measure 𝜈𝑁𝑘 , we then get
𝑄𝑁𝑘+1(𝜉) = 𝑄𝑁𝑘 (𝜉)+ 𝜂𝑁 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘)) ⟨𝜎(𝑤 ⋅ 𝜉𝑘)𝜎(𝑤 ⋅ 𝜉), 𝜈𝑁𝑘 ⟩

+ 𝜂𝑁 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘))
× ⟨(𝑐)2𝜎′(𝑤 ⋅ 𝜉𝑘)𝜎′(𝑤 ⋅ 𝜉)𝜉𝑘 ⋅ 𝜉, 𝜈𝑁𝑘 ⟩ + 𝒪𝑝(𝑁−3/2),(21.29)

Recalling now the definition of ℎ𝑁𝑡 = 𝑄𝑁⌊𝑁𝑡⌋, we subsequently obtain

ℎ𝑁𝑡 (𝜉) = ℎ𝑁0 (𝜉) + ⌊𝑁𝑡⌋−1∑𝑘=0 (𝑄𝑁𝑘+1(𝜉) − 𝑄𝑁𝑘 (𝜉))
= ℎ𝑁0 (𝜉) + 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘))
× ⟨𝜎(𝑤 ⋅ 𝜉𝑘)𝜎(𝑤 ⋅ 𝜉), 𝜈𝑁𝑘 ⟩
+ 𝜂𝑁 ⌊𝑁𝑡⌋−1∑𝑘=0 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘))
× ⟨(𝑐)2𝜎′(𝑤 ⋅ 𝜉𝑘)𝜎′(𝑤 ⋅ 𝜉)𝜉𝑘 ⋅ 𝜉, 𝜈𝑁𝑘 ⟩ + 𝒪𝑝(𝑁−1/2)

= ℎ𝑁0 (𝜉) + 𝜂∫𝑡
0 ∑𝜉′∈𝖷×𝖠,𝑥″∈𝖷 (𝑟(𝜉′) + 𝛽max𝑎′∈𝖠 ℎ𝑁𝑠 (𝑥″, 𝑎″) − ℎ𝑁𝑠 (𝜉′))

× ⟨𝜎(𝑤 ⋅ 𝜉′)𝜎(𝑤 ⋅ 𝜉), 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥″, 𝜉′)𝑑𝑠
+ 𝜂∫𝑡

0 ∑𝜉′∈𝖷×𝖠,𝑥″∈𝖷 (𝑟(𝜉′) + 𝛽max𝑎′∈𝖠 ℎ𝑁𝑠 (𝑥″, 𝑎″) − ℎ𝑁𝑠 (𝜉′))
× ⟨(𝑐)2𝜎′(𝑤 ⋅ 𝜉′)𝜎′(𝑤 ⋅ 𝜉)𝜉′ ⋅ 𝜉, 𝜇𝑁𝑠 ⟩ 𝜋(𝑑𝑥″, 𝜉′)𝑑𝑠+ 𝑅𝑁𝑡 + 𝒪𝑝(𝑁−1/2),(21.30)

where 𝑅𝑁𝑡 is the error beingmade by replacing the sums by the integrals above.
By Lemma 5.9 of [SS22] (we omit the proof here due to its technical nature)

we have that

lim𝑁→∞ sup𝑡∈[0,𝑇]𝔼|𝑅𝑁𝑡 | = 0.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 415

Similarly for a test function 𝑓 ∈ 𝒞2𝑏(ℝ1+𝑑) we have
⟨𝑓, 𝜇𝑁𝑡 ⟩ = ⟨𝑓, 𝜇𝑁0 ⟩ + ⌊𝑁𝑡⌋−1∑𝑘=0 (⟨𝑓, 𝜈𝑁𝑘+1⟩ − ⟨𝑓, 𝜈𝑁𝑘 ⟩)

= ⟨𝑓, 𝜇𝑁0 ⟩ + 𝜂𝑁3/2
⌊𝑁𝑡⌋−1∑𝑘=0 (𝑟(𝜉𝑘) + 𝛽max𝑎′∈𝖠 𝑄𝑘(𝑥𝑘+1, 𝑎′) − 𝑄𝑘(𝜉𝑘))

× ⟨div 𝑓 ⋅ (𝜎(𝑤 ⋅ 𝜉𝑘) + 𝑐𝜎′(𝑤 ⋅ 𝜉𝑘)𝜉𝑘) , 𝜈𝑁𝑘 ⟩+ 𝒪𝑝(𝑁−1).(21.31)

21.5.1.2. Step 2: Existence and identification of the limit. By Exercises 21.1 and
21.2, respectively, we have that the following two a priori bounds hold

max𝑛∈ℕ max𝑘≤⌊𝑁𝑇⌋ (|𝐶𝑛𝑘 | + 𝔼‖𝑊𝑛𝑘 ‖) ≤ 𝐶𝑜 < ∞
and

max𝑁∈ℕ max𝑘≤⌊𝑁𝑇⌋𝔼 sup(𝑥,𝑎)∈𝖷×𝖠 ||𝑄𝑁𝑘 (𝑥, 𝑎)|| ≤ 𝐶𝑜 < ∞,
for an appropriate finite constant 𝐶𝑜 < ∞.

These a priori bounds lead to the following bounds in Lemmas 21.8 and
21.9, whose proof are given at the end of this subsection. Lemma 21.8 is about
appropriate compact containment of the involved processes.

Lemma 21.8. Let 𝜁 > 0. Then there exists a compact subset𝒦 of E such that

sup𝑁∈ℕ,0≤𝑡≤𝑇 ℙ[(𝜇𝑁𝑡 , ℎ𝑁𝑡) ∉ 𝒦] < 𝜁.
Lemma 21.9 is about regularity of the involved processes. As in Chapter 19

consider the function 𝑞(𝑧1, 𝑧2) = min{|𝑧1 − 𝑧2|, 1} with 𝑧1, 𝑧2 ∈ ℝ. Recall thatℱ𝑁𝑡 is the 𝜎-algebra generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 , i.e., ℱ𝑁𝑡 contains
the information generated by {(𝐶𝑖0,𝑊 𝑖0)}𝑁𝑖=1 and {𝑥𝑗}⌊𝑁𝑡⌋−1𝑗=0 .

Lemma 21.9. Let𝑓 ∈ 𝐶2𝑏(ℝ1+𝑑). For any 𝛿𝑜 ∈ (0, 1), there is a constant𝐶𝑜 < ∞
such that for 0 ≤ 𝑢 ≤ 𝛿𝑜, 0 ≤ 𝑣 ≤ 𝛿𝑜 ∧ 𝑡, 𝑡 ∈ [0, 𝑇],

𝔼 [𝑞(⟨𝑓, 𝜇𝑁𝑡+ᵆ⟩ , ⟨𝑓, 𝜇𝑁𝑡 ⟩)𝑞(⟨𝑓, 𝜇𝑁𝑡 ⟩ , ⟨𝑓, 𝜇𝑁𝑡−𝑣⟩)||ℱ𝑁𝑡] ≤ 𝐶𝑜𝛿𝑜 + 𝐶𝑜𝑁3/2
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

416 21. Reinforcement Learning

and

𝔼 [𝑞(ℎ𝑁𝑡+ᵆ, ℎ𝑁𝑡)𝑞(ℎ𝑁𝑡 , ℎ𝑁𝑡−𝑣)||ℱ𝑁𝑡] ≤ 𝐶𝑜𝛿𝑜 + 𝐶𝑜𝑁 .
By Lemmas 21.8 and 21.9 and the convergence results of Section A.4, we

have that {𝜇𝑁 , ℎ𝑁}𝑁∈ℕ is relatively compact as a 𝐷𝐸([0, 𝑇])- valued random
variable where 𝐸 = ℳ(ℝ1+𝑑) × ℝ𝑀 .

Subsequently, any subsequence of {𝜇𝑁 , ℎ𝑁}𝑁∈ℕ will have a convergent sub-
subsequence. Any such convergent subsequence can be identified via relations
(21.30) and (21.31).

In particular, (21.31) shows that the limit as 𝑁 → ∞, ⟨𝑓, 𝜇𝑁𝑡 ⟩ will not be
changing in 𝑡. Therefore ⟨𝑓, 𝜇𝑁𝑡 ⟩ → ⟨𝑓, 𝜇0⟩ as 𝑁 → ∞ for all 𝑡 ∈ [0, 𝑇]. The
latter and (21.30) would then yield the limit of ℎ𝑁𝑡 as stated in Theorem 21.6.
It remains to show that such a limit is unique. This is being taken care of by
step 3 of the proof. But before getting into step 3 of the proof let us present the
proofs of Lemmas 21.8 and 21.9.

Proof of Lemma 21.8. Given the a priori bounds established in Exercises 21.1
and 21.2, the proof is completely analogous to that of Lemma 19.11. □

Proof of Lemma 21.9. First, we prove the first statement of the lemma, i.e.,
the regularity of {𝜇𝑁}𝑁∈ℕ. By the standard Taylor expansion, we have for 0 ≤𝑠 ≤ 𝑡 ≤ 𝑇:

| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ | = | ⟨𝑓, 𝜈𝑁⌊𝑁𝑡⌋⟩ − ⟨𝑓, 𝜈𝑁⌊𝑁𝑠⌋⟩ |
≤ 1𝑁 𝑁∑𝑛=1 |𝑓(𝐶𝑛⌊𝑁𝑡⌋,𝑊𝑛⌊𝑁𝑡⌋) − 𝑓(𝐶𝑛⌊𝑁𝑠⌋,𝑊𝑛⌊𝑁𝑠⌋)|
≤ 1𝑁 𝑁∑𝑛=1 |𝜕𝑐𝑓(̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋)||𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|
+ 1𝑁 𝑁∑𝑛=1 ∥ ∇𝑤𝑓(̄𝐶𝑛⌊𝑁𝑡⌋, 𝑊̄𝑛⌊𝑁𝑡⌋) ∥∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥(21.32)

for points ̄𝐶𝑛, 𝑊̄𝑛 in the segments connecting 𝐶𝑛⌊𝑁𝑠⌋ with 𝐶𝑛⌊𝑁𝑡⌋ and𝑊𝑛⌊𝑁𝑠⌋ with𝑊𝑛⌊𝑁𝑡⌋, respectively.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 417

Let’s now establish a bound on |𝐶𝑛⌊𝑁𝑡⌋−𝐶𝑛⌊𝑁𝑠⌋| for 𝑠 < 𝑡 ≤ 𝑇 with 0 < 𝑡−𝑠 ≤𝛿𝑜 < 1. By Assumption 21.4 and Exercises 21.1 and 21.2 we have
𝔼[|𝐶𝑛⌊𝑁𝑡⌋ − 𝐶𝑛⌊𝑁𝑠⌋|||ℱ𝑁𝑠] = 𝔼[| ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)|||ℱ𝑁𝑠]

≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ |𝜂(𝑟𝑘 + 𝛾max𝑎′∈𝖠 𝑄𝑁𝑘 (𝑥𝑘+1, 𝑎′)
− 𝑄𝑁𝑘 (𝑥𝑘, 𝑎𝑘)) 1𝑁3/2𝜎(𝑊𝑛𝑘 ⋅ 𝑥𝑘)|||ℱ𝑁𝑠]

≤ 1𝑁3/2
⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2

≤ 𝐶𝑜√𝑁𝛿𝑜 + 𝐶𝑜𝑁3/2 ,(21.33)

for an appropriate constant 𝐶𝑜 < ∞ that may change from line to line. Simi-
larly, we have

𝔼[∥ 𝑊𝑛⌊𝑁𝑡⌋ −𝑊𝑛⌊𝑁𝑠⌋ ∥ ||ℱ𝑁𝑠] = 𝔼[∥ ⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋(𝑊𝑛𝑘+1 −𝑊𝑛𝑘) ∥ ||ℱ𝑁𝑠]
≤ 𝔼[⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋ ∥ 𝜂(𝑟𝑘 + 𝛾max𝑎′∈𝖠 𝑄𝑁𝑘 (𝑥𝑘+1, 𝑎′) − 𝑄𝑁𝑘 (𝑥𝑘, 𝑎𝑘))

× 1𝑁3/2𝐶𝑖𝑘𝜎′(𝑊𝑛𝑘 ⋅ 𝑥𝑘)𝑥𝑘 ∥ ||ℱ𝑁𝑠]
≤ 1𝑁3/2

⌊𝑁𝑡⌋−1∑𝑘=⌊𝑁𝑠⌋𝐶𝑜≤ 𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2
≤ 𝐶𝑜√𝑁𝛿𝑜 + 𝐶𝑜𝑁3/2 .(21.34)

Returning to equation (21.32), the previous bounds together with Exercise
21.1 yield for 0 < 𝑠 < 𝑡 ≤ 𝑇 with 0 < 𝑡 − 𝑠 ≤ 𝛿𝑜 < 1

𝔼 [| ⟨𝑓, 𝜇𝑁𝑡 ⟩ − ⟨𝑓, 𝜇𝑁𝑠 ⟩ |||ℱ𝑁𝑠] ≤ 𝐶𝑜𝛿𝑜 + 𝐶𝑜𝑁3/2 ,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

418 21. Reinforcement Learning

where 𝐶𝑜 < ∞ is an unimportant constant. Then, the first statement of the
lemma follows.

Next, we establish the second statement of the lemma, i.e., the regularity
of {ℎ𝑁}𝑁∈ℕ. Recalling𝑄𝑁𝑘+1(𝜉) = 𝑄𝑁𝑘 (𝜉)

+ 1√𝑁
𝑁∑𝑛=1 ((𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘+1 ⋅ 𝜉) + 𝜎′(𝑊𝑛,∗𝑘 ⋅ 𝜉)𝜉⊤(𝑊𝑛𝑘+1 −𝑊𝑛𝑘)𝐶𝑖𝑘),

we obtain

ℎ𝑁𝑡 (𝜉) − ℎ𝑁𝑠 (𝜉) = ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋(𝑄𝑁𝑘+1(𝜉) − 𝑄𝑁𝑘 (𝜉))
= ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋

1√𝑁
𝑁∑𝑛=1 ((𝐶𝑛𝑘+1 − 𝐶𝑛𝑘)𝜎(𝑊𝑛𝑘+1 ⋅ 𝜉) + 𝜎′(𝑊𝑛,∗𝑘 ⋅ 𝜉)𝜉⊤(𝑊𝑛𝑘+1 −𝑊𝑛𝑘)𝐶𝑛𝑘).

The latter together with the boundedness of 𝜎′(⋅) and the bound of Exercise
21.1 yield

|ℎ𝑁𝑡 (𝜉) − ℎ𝑁𝑠 (𝜉)| ≤ ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋ |𝑄𝑁𝑘+1(𝜉) − 𝑄𝑁𝑘 (𝜉)|
≤ ⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋

1√𝑁
𝑁∑𝑛=1 (|𝐶𝑛𝑘+1 − 𝐶𝑛𝑘 | + ‖‖𝑊𝑛𝑘+1 −𝑊𝑛𝑘 ‖‖).

Taking expectations, we have𝔼[sup𝜉 |ℎ𝑁𝑡 (𝜉) − ℎ𝑁𝑠 (𝜉)|||ℱ𝑁𝑠]
≤ 1√𝑁

𝑁∑𝑛=1
⌊𝑁𝑡⌋∑𝑘=⌊𝑁𝑠⌋𝔼[|𝐶𝑛𝑘+1 − 𝐶𝑛𝑘 | + ‖‖𝑊𝑛𝑘+1 −𝑊𝑛𝑘 ‖‖ ||ℱ𝑁𝑠].

Next, we use the bounds (21.33) and (21.34),

𝔼[sup𝜉 |ℎ𝑁𝑡 (𝜉) − ℎ𝑁𝑠 (𝜉)|||ℱ𝑁𝑠] ≤ 1√𝑁
𝑁∑𝑖=1 (𝐶𝑜√𝑁 (𝑡 − 𝑠) + 𝐶𝑜𝑁3/2)

=𝐶𝑜(𝑡 − 𝑠) + 𝐶𝑜𝑁 ,
to conclude 𝔼[‖‖ℎ𝑁𝑡 − ℎ𝑁𝑠 ‖‖ ||ℱ𝑁𝑠] ≤ 𝐶𝑜(𝑡 − 𝑠) + 𝐶𝑜𝑁 .
This then yields the second statement of the lemma, concluding the proof. □

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 419

21.5.1.3. Step 3: Uniqueness of the limit. Let us assume that there are two pos-
sible solutions ℎ(1)𝑡 and ℎ(2)𝑡 of (21.28). Recall now the matrix 𝐴 with elements𝐴𝜉,𝜉′ as defined by (21.27). By Lemma 21.10 we have that the matrix 𝐴 is posi-
tive definite.

Next, we set

𝒢𝜉,𝑡 = 𝛽 ∑𝑥″∈𝖷 [max𝑎″∈𝖠 ℎ(1)𝑡 (𝑥″, 𝑎″) − max𝑎″∈𝖠 ℎ(2)𝑡 (𝑥″, 𝑎″)] ℙ[𝑥″|𝜉].
If we set now 𝜓𝑡(𝑥, 𝑎) = ℎ(1)𝑡 (𝑥, 𝑎) − ℎ(2)𝑡 (𝑥, 𝑎), we find that for some con-

stant 𝐶𝑜 < ∞, ||𝒢𝜉,𝑡|| ≤ 𝛽 ∑𝑥″∈𝖷max𝑎″∈𝖠 |𝜓𝑡(𝑥″, 𝑎″)| ℙ[𝑥″|𝜉]≤ 𝐶𝑜 ∑𝜉∈𝖷×𝖠 |𝜓𝑡(𝜉)| .
At the same time, by definition, we have

𝜓𝑡(𝜉) =∫𝑡
0 ∑𝜉′∈𝖷×𝖠(𝒢𝜉′,𝑠 − 𝜓𝑠(𝜉′))𝐴𝜉,𝜉′𝜋(𝜉′)𝑑𝑠,

𝜓0(𝜉) =0.
Using the bound for the term ||𝒢𝜉,𝑡|| and the boundedness of the elements𝐴𝜉,𝜉′ would then give,

|𝜓𝑡(𝜉)|2 =2∫𝑡
0 𝜓𝑠(𝜉)𝑑𝜓𝑠(𝜉)

=2∫𝑡
0 𝜓𝑠(𝜉) ∑𝜉′∈𝖷×𝖠(𝒢𝜉′,𝑠 − 𝜓𝑠(𝜉′))𝐴𝜉,𝜉′𝜋(𝜉′)𝑑𝑠

≤𝐶𝑜∫𝑡
0 𝜓𝑠(𝜉) ∑𝜉∈𝖷×𝖠 |𝜓𝑠(𝜉)|𝑑𝑠,

for some finite constant 𝐶𝑜 < ∞. The next step is to sum over all possible𝜉 ∈ 𝖷 × 𝖠. Doing so and using the finiteness of the state space gives
∑𝜉∈𝖷×𝖠 |𝜓𝑡(𝜉)|2 ≤𝐶𝑜∫

𝑡
0 || ∑𝜉∈𝖷×𝖠 |𝜓𝑠(𝜉)|||2 𝑑𝑠

≤𝐶𝑜∫𝑡
0 ∑𝜉∈𝖷×𝖠 |𝜓𝑠(𝜉)|2𝑑𝑠.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

420 21. Reinforcement Learning

Thederivation of uniqueness is concluded by applying theGronwall lemma
(see Section B.1) which then yields that 𝜓𝑡(𝜉) = 0 for all 0 ≤ 𝑡 ≤ 𝑇 and for all𝜉 ∈ 𝖷 × 𝖠. Therefore, the solution ℎ𝑡 is indeed unique.
21.5.2. Proof of Theorem 21.7. In order to prove Theorem 21.7 we first need
a preliminary lemma.

Lemma 21.10. Set 𝜉 = (𝑥, 𝑎) ∈ 𝖷 × 𝖠. Let Assumption 21.5 hold. Then, the
matrix 𝐴 with elements𝐴𝜉,𝜉′ = ⟨𝜎(𝑤 ⋅ 𝜉)𝜎(𝑤 ⋅ 𝜉′) + 𝑐2𝜎′(𝑤 ⋅ 𝜉)𝜎′(𝑤 ⋅ 𝜉′)𝜉 ⋅ 𝜉′, 𝜇0⟩ ,
is positive definite, as long as 𝜉, 𝜉′ are in district directions.1
Proof of Lemma 21.10. Let us first define Σ(𝜉) = 𝜎(𝑤 ⋅ 𝜉) + 𝑐𝜎′(𝑤 ⋅ 𝜉) and set
the vector Σ = (Σ(𝜉1, . . . , 𝜉𝑀))where𝑀 = |𝖷×𝖠|. Given that we have assumed
that 𝐶 is mean zero and independent of𝑊 , we obtain that𝐴𝜉,𝜉′ = 𝔼𝜇0 [𝜎(𝑤 ⋅ 𝜉)𝜎(𝑤 ⋅ 𝜉′) + 𝑐2𝜎′(𝑤 ⋅ 𝜉)𝜎′(𝑤 ⋅ 𝜉′)𝜉 ⋅ 𝜉′]= 𝔼𝜇0 [Σ(𝜉)Σ(𝜉′)] .

The next step is to show that for all 𝑧 ∈ ℝ𝑀 we have that 𝑧⊤𝐴𝑧 > 0. Indeed,
notice that 𝑧⊤𝐴𝑧 = 𝑧⊤𝔼𝜇0 [Σ⊤Σ] 𝑧 = 𝔼𝜇0 [(Σ𝑧)⊤(Σ𝑧)]

= 𝔼𝜇0 [(𝑀∑𝑚=1 (𝑧𝑚𝜎(𝑤 ⋅ 𝜉𝑚) + 𝑐𝜎′(𝑤 ⋅ 𝜉𝑚)𝜉𝑚))2] .
Due to the fact that 𝜉𝑚 are assumed to be in district directions, by [Ito96]

we have that 𝜎(𝑤 ⋅ 𝜉𝑚) are linearly independent. This means that for non-zero𝑧, there exists some 𝑤̂ such that∑𝑀𝑚=1 𝑧𝑚𝜎(𝑤̂ ⋅ 𝜉𝑚) ≠ 0. But this means that
there exists 𝜖 > 0 so that (∑𝑀𝑚=1 𝑧𝑚𝜎(𝑤̂ ⋅ 𝜉𝑚))2 > 𝜖 > 0. By continuity now,
there exists a set Γ = {(𝑐, 𝑤) ∶ ‖𝑐‖ + ‖𝑤 − 𝑤̂‖ < 𝜂} for some 𝜂 > 0 so that for(𝑐, 𝑤) ∈ Γ

(𝑀∑𝑚=1 𝑧𝑚𝜎(𝑤̂ ⋅ 𝜉𝑚) + 𝑐𝜎′(𝑤 ⋅ 𝜉𝑚)𝜉𝑚)2 > 𝜖2 > 0.
1Recall Definition 19.5. For a given vector 𝜉 define the line 𝐿𝜉 = {𝑦 ∈ ℝ𝑑 ∶ 𝑦 = 𝑡𝜉, 𝑡 ∈ ℝ}. Two vectors𝜉 and 𝜉′ are said to be in distinct directions if they are nonzero and the lines 𝐿𝜉 , 𝐿𝜉′ meet only at the origin;

see [Ito96].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.5. Convergence Properties of the 𝑄-learning Algorithm 421

Therefore, we can conclude that

𝔼𝜇0 [(𝑀∑𝑚=1 (𝑧𝑚𝜎(𝑤 ⋅ 𝜉𝑚) + 𝑐𝜎′(𝑤 ⋅ 𝜉𝑚)𝜉𝑚))2]
≥ 𝔼𝜇0 [(𝑀∑𝑚=1 (𝑧𝑚𝜎(𝑤 ⋅ 𝜉𝑚) + 𝑐𝜎′(𝑤 ⋅ 𝜉𝑚)𝜉𝑚))2 𝟏(𝑐,𝑤)∈Γ]
≥ 𝜖2ℙ [(𝑐, 𝑤) ∈ Γ]> 0.

Hence, we indeed have that for all 𝑧 ∈ ℝ𝑀 , 𝑧⊤𝐴𝑧 > 0, which proves that
the matrix 𝐴 is positive definite. □

Let us now proceed with the proof of Theorem 21.7. We want to prove
convergence of ℎ𝑡 to 𝑉 when 𝑡 → ∞ at least when 𝛽 is small. We start by
defining

ℋ𝜉,𝑡 = ∑𝑥″,𝑥∈𝖷 [max𝑎″∈𝖠 ℎ𝑡(𝑥″, 𝑎″) − max𝑎″∈𝖠 𝑉(𝑥″, 𝑎″)] ℙ[𝑥″|𝜉].
If we set now 𝜓𝑡(𝑥, 𝑎) = ℎ𝑡(𝑥, 𝑎) − 𝑉(𝑥, 𝑎), we find that

𝑑𝜓𝑡𝑑𝑡 = −𝐴 (𝜋⊙ (𝜓𝑡 − 𝛽ℋ𝑡)) .
Next, let us define Δ𝑡 = 𝛽𝜓𝑡 ⋅ (𝜋 ⊙ℋ𝑡). Then, we have the bound
|Δ𝑡| ≤ 𝛽 ∑𝜉∈𝖷×𝖠 ‖𝜋(𝜉)𝜓𝑡(𝜉)ℋ𝜉,𝑡‖

≤ 𝛽2 ∑𝜉∈𝖷×𝖠𝜋(𝜉)|𝜓𝑡(𝜉)|2 + 𝛽2 ∑𝜉∈𝖷×𝖠𝜋(𝜉)|ℋ𝜉,𝑡|2
≤ 𝛽2 ∑𝜉∈𝖷×𝖠𝜋(𝜉)|𝜓𝑡(𝜉)|2 + 𝛽2 ∑𝜉∈𝖷×𝖠𝜋(𝜉) ∑(𝑥″,𝑎″)∈𝖷×𝖠 |𝜓𝑡(𝑥″, 𝑎″)|2ℙ(𝑥″|𝜉)= 𝛽2𝜋 ⋅ 𝜓𝑡 ⊙𝜓𝑡 + 𝛽2 |𝖠|𝜋 ⋅ 𝜓𝑡 ⊙𝜓𝑡
= |𝖠| + 12 𝛽𝜋 ⋅ 𝜓𝑡 ⊙𝜓𝑡.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

422 21. Reinforcement Learning

By Lemma 21.10 we have that the matrix 𝐴 > 0 is positive definite. This
means that 𝐴−1 exists and that 𝐴−1 is also positive definite. Letting now 𝑍𝑡 =12𝜓𝑡 ⋅ 𝐴−1𝜓𝑡, we obtain𝑑𝑍𝑡𝑑𝑡 = −𝜓𝑡 ⋅ 𝐴−1𝐴 (𝜋⊙ (𝜓𝑡 − 𝛽ℋ𝑡))= −𝜋𝜓𝑡 ⊙𝜓𝑡 + 𝛽𝜓𝑡 ⋅ (𝜋 ⊙ℋ𝑡))≤ −𝜋𝜓𝑡 ⊙𝜓𝑡 + |Δ𝑡|≤ −𝜋𝜓𝑡 ⊙𝜓𝑡 + |𝖠| + 12 𝛽𝜋 ⋅ 𝜓𝑡 ⊙𝜓𝑡

= (−1 + |𝖠| + 12 𝛽)𝜋𝜓𝑡 ⊙𝜓𝑡.
Thus, if 𝛽 < 21+|𝖠| , we indeed then obtain that there is some 𝛿∗ > 0 so that𝑑𝑍𝑡𝑑𝑡 ≤ −𝛿∗𝜋𝜓𝑡 ⊙𝜓𝑡.
At the same time, we also have that there is some 𝐶𝑜 < ∞ such that𝑍𝑡 ≤ 𝐶𝑜𝜓𝑡 ⊙𝜓𝑡,

showing that 𝜓𝑡 ⊙ 𝜓𝑡 ≥ 𝑍𝑡𝐶𝑜 . Thus we then obtain for some unimportant con-
stant 0 < 𝐶′𝑜 < ∞ that 𝑑𝑍𝑡𝑑𝑡 ≤ −𝛿∗𝜋𝑍𝑡𝐶𝑜≤ −𝐶′𝑜𝑍𝑡,
which yields 𝑍𝑡 ≤ 𝑍0𝑒−𝐶′𝑜𝑡
proving that lim𝑡→∞𝑍𝑡 = 0.

This also concludes the proof of the theorem.

21.6. Brief Concluding Remarks

Many excellent texts have been devoted to reinforcement learning itself, see
for example [SB18,GK20], and the survey by [ADBB17]. The books [BPM90,
KY03] are classical resources on stochastic approximation and recursive algo-
rithms.

Most of the known reinforcement learning algorithms are based on some
variation of the 𝑄-learning or policy gradient methods [SMSM00]. The idea
of 𝑄-learning finds its origins in [Wat89]. Later on, proofs of convergence

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.7. Exercises 423

were developed in [WD92,Tsi94]. Neural networks, as function approxima-
tors, in reinforcement learning (i.e., using 𝑄-networks) were introduced later
in [MKS+15]. Since then the field has exploded, and recent developments in-
clude deep recurrent 𝑄-networks [HS15], dueling architectures for deep re-
inforcement learning [WSH+16], double 𝑄-learning [HGS16], bootstrapped
deep 𝑄-networks [OBPR16], and asynchronous methods for deep reinforce-
ment learning [MBM+16] to name just a few.

The convergence proof of 𝑄-learning that we presented in this chapter in
Section 21.5 is based on the article [SS22].

21.7. Exercises

Exercise 21.1. In the context of the SGD algorithm (21.26) (set the bias 𝑏 = 0
for convenience),

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝜎(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘))
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘))(𝑥𝑘, 𝑎𝑘),

and after choosing the learning rate to be 𝜂𝑁𝑘 = 𝜂𝑁 for some 0 < 𝜂 < 𝑁 constant,
prove that max𝑛∈ℕ max𝑘≤⌊𝑁𝑇⌋ (|𝐶𝑛𝑘 | + 𝔼‖𝑊𝑛𝑘 ‖) ≤ 𝐶𝑜 < ∞,
for some constant 𝐶𝑜 < ∞.
Exercise 21.2. In the context of the SGD algorithm (21.26) (set the bias 𝑏 = 0
for convenience),

𝐶𝑛𝑘+1 = 𝐶𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝜎(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘))
𝑊𝑛𝑘+1 = 𝑊𝑛𝑘 + 𝜂𝑁𝑘𝑁𝛾 (𝑟(𝑥𝑘, 𝑎𝑘) + 𝛽max𝑎′∈𝖠 𝑄(𝑥𝑘+1, 𝑎′, 𝜃𝑘) − 𝑄(𝑥𝑘, 𝑎𝑘, 𝜃𝑘))× 𝐶𝑛𝑘𝜎′(𝑊𝑛𝑘 ⋅ (𝑥𝑘, 𝑎𝑘))(𝑥𝑘, 𝑎𝑘),

and after choosing the learning rate to be 𝜂𝑁𝑘 = 𝜂𝑁 for some 0 < 𝜂 < 𝑁 constant,
prove that max𝑁∈ℕ max𝑘≤⌊𝑁𝑇⌋𝔼 sup(𝑥,𝑎)∈𝖷×𝖠 ||𝑄𝑁𝑘 (𝑥, 𝑎)||2 ≤ 𝐶𝑜 < ∞,
for some constant 𝐶𝑜 < ∞. Recall that 𝑄𝑁𝑘 (𝑥, 𝑎) = 𝑄𝑁(𝑥, 𝑎; 𝜃𝑘) for 𝑘 ≤ ⌊𝑁𝑡⌋.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

424 21. Reinforcement Learning

Exercise 21.3. In the context of the finite time horizon problem (21.22):

(1) Write down the equivalent to the infinite time horizon problem SGD
algorithm (21.26).

(2) Write down the expansion for 𝑄𝑁𝑘+1 that is the equivalent to the cor-
responding expansion for the infinite time horizon problem (21.29).

(3) Define ℎ𝑁𝑡 = 𝑄𝑁⌊𝑁𝑡⌋. What is the prelimit expression for ℎ𝑁𝑡 that is
equivalent to the one in the infinite time horizon problem (21.30)?

Exercise 21.4. Consider the regression problem where the objective function
is (21.23),

Λ(𝜃) = 12 ∑(𝑥,𝑎)∈𝖷×𝖠 [𝑌(𝑥, 𝑎) − 𝑄(𝑥, 𝑎, 𝜃)]2 𝜋(𝑥, 𝑎),
but with 𝑦𝑘 now being independent samples from a fixed distribution. Then,
(21.23) is simply the mean-squared error objective function for regression. In
particular, the corresponding (population) loss function is

Λpop(𝜃) = 12𝔼 [(𝑌 −𝔪𝑁(𝑋; 𝜃))2] ,
where the data (𝑋, 𝑌) ∼ 𝜋(𝑑𝑥, 𝑑𝑦), the model 𝑌 ∈ ℝ,

𝔪𝑁(𝑥; 𝜃) = 1√𝑁
𝑁∑𝑛=1𝐶𝑛𝜎(𝑊𝑛 ⋅ 𝑥),

and the parameters 𝜃 = (𝐶1, . . . , 𝐶𝑁 ,𝑊1, . . . ,𝑊𝑁) ∈ ℝ𝑁×(1+𝑑). This is the
setup studied in the optimization in the feature learning regime; see Chapter
19. Show that this is a special case of the reinforcement learning setup studied
in this chapter.

Exercise 21.5. The tabular 𝑄-learning algorithm directly estimates a value for
every state-action pair (𝑥, 𝑎) via the learning algorithm:
𝑄𝑡+1(𝑋𝑡, 𝐴𝑡) = 𝑄𝑡(𝑋𝑡, 𝐴𝑡) + 𝜂𝑡(𝑟(𝑋𝑡, 𝐴𝑡) + 𝛽max𝑎′ 𝑄𝑡(𝑋𝑡+1, 𝑎′) − 𝑄𝑡(𝑋𝑡, 𝐴𝑡)),

where 𝑄𝑡(𝑥, 𝑎) is the estimate of the value for action 𝑎 in state 𝑥 at time step 𝑡,𝑟(𝑥, 𝑎) is the reward for action 𝑎 in state 𝑥, 𝐴𝑡 ∈ 𝖠 is the action at time step 𝑡,
and 𝑋𝑡 ∈ 𝖷 is a sample from the Markov chain.

What are the advantages of the deep 𝑄-learning algorithm in comparison
to the tabular 𝑄-learning algorithm?
Exercise 21.6. Suppose we select actions 𝐴𝑡 uniformly at random. Let𝜋(𝑥, 𝑥′, 𝑎) be the stationary distribution of the Markov chain (𝑋𝑡, 𝑋𝑡+1, 𝐴𝑡) and
furthermore suppose we can directly generate i.i.d. samples (𝑥𝑖, 𝑥′𝑖, 𝑎𝑖) from

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

21.7. Exercises 425

𝜋(𝑥, 𝑥′, 𝑎). A tabular 𝑄-learning algorithm could then be constructed using
these i.i.d. samples:

𝑄𝑖+1(𝑥𝑖, 𝑎𝑖) = 𝑄𝑖(𝑥𝑖, 𝑎𝑖) + 𝜂𝑖(𝑟(𝑥𝑖, 𝑎𝑖) + 𝛽max𝑎′ 𝑄𝑖(𝑥′𝑖, 𝑎′) − 𝑄𝑡(𝑥𝑖, 𝑎𝑖)).(21.35)

(1) Rewrite (21.35) as the stochastic gradient descent algorithm for an ap-
propriate objective function Λ(𝑄), where the parameters that are be-
ing optimized over are 𝑄 = {𝑄𝑥,𝑎}𝑥,𝑎∈𝖷×𝖠.

(2) Suppose that Λ(𝑄) = 0 and 𝜋(𝑥, 𝑎) > 0 ∀ 𝑥, 𝑎 ∈ 𝖷 × 𝖠. Prove that 𝑄
is a solution to the Bellman equation and 𝑎(𝑥) = argmax𝑎𝑄(𝑥, 𝑎) is
the optimal policy.

Exercise 21.7. Consider a linear model 𝑄(𝑥, 𝑎; 𝜃) = 𝜃 ⋅ (𝑥, 𝑎) for the value of
selecting action 𝑎 in state 𝑥. What would be the linear 𝑄-learning algorithm?
Exercise 21.8. Consider the deep 𝑄-learning algorithm, and suppose that we
use the policy 𝐴𝑡 = argmax𝑎 𝑄(𝑋𝑡, 𝑎; 𝜃𝑡) to select actions. Construct a simple
example to show that the model may not train (i.e., it may not converge to a
suboptimal action). What would be a better policy for selecting actions?

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 22

Neural Differential
Equations

22.1. Introduction

A common problem in applied mathematics and more generally in science is
that we are given a target profile and we want to built a dynamical system
whose behavior matches that given profile. This chapter introduces the idea
of accomplishing this goal by using neural networks to model the underlying
dynamical system. Due to the universal approximation properties of neural
networks (see Chapter 16) and the power of stochastic gradient descent based
methods (see Chapters 7, 8, and 18) such methods have proven to be very effi-
cient in practice and are typically called neural differential equation methods.
In this chapter we focus on ordinary and stochastic differential equations but
such ideas have been applied to partial differential equations as well (see the
brief concluding remarks in Section 22.7 for some related literature).

22.2. Ordinary Differential Equations with Neural Network
Dynamics

Consider the ordinary differential equation (ODE) whose dynamics is given by
a neural network𝔪(𝑢; 𝜃) with parameters 𝜃 ∈ Θ,𝑑𝑢(𝑡)𝑑𝑡 = 𝔪(𝑢(𝑡); 𝜃),(22.1)

with the initial condition 𝑢(0) = 𝑢0. The ODE solution is 𝑑-dimensional, i.e.,𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑑(𝑡)). Let ℎ(𝑡) be the target function that we would
427

10.1090/gsm/252/23

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

428 22. Neural Differential Equations

like to predict. A reasonable formulation is to define the objective function

Λ(𝜃) = 12 ∫𝑇
0 |ℎ(𝑡) − 𝑢(𝑡)|2𝑑𝑡 + 12|ℎ(𝑇) − 𝑢(𝑇)|2,

and the goal is to select 𝜃 such that the solution of the neural ODE (22.1) min-
imizes Λ(𝜃). Minimizing the objective function Λ(𝜃) requires optimizing over
the ODE (22.1).

As we shall see, a direct minimization of Λ(𝜃) leads to solving a system
of equations which is as big as the dimension of the parameter space 𝜃 ∈ Θ
(which can become pretty large for deep learning models). To go around this
issue, we first demonstrate how to derive an adjoint ODE for (22.1) which al-
lows for a computationally efficient evaluation of the gradient Λ(𝜃). Once we
can evaluate∇𝜃Λ(𝜃), it is easy to optimize over Λ(𝜃) via a (stochastic) gradient
descent type of method.

Define the gradient of the ODE solution with respect to the parameters 𝜃
as

̃𝑢(𝑡) = ∇𝜃𝑢(𝑡).
Then, 𝑢̃ satisfies the ODE

𝑑𝑢̃(𝑡)𝑑𝑡 = 𝑑∑𝑖=1 𝜕𝔪𝜕𝑢𝑖 (𝑢(𝑡); 𝜃)𝑢̃𝑖(𝑡) + ∇𝜃𝔪(𝑢(𝑡); 𝜃).(22.2)

Similarly,

∇𝜃Λ(𝜃) = ∫𝑇
0 ̃𝑢(𝑡)⊤(ℎ(𝑡) − 𝑢(𝑡))𝑑𝑡 + 𝑢̃(𝑇)⊤(ℎ(𝑇) − 𝑢(𝑇)).(22.3)

In principle, we could solve (22.2) and then evaluate∇𝜃Λ(𝜃) via the formula
(22.3). However, the parameters 𝜃 are very high dimensional in deep learning
(e.g., 106 or 107 parameters). The dimension of the ODE (22.2) is the same as
the parameter dimension, which makes (22.2) computationally challenging to
solve in practice. For example, if the ODE is 𝑑-dimensional and the number of
parameters is 𝑃 = dim(Θ), the ODE system (22.2) has 𝑑×𝑃 ODEs. Instead, we
will derive the adjoint ODE for (22.1) which will allow for the computationally
efficient evaluation of the gradient ∇𝜃Λ(𝜃).

Let 𝑢̂ satisfy the ODE,
−𝑑𝑢̂(𝑡)𝑑𝑡 = 𝜕𝔪𝜕𝑢 (𝑢(𝑡); 𝜃)⊤ ̂𝑢(𝑡) + (ℎ(𝑡) − 𝑢(𝑡)),(22.4)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.2. Ordinary Differential Equations with Neural Network Dynamics 429

with final condition ̂𝑢(𝑇) = ℎ(𝑇) − 𝑢(𝑇). Then, multiply (22.2) by 𝑢̂, which
yields

̂𝑢(𝑡)𝑑𝑢̃(𝑡)𝑑𝑡 = 𝑢̂(𝑡) 𝑑∑𝑖=1 𝜕𝔪𝜕𝑢𝑖 (𝑢(𝑡); 𝜃)𝑢̃𝑖(𝑡) + 𝑢̂(𝑡)∇𝜃𝔪(𝑢(𝑡); 𝜃).
Integrating over the time interval [0, 𝑇] produces
∫𝑇
0 ̂𝑢(𝑡)𝑑𝑢̃(𝑡)𝑑𝑡 𝑑𝑡 = ∫𝑇

0 (𝑢̂(𝑡) 𝑑∑𝑖=1 𝜕𝔪𝜕𝑢𝑖 (𝑢(𝑡); 𝜃)𝑢̃𝑖 + 𝑢̂(𝑡)∇𝜃𝔪(𝑢(𝑡); 𝜃))𝑑𝑡.
Integration by parts yields

−∫𝑇
0

𝑑𝑢̂(𝑡)𝑑𝑡 ̃𝑢(𝑡)𝑑𝑡 + (𝑢̂(𝑇)𝑢̃(𝑇) − 𝑢̂(0)𝑢̃(0))
= ∫𝑇

0 (𝑢̂(𝑡) 𝑑∑𝑖=1 𝜕𝔪𝜕𝑢𝑖 (𝑢(𝑡); 𝜃)𝑢̃𝑖(𝑡) + 𝑢̂(𝑡)∇𝜃𝔪(𝑢(𝑡); 𝜃))𝑑𝑡.
Since 𝑢(0) is a constant, we have that ̃𝑢(0) = 0. Collecting terms yields

∫𝑇
0 𝑢̃⊤(𝑡)(− 𝑑𝑢̂𝑑𝑡 − 𝜕𝔪𝜕𝑢 (𝑢(𝑡); 𝜃)⊤𝑢̂(𝑡))𝑑𝑡 + 𝑢̃(𝑇)⊤𝑢̂(𝑇)

= ∫𝑇
0 ∇𝜃𝔪(𝑢(𝑡); 𝜃)⊤𝑢̂(𝑡)𝑑𝑡.

Substituting (22.4) into the above equation yields

∫𝑇
0 𝑢̃⊤(𝑡)(ℎ(𝑡) − 𝑢(𝑡))𝑑𝑡 + 𝑢̃(𝑇)(ℎ(𝑇) − 𝑢(𝑇)) = ∫𝑇

0 ∇𝜃𝑔(𝑢(𝑡); 𝜃)⊤ ̂𝑢(𝑡)𝑑𝑡.
Therefore, using equation (22.3), we have a formula for the gradient of the

objective function

∇𝜃Λ(𝜃) = ∫𝑇
0 ∇𝜃𝔪(𝑢(𝑡); 𝜃)⊤ ̂𝑢(𝑡)𝑑𝑡.(22.5)

A key feature is that the dimension of the adjoint ODE (22.4) is 𝑑 nomatter
how large the dimension 𝑃 = dim(Θ) of the parameters 𝜃 ∈ Θ is. This stands
in contrast to the forward ODE (22.2), whose dimension is proportional to the
dimension of the parameters. Therefore, the adjoint method provides a highly
computationally efficient method for optimizing over neural ODEs with high-
dimensional parameters.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

430 22. Neural Differential Equations

The gradient descent algorithm for optimizing the neural ODE model
therefore is as follows:• For 𝑘 = 0, 1, 2, . . . ,

– Solve the forward ODE on [0, 𝑇],𝑑𝑢(𝑡)𝑑𝑡 = 𝔪(𝑢(𝑡); 𝜃𝑘),
with the initial condition 𝑢(0) = 𝑢0.

– Solve the adjoint ODE on [0, 𝑇],
−𝑑𝑢̂(𝑡)𝑑𝑡 = 𝜕𝔪𝜕𝑢 (𝑢(𝑡); 𝜃𝑘)⊤𝑢̂(𝑡) + (ℎ(𝑡) − 𝑢(𝑡)),

with final condition ̂𝑢(𝑇) = ℎ(𝑇) − 𝑢(𝑇).
– Calculate the gradient,

∇𝜃Λ(𝜃𝑘) = ∫𝑇
0 ∇𝜃𝔪(𝑢(𝑡); 𝜃𝑘)⊤𝑢̂(𝑡)𝑑𝑡.

– Update the parameters with a gradient descent step,𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃Λ(𝜃𝑘),
where 𝜂𝑘 is the learning rate.

22.3. Backpropagation Formula from the Euler Discretization

There is an alternative derivation of the adjoint ODEs for training neural ODEs
which directly connects to the backpropagation algorithm for neural networks
that we visited in Chapters 6 and 7. First, we discretize the neural ODE using
an Euler discretization, which yields the discrete equations𝑢𝑖+1 = 𝑢𝑖 +𝔪(𝑢𝑖; 𝜃)Δ,(22.6)

where 𝑢𝑖 is an approximation for the solution 𝑢(𝑖Δ) to the ODE (22.1), Δ is the
time step size, and 𝑢0 = 𝑢(0). As Δ → 0, the Euler approximation (22.6) will
converge to the solution of the ODE (22.1).

The objective function becomes the sum

Λ(𝜃) = 𝑁∑𝑖=1 𝐽𝑖 + 12|ℎ(𝑁Δ) − 𝑢𝑁 |2,
where 𝑁Δ = 𝑇 and 𝐽𝑖 = 12 |ℎ(𝑖Δ) − 𝑢𝑖|2Δ. The (discretized) neural ODE model
can be trained with gradient descent𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝜃Λ(𝜃𝑘).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.3. Backpropagation Formula from the Euler Discretization 431

We will now derive the gradient of the objective function using the chain
rule (i.e., the backpropagation algorithm!). Define

𝑢̂𝑖 = 𝜕Λ𝜕𝑢𝑖 .
Then, for the final time 𝑁,

̂𝑢𝑁 = (ℎ(𝑁Δ) − 𝑢𝑁)Δ + (ℎ(𝑁Δ) − 𝑢𝑁).
Using the chain rule, we can derive for 𝑖 < 𝑁,

̂𝑢𝑖 = 𝜕𝑢𝑖+1𝜕𝑢𝑖 ⊤ 𝜕Λ𝜕𝑢𝑖+1 + 𝜕𝐽𝑖𝜕𝑢𝑖= 𝜕𝑢𝑖+1𝜕𝑢𝑖 ⊤𝑢̂𝑖+1 + (ℎ(𝑖Δ) − 𝑢𝑖)Δ
= 𝑢̂𝑖+1 + 𝜕𝔪𝜕𝑢 (𝑢𝑖; 𝜃)⊤𝑢̂𝑖+1Δ + (ℎ(𝑖Δ) − 𝑢𝑖)Δ.(22.7)

The gradients of the loss with respect to the discretized ODE solution 𝑢𝑖
can therefore be solved—similarly to the backward step of the backpropagation
algorithm—by calculating the update formula (22.7) backwards in time from𝑖 = 𝑁 → 0. Equation (22.7) can therefore be viewed as a backpropagation
algorithm for the discrete ODE (22.6).

We can also derive a formula for the gradient of the objective function with
respect to the model parameters,

∇𝜃Λ(𝜃) = 𝑁−1∑𝑖=0 ∇𝜃𝔪(𝑢𝑖; 𝜃)⊤ ̂𝑢𝑖+1Δ.(22.8)

Equations (22.7) and (22.8) are often referred to as discrete adjoint equa-
tions. These equations can be used to optimize over the discretized neural ODE
(22.6). However, it is interesting to investigate the connection between the dis-
crete adjoint equations and the continuous adjoint equations derived in the
previous section.

Rearranging (22.7) yields

−𝑢̂𝑖+1 − 𝑢̂𝑖Δ = 𝜕𝔪𝜕𝑢 (𝑢𝑖; 𝜃)⊤ ̂𝑢𝑖+1 + (ℎ(𝑖Δ) − 𝑢𝑖),
with the final condition ̂𝑢𝑁 = (ℎ(𝑁Δ)−𝑢𝑁)Δ+(ℎ(𝑁Δ)−𝑢𝑁). Recall that𝑁 =𝑇∆ and let Δ → 0. Then, we can clearly see that the discrete adjoint equations
converge to the continuous adjoint equations in the previous section.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

432 22. Neural Differential Equations

22.4. Training Neural ODEs with Minibatch Datasets

The neural ODE framework can be easily extended to training onmultiple data
samples. For example, consider again the ODE model with neural network
dynamics 𝑑𝑢(𝑡)𝑑𝑡 = 𝔪(𝑢(𝑡), 𝑥; 𝜃)(22.9)

with initial condition 𝑢(𝑡 = 0) = 𝑢0(𝑥), where 𝑥 ∈ ℝ𝑑 is a data feature. The
(unknown) target solution is a function 𝑦(𝑡). However, a dataset (𝑥(𝑖), 𝑦(𝑖))𝑁𝑖=1
of observations for the input data features 𝑥 and target solution 𝑦 is available.
This dataset can be used to train the neural network parameters 𝜃 using a gen-
eralization of the adjoint formula described previously.

Define 𝑢(𝑡; 𝜃, 𝑥) as the solution of (22.9) with parameters 𝜃 and data feature𝑥. The objective function becomes
Λ(𝜃) = 1𝑁 𝑁∑𝑖=1 (12 ∫

𝑇
0 |𝑦(𝑖)(𝑡) − 𝑢(𝑡; 𝜃, 𝑥(𝑖))|2𝑑𝑡 + 12|𝑦(𝑖)(𝑇) − 𝑢(𝑇; 𝜃, 𝑥(𝑖))|2).

Define the adjoint ODEs for the data samples 𝑖 = 1, 2, . . . , 𝑁 as

−𝑑𝑢̂(𝑖)(𝑡)𝑑𝑡 = 𝜕𝔪𝜕𝑢 (𝑢(𝑖)(𝑡); 𝜃)⊤𝑢̂(𝑖)(𝑡) + (𝑦(𝑖)(𝑡) − 𝑢(𝑖)(𝑡))(22.10)

with final condition 𝑢̂(𝑖)(𝑇) = 𝑦(𝑖)(𝑇)−𝑢(𝑖)(𝑇) and where 𝑢(𝑖) is the solution to
(22.1) with data feature 𝑥 = 𝑥(𝑖).

In a completely analogous way to howwe derived (22.5), we obtain that the
gradient of the objective function can be evaluated via

∇𝜃Λ(𝜃) = 1𝑁 𝑁∑𝑖=1∫
𝑇

0 ∇𝜃𝔪(𝑢(𝑖)(𝑡); 𝜃)⊤ ̂𝑢(𝑖)(𝑡)𝑑𝑡.
Each gradient descent step therefore requires the solution of 𝑁 adjoint

PDEs (22.10), where 𝑁 is the number of data samples. This can be compu-
tationally expensive for large datasets. Training can be accelerated using sto-
chastic gradient descent where at each iteration a minibatch of data samples
is randomly selected and the corresponding adjoint PDEs are calculated. The
stochastic gradient descent algorithm is outlined below.• For 𝑘 = 0, 1, 2, . . . :

– Select uniformly at random (𝑥(𝑗), 𝑦(𝑗))𝑀𝑗=1 from the dataset(𝑥(𝑖), 𝑦(𝑖))𝑁𝑖=1 where𝑀 < 𝑁.
– Solve the forward ODEs on [0, 𝑇] for 𝑗 = 1, . . . ,𝑀,𝑑𝑢(𝑗)(𝑡)𝑑𝑡 = 𝔪(𝑢(𝑗)(𝑡); 𝜃𝑘, 𝑥(𝑗)),
with the initial conditions 𝑢(0) = 𝑢0(𝑥(𝑗)).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.5. Neural Stochastic Differential Equations 433

– Solve the adjoint ODEs on [0, 𝑇] for 𝑗 = 1, . . . ,𝑀,

−𝑑𝑢̂(𝑗)(𝑡)𝑑𝑡 = 𝜕𝔪𝜕𝑢 (𝑢(𝑗)(𝑡); 𝜃𝑘, 𝑥(𝑗))⊤ ̂𝑢(𝑗)(𝑡) + (𝑦(𝑗)(𝑡) − 𝑢(𝑗)(𝑡)),
with final conditions 𝑢̂(𝑗)(𝑇) = 𝑦(𝑗)(𝑇) − 𝑢(𝑗)(𝑇).

– Calculate an unbiased estimate for the gradient ∇𝜃Λ(𝜃𝑘),
𝐺𝑘 = 1𝑀 𝑀∑𝑗=1∫

𝑇
0 ∇𝜃𝔪(𝑢(𝑗)(𝑡); 𝜃𝑘, 𝑥(𝑗))⊤ ̂𝑢(𝑗)(𝑡)𝑑𝑡,

where 𝔼[𝐺𝑘|𝜃𝑘] = ∇𝜃Λ(𝜃𝑘).
– Update the parameters with a minibatch stochastic gradient de-
scent step, 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐺𝑘,
where 𝜂𝑘 > 0 is the learning rate.

It is important to recognize that the 𝑗 for loop in the above algorithm can
be easily vectorized. If computed sequentially, the for loop 𝑗 = 1, . . . ,𝑀 has a
computational cost of 𝒪(𝑀) for both the forward solution of the neural ODE
and the evaluation its adjoint equations. However, using parallelization (on
either GPUs or CPUs), the minibatch can be perfectly parallelized with a com-
putational cost of 𝒪(1) no matter how large the minibatch is.

22.5. Neural Stochastic Differential Equations

Neural networks can also be used tomodel the dynamics of SDEs. Neural SDEs
can use a neural network to model to the drift and diffusion (sometimes also
referred to as volatility) coefficient in the SDE,𝑑𝑋𝜃𝑡 = 𝜇(𝑋𝜃𝑡 ; 𝜃)𝑑𝑡 + 𝜎(𝑋𝜃𝑡 ; 𝜃)𝑑𝑊𝑡,(22.11)

where𝑊𝑡 is a standard Brownian motion (see Appendix A for an introductory
discussion to Brownian motion and SDEs). The drift and diffusion functions𝜇(𝑥; 𝜃) and 𝜎(𝑥; 𝜃) are neural networks with parameters 𝜃. The stochastic pro-
cess 𝑋𝜃𝑡 depends upon the parameters 𝜃, which is indicated with the corre-
sponding superscript.

The objective function for training the parameters 𝜃 will depend upon the
specific application. Typically, optimization will require discretizing equation
(22.11) on a time grid 𝑡𝑖 = 𝑖Δ,

𝑋𝜃𝑖+1 = 𝑋𝜃𝑖 + 𝜇(𝑋𝜃𝑖 ; 𝜃)Δ + 𝜎(𝑋𝜃𝑖 ; 𝜃)√Δ𝑊𝑖,(22.12)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

434 22. Neural Differential Equations

where 𝑊𝑖 are standard normal random variables and 𝑋𝜃𝑖 is an approximation
to 𝑋𝜃𝑖∆. Under appropriate technical conditions, as Δ → 0, the Euler approxi-
mation (22.12) will converge to the solution of the SDE (22.11), see for example
[KP92].

Suppose we are trying to calibrate 𝜃 such that the process 𝑋𝜃𝑡 matches a tar-
get process 𝑌𝑡 as closely as possible. Furthermore, the path of 𝑌𝑡 is completely
observed at all points in time for the time interval [0, 𝑇]. Then, we can calibrate𝜃 bymaximizing the log-likelihood objective function for (22.12). The objective
function is

Λ(𝜃) = 1𝑁 𝑁∑𝑖=1 log [𝜙(𝑌𝑖 − 𝑋𝜃𝑖 , 𝑋𝜃𝑖−1 + 𝜇(𝑋𝜃𝑖−1; 𝜃)Δ, 𝜎(𝑋𝜃𝑖−1; 𝜃)√Δ)],(22.13)

where 𝑌𝑖 = 𝑌𝑖∆ and 𝜙(𝑧, 𝜇0, 𝜎0) is the probability of 𝑧 for a Gaussian distribu-
tion with mean 𝜇0 and standard deviation 𝜎0. The number of datapoints 𝑁 is
selected to be 𝑁 = ⌊𝑇∆ ⌋. Equation (22.13) can be directly maximized using the
backpropagation algorithm and gradient descent.

Alternatively, in other applications we may wish to select the parameters
such that the expectation of a function of 𝑋𝜃𝑡 , say for example 𝑔(𝑥), matches the
target data. Specifically, the objective function might be

Λ(𝜃) = 12𝑁 𝑁∑𝑖=1 (𝔼[𝑔(𝑖)(𝑋𝜃𝑇)] − 𝑌 (𝑖))2.(22.14)

We wish to select the neural network parameters 𝜃 such that 𝔼[𝑔(𝑖)(𝑋𝜃𝑇)]
is as close as possible to the target data 𝑌 (𝑖) for 𝑖 = 1, 2, . . . , 𝑁. This objective
function would for example be used in option pricing in finance where the
functions 𝑔(𝑖) are different payoff functions (e.g., depending upon the strike
price) and 𝑌 (𝑖) are the observed option prices in the market.

Since an expectation appears in (22.14), minimizing the objective function
(22.14) requires calculating the gradient of the distribution of the process 𝑋𝜃𝑡
with respect to 𝜃. The gradient of Λ(𝜃) with respect to the parameters 𝜃 is

∇𝜃Λ(𝜃) = 1𝑁 𝑁∑𝑖=1 (𝔼[𝑔(𝑖)(𝑋𝜃𝑇)] − 𝑌 (𝑖))∇𝜃𝔼[𝑔(𝑖)(𝑋𝜃𝑇)].
Calculating ∇𝜃𝔼[𝑔(𝑖)(𝑋𝜃𝑇)] is typically not computationally tractable. Standard
automatic differentiation cannot be directly applied to (22.14) to calculate the
gradient due to the expectation being inside the squared error. A naive imple-
mentation of stochastic gradient descent would be• Simulate a Monte Carlo path 𝑋𝜃𝑘,ℓ𝑡 of 𝑋𝜃𝑘𝑡 .

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.5. Neural Stochastic Differential Equations 435

• Calculate ∇𝜃𝑋𝜃𝑘,ℓ𝑇 via the backpropagation algorithm (or automatic
differentiation).• Update the parameters via𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐺𝑘,

𝐺𝑘 = 1𝑁 𝑁∑𝑖=1 (𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖))𝜕𝑔(𝑖)𝜕𝑥 (𝑋𝜃𝑘,ℓ𝑇)∇𝜃𝑋𝜃𝑘,ℓ𝑇 .
The above algorithmcanbe implemented very easily by applying automatic

differentiation to (22.12). In particular, one could simply apply automatic dif-
ferentiation to

Λ̃(𝜃𝑘) = 1𝑁2 𝑁∑𝑖=1 (𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖))2.
Although Λ̃(𝜃𝑘) is an unbiased estimate of the objective functionΛ(𝜃𝑘), the

gradient of Λ̃(𝜃𝑘) is not an unbiased estimate of the gradient of Λ(𝜃𝑘). Specif-
ically, 𝐺𝑘 is not an unbiased estimate of the gradient of the objective function
(22.14):

𝔼[𝐺𝑘|𝜃𝑘] ≠ ∇𝜃Λ(𝜃𝑘).
The reason that 𝐺𝑘 is not an unbiased estimate of ∇𝜃Λ(𝜃𝑘) is due to the

term (𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖)) not being independent of the term ∇𝜃𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) =𝜕𝑔(𝑖)𝜕𝑥 (𝑋𝜃𝑘,ℓ𝑇)∇𝜃𝑋𝜃𝑘,ℓ𝑇 . Due to this lack of independence,

𝔼[(𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖))∇𝜃𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇)||𝜃𝑘]
≠ 𝔼[(𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖))||𝜃𝑘]𝔼[∇𝜃𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇)||𝜃𝑘].

However, an unbiased stochastic estimate can be computed via an alterna-
tive method which simulates two independent paths of the SDE 𝑋𝜃𝑡 :• Simulate independent Monte Carlo paths 𝑋𝜃,ℓ𝑡 and ̄𝑋𝜃,ℓ𝑡 for 𝑋𝜃𝑡 .• Calculate∇𝜃𝑔(𝑖)(𝑋𝜃,ℓ𝑇) via the backpropagation algorithm (or automa-

tic differentiation).• Update the parameters via a stochastic gradient descent step,𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝑉𝑘, where
𝑉𝑘 = 1𝑁 𝑁∑𝑖=1 (𝑔(𝑖)(̄𝑋𝜃𝑘,ℓ𝑇) − 𝑌 (𝑖))𝜕𝑔(𝑖)𝜕𝑥 (𝑋𝜃𝑘,ℓ𝑇)∇𝜃𝑋𝜃𝑘,ℓ𝑇 .(22.15)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

436 22. Neural Differential Equations

Due to the independence of the paths 𝑋𝜃,ℓ𝑡 and ̄𝑋𝜃,ℓ𝑡 , 𝑉𝑘 is an unbiased es-
timate of the gradient of the objective function Λ(𝜃):

𝔼[𝑉𝑘||𝜃𝑘] = 1𝑁 𝑁∑𝑖=1 (𝔼[𝑔(𝑖)(̄𝑋𝜃𝑘,ℓ𝑇)||𝜃𝑘] − 𝑌 (𝑖)) × 𝔼[∇𝜃𝑔(𝑖)(𝑋𝜃𝑘,ℓ𝑇)||𝜃𝑘]
= 1𝑁 𝑁∑𝑖=1 (𝔼[𝑔(𝑖)(̄𝑋𝜃𝑘𝑇)||𝜃𝑘] − 𝑌 (𝑖)) × 𝔼[∇𝜃𝑔(𝑖)(𝑋𝜃𝑘𝑇)||𝜃𝑘]= ∇𝜃Λ(𝜃𝑘).

This algorithm, using two independent Monte Carlo paths, therefore pro-
vides a computationally efficient method for implementing stochastic gradient
descent to optimize neural SDE models. At each optimization iteration, two
Monte Carlo paths of the SDE are simulated and automatic differentiation is
applied to the second path. This can be easily implemented in a deep learning
library such as PyTorch.

22.6. Examples in PyTorch

22.6.1. Example 1: ODE. As our first example, we will train a neural ODE
using automatic differentiation in PyTorch to match a target ODE,𝑑𝑢𝑑𝑡 = −𝑢 − 𝑢2,
with initial condition 𝑢(𝑡 = 0) = 1. We will present the code in several blocks
below.

First, we import the relevant Python and PyTorch modules and simulate
the target ODE, which we will train the neural ODE to match. The ODE is
numerically simulated using the Euler scheme.
import to r ch
import numpy as np
import to r ch . nn as nn
import to r ch . nn . f u n c t i o n a l as F
import to r ch . optim as optim
from to r ch . autograd import V a r i a b l e

S imu la te the t a r g e t ODE which we w i l l t r a i n the neu ra l ODE to match .

#Time s tep s i z e
dt = 0 . 01

#Number o f t ime s t ep s
L = 100

u = to rch . cuda . F loa tTenso r (np . ones (L+1))

for i in range (L) :
u [i +1] = u [i] + dt * (- u [i] - u [i] ** 2)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.6. Examples in PyTorch 437

Then, we initialize a neural network for the ODE dynamics and specify
several relevant hyperparameters. The neural network has two hidden layers
with ReLU activation functions. The RMSProp optimization algorithm will be
used to train the neural network parameters.

I n i t i a l Lea rn ing r a t e
LR = 0 . 01

#Number o f h idden u n i t s
H = 200

num_inputs = 1

num_outputs = 1

c l a s s NeuralNetworkModel (nn . Module) :
def _ _ i n i t _ _ (s e l f) :

super (NeuralNetworkModel , s e l f) . _ _ i n i t _ _ ()

s e l f . f c 1 = nn . L i nea r (num_inputs , H) . type (to r ch . F loa tTenso r)
s e l f . f c 2 = nn . L i nea r (H , H) . type (to r ch . F loa tTenso r)
s e l f . f c 3 = nn . L i nea r (H , num_outputs) . type (to r ch . F loa tTenso r)

def forward (s e l f , x) :

L1 = s e l f . f c 1 (x)

H1 = to rch . r e l u (L1)

L2 = s e l f . f c 2 (H1)

H2 = to rch . r e l u (L2)

f _ou t = s e l f . f c 3 (H2)

return f _ou t

model = NeuralNetworkModel ()
model . cuda ()
op t im i z e r = optim . RMSprop (model . parameters () , l r = LR , momentum=0 . 0)

Using automatic differentiation, we train the neural ODE model to match
the target ODE. A piecewise constant learning rate schedule is used for the
training. The loss function that will be minimized is

Λ(𝜃) = 12 ∫1
0 (𝑢(𝑡) − 𝑣(𝑡))2𝑑𝑡,

where 𝑢(𝑡) is the target data and 𝑣(𝑡) = 𝑣(𝑡; 𝜃) is the neural ODE model.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

438 22. Neural Differential Equations

#Number o f o p t im i z a t i o n i t e r a t i o n s
K = 20000

v_np = np . ones (L+1)

for k in range (K) :

i f (k < 1000) :
LR_k = 0 . 01

e l i f ((k>= 1000) & (k < 2000)) :
LR_k = 0 . 005

e l i f ((k>= 2000) & (k < 3000)) :
LR_k = 0 . 0025

e l i f ((k>= 3000) & (k < 4000)) :
LR_k = 0 . 001

e l i f ((k>= 4000) & (k < 5000)) :
LR_k = 0 . 0005

e l se :
LR_k = 0 . 0001

fo r param_group in op t im i z e r . param_groups :
param_group [' l r '] = LR_k

v = to rch . cuda . F loa tTenso r (np . ones (1))
Loss = to rch . cuda . F loa tTenso r (np . ze ros (1))

op t im i z e r . ze ro_grad ()

fo r i in range (L) :

v = v + dt *model (v)

Loss = Loss + dt * 0 . 5 * (v - u [i]) ** 2

v_np [i +1] = v . detach () . cpu () . numpy ()

Loss = Loss / f l o a t (L)

Loss . backward ()

op t im i z e r . s tep ()

i f (k pr in t (k , ' Cu r ren t Loss ' , Loss . detach () . cpu () . numpy ())

In the end of training, the reported loss in one of our experiments was2.93𝑒 − 05.
22.6.2. Example 2: SDE. In our second example, we train a neural SDE mo-
del to minimize the objective function (22.14). As a simple demonstration of
the methods from Section 22.5, we will use 𝑁 = 1. The target datapoint will
be produced using the price of a call option from the Black-Scholes model. In

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.6. Examples in PyTorch 439

particular, we have the SDE𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝔪̄(𝑆)𝑑𝑊𝑡,
where𝑊𝑡 is a standardWiener process and 𝑟 is the interest rate. In the classical
Black-Scholes model 𝔪̄(𝑆) = 𝑆, the price of the call option with time horizon𝑇 and strike price 𝐾 takes the form𝐶 = 𝑒−𝑟𝑇 max{𝑆 − 𝐾, 0}.

In the application below, data are assumed to be from the classical Black-
Scholes model, i.e., when 𝔪̄(𝑆) = 𝑆. Then, the goal is to train a model with𝔪̄(𝑆) being a neural network𝔪(𝑆; 𝜃) to match such data.

More specifically, the neural SDE will be trained such that it generates the
same price for this call option. Although the method is demonstrated for a
single datapoint, the code can be easily generalized to the case with 𝑁 > 1
(e.g., market prices are observed for multiple options and the neural SDE is
trained to match these market prices).

First, the training datapoint is generated from the Black-Scholes model.
Generate t r a i n i n g data

L = 10000000

S = to rch . cuda . F loa tTenso r (np . ones ((L , 1)))

dt = 0 . 01
N = 100
r = 0 . 05

K = 1 . 05

sigma = 0 . 5

for i in range (N) :
Z = to rch . randn ((L , 1) , dtype = to rch . f l o a t 3 2) . cuda (dev i ce = ' cuda : 0 ')
S = S + r *S* dt + sigma *S*Z*np . s q r t (dt)

Payo f f = S - K
Payo f f [Payo f f <= 0 . 0] = 0 . 0
P r i c e = to rch . mean (np . exp (- r * 1) * Payo f f)
pr in t (P r i c e)

The returned price from the algorithm here is 𝐶 = 0.1981. Let’s now see
how well the neural SDE is doing in recovering this price. We train the neural
SDE using the method from Section 22.5.
LR = 0 . 001

model = NeuralNetworkModel ()
model . cuda ()
op t im i z e r = optim . RMSprop (model . parameters () , l r = LR , momentum=0 . 0)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

440 22. Neural Differential Equations

L = 10000

dt = 0 . 01
N = 100
r = 0 . 05

K = 1 . 05

Number_o f_ i t e ra t i ons = 100

P r i c e _ e v a l _ l i s t = []

for j in range (Number_o f_ i t e ra t i ons) :

op t im i z e r . ze ro_grad ()

S1 = to rch . cuda . F loa tTenso r (np . ones ((L , 1)))
S2 = to rch . cuda . F loa tTenso r (np . ones ((L , 1)))

fo r i in range (N) :

Z1 = to rch . randn ((L , 1) , dtype = to rch . f l o a t 3 2) . cuda ()
Z2 = to rch . randn ((L , 1) , dtype = to rch . f l o a t 3 2) . cuda ()

vo l1 = model (S1)
vo l2 = model (S2)

S1 = S1 + r * S1 * dt + vo l1 * Z1 *np . s q r t (dt)
S2 = S2 + r * S2 * dt + vo l2 * Z2 *np . s q r t (dt)

Payo f f 1 = S1 . detach () - K
Payo f f 1 [Payo f f 1 <= 0 . 0] = 0 . 0
Model_Pr ice1 = to rch . mean (np . exp (- r * 1) * Payo f f 1)

Payo f f 2 = S2 - K
Payo f f 2 [Payo f f 2 <= 0 . 0] = 0 . 0
Model_Pr ice2 = to rch . mean (np . exp (- r * 1) * Payo f f 2)

G = (Mode l_Pr ice1 - P r i c e . detach ()) * Model_Pr ice2
G . backward ()
op t im i z e r . s tep ()

Eva lua te t r a i n e d neu ra l network
L_eva l = 100000
with to rch . no_grad () :

S = to rch . cuda . F loa tTenso r (np . ones ((L_eval , 1)))

fo r i in range (N) :

Z = to rch . randn ((L_eva l , 1) , dtype = to rch . f l o a t 3 2) . cuda ()

vo l = model (S)

S = S + r *S* dt + vo l *Z*np . s q r t (dt)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

22.7. Brief Concluding Remarks 441

Payo f f = S . detach () - K
Payo f f [Payo f f <= 0 . 0] = 0 . 0
Mode l_Pr ice = to rch . mean (np . exp (- r * 1) * Payo f f)
P r i c e _ e v a l _ l i s t . append (Mode l_Pr ice . cpu () . numpy ())

Model_Pr ice_Ave = np .mean (P r i c e _ e v a l _ l i s t [- 10 :])

pr in t (j , Model_Pr ice_Ave)

At the end, the algorithm based on the neural SDE returned the estimated
price ̂𝐶 = 0.19809113, which is indeed very close to the target value of 𝐶 =0.1981.

The key line of the above computational method is the line which calcu-
lates the variable 𝐺. When automatic differentiation is applied to the variable𝐺, it will produce the gradient 𝑉𝑘 from equation (22.15). The detach command
truncates the chain rule at the variable where it is applied (i.e., it treats the
variable as a constant when automatic differentiation is applied).

22.7. Brief Concluding Remarks

In this chapter we studied neural ODE and SDE and the goal was to demon-
strate that one can learn the dynamics of an ODE or an SDE to match given
data. This idea has been explored in [SS17]-[SS20c] to develop the stochastic
gradient descent algorithm in continuous time (SGDCT), providing a computa-
tionally efficient method for statistical learning of complex models potentially
over long time periods.

Even though we did not present any here, the same kinds of questions can
be asked and answered for PDEs, see for example [SMS23] for the case of linear
PDEs. Deep learning has proven to be very successful in approximating the
solution to oftentimes high-dimensional partial differential equations. Some
of the early works in this field include [LLF98,LLP00,SS18,BEJ19,RPK19],
but many papers followed thereafter. An exposition to using machine learning
for dynamical systems can be found in [E17].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 23

Distributed Training

23.1. Introduction

In practice, both datasets (millions or even billions of data samples) and mod-
els (millions to hundreds of millions of parameters) are large. Each data sam-
ple itself could be memory-intensive (e.g., a high-resolution image or a video).
Due to the large model size and large amount of memory-per-data-samples, it
may be challenging to evaluate and calculate the backpropagation step for a
large minibatch on a GPU. This forces the training to use a small minibatch
size (perhaps even an SGD with only a single data sample), which will slow
training. When the minibatch size is small, the noise in each training update
will increase. The increased noise will typically slow convergence and require
a smaller learning rate. The smaller learning rate will further slow the conver-
gence. Therefore, it is typically optimal to have a larger minibatch size, which
reduces the noise in the updates and allows for a larger learning rate magni-
tude.

If the model parameters are stored as floats (4 bytes per float), the memory
cost for a single fully connected layerwith𝐻 hidden units connected to another
layer with 𝐻 hidden units is

Number of parameters = 𝐻 ×𝐻,
Memory to store parameters = 4 × 𝐻 × 𝐻,

Number of hidden units in minibatch = 𝑀 ×𝐻,
Memory to store hidden units in minibatch = 4 ×𝑀 ×𝐻,

where𝑀 is the size of the minibatch. Similarly, the computational cost of both
the forward and backward step can quickly increase for largermodel sizes (e.g.,
large 𝐻) or large minibatch sizes (large 𝑀). The number of arithmetic and

443

10.1090/gsm/252/24

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

444 23. Distributed Training

algebraic operations for the forward step to evaluate a single hidden layer is
Number of operations = 𝑀 ×𝐻 ×𝐻 +𝑀 ×𝐻,

where the second term is due to evaluating the activation function after the
linear operation. Similarly, the number of arithmetic and algebraic operations
for the backward step for the single hidden layer is

Number of operations = 𝑀 ×𝐻 ×𝐻 +𝑀 ×𝐻.
The memory cost and computational cost quickly grows with the depth of

the neural network. For example, for a neural network with 𝐿 fully connected
layers, the costs become

Memory to store hidden units in minibatch = 4 ×𝑀 ×𝐻 × 𝐿,
Number of operations in forward step = 𝐿 × (𝑀 × 𝐻 × 𝐻 +𝑀 ×𝐻),
Number of operations in backward step = 𝐿 × (𝑀 × 𝐻 × 𝐻 +𝑀 ×𝐻).
Computational problems can quickly be encountered for large (𝑀,𝐻, 𝐿).

For example, GPUs have a limited memory (often less than the CPUs on the
machine). Therefore, the GPU may produce an out-of-memory error for large
models and/or largeminibatch sizes. Beyond a certain limit, the computational
operations may also not be fully parallelized on the GPU, leading to slower
computational times and, eventually, out-of-memory errors. Out-of-memory
errors can be addressed by reducing the size of themodel and/or theminibatch
size. However, reducing the minibatch size may reduce the convergence speed
(the gradient estimates will be more noisy, which may also require a smaller
learning rate). Reducing the model size, although it would address an out-of-
memory error, may also reduce the accuracy/performance of the model.

Distributing the training over multiple GPUs is therefore advantageous.
The training can be parallelized by dividing the totalminibatch𝑀 into smaller
minibatches of size𝑀0 where 𝑁𝑀0 = 𝑀 on GPUs 𝑖 = 1, . . . , 𝑁. The GPUs can
be on the same machine or on different machines. The minibatch objective
function for the model then becomes

Λ(𝜃) = 1𝑀 𝑀∑𝑖=1 ℓ𝑦(𝑖)(𝔪(𝑥(𝑖); 𝜃))
= 1𝑀 𝑀0∑𝑖=1 ℓ𝑦(𝑖)(𝔪(𝑥(𝑖); 𝜃))⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

GPU 1

+ 1𝑀 2𝑀0∑𝑖=𝑀0+1 ℓ𝑦(𝑖)(𝔪(𝑥(𝑖); 𝜃))⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
GPU 2

+⋯+ 1𝑀 𝑁𝑀0∑𝑖=(𝑁−1)𝑀0+1 ℓ𝑦(𝑖)(𝔪(𝑥(𝑖); 𝜃))⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
GPU N

,
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.2. Synchronous Gradient Descent 445

where ℓ𝑦(𝑧) is the loss function, 𝑦(𝑖) is the target data,𝔪(𝑥; 𝜃) is the model, and𝜃 are the model parameters. The computations (both the forward and back-
propagation steps) for the data samples 𝐷𝑖 = {𝑖𝑀0 + 1, . . . , (𝑖 + 1)𝑀0} are per-
formed in parallel on GPUs 𝑖 = 1, . . . , 𝑁. Therefore, in principle, the compu-
tational time to calculate the gradient ∇𝜃Λ(𝜃) for the total minibatch of size𝑀 should be the same computational time as calculating the gradient for an
objective function with 𝑀0 data samples. An important consideration is the
communication cost of sharing the gradients between the different machines,
whichmay reduce the computational time savings of parallelization. This com-
munication cost will become apparent in the algorithms presented below.

23.2. Synchronous Gradient Descent

We first present the distributed gradient descent algorithm with synchronous
parameter updates. In synchronous gradient descent, each GPU calculates a
gradient, the gradients are averaged across all GPUs, and then the average gra-
dient is used to update the model. At all update steps, the model copy on each
GPU is therefore identical.• Each GPU holds a copy of the neural network model parameters 𝜃.• The neural network model parameters on all GPUs 𝑖 = 1, . . . , 𝑁 are

initialized to the same initial parameters 𝜃0.• For optimization iterations 𝑘 = 1, 2, . . . , 𝐾:
– A minibatch of size 𝑀0 is randomly selected for each GPU 𝑖 =1, . . . , 𝑁.
– On eachGPU 𝑖, the following objective function is evaluated (for-
ward step):

Λ𝑖(𝜃) = 1𝑀0
(𝑖+1)𝑀0∑𝑗=𝑖𝑀0

ℓ𝑦(𝑗)(𝔪(𝑥(𝑗); 𝜃)).
– Then, the gradient ofΛ𝑖(𝜃) is calculated (backpropagation step).
– The gradients from each GPU are averaged:

∇𝜃Λ(𝜃) = 1𝑁 𝑁∑𝑖=1∇𝜃Λ𝑖(𝜃),
which requires communication between the GPUs.

– The parameters 𝜃 are updated using the gradient ∇𝜃Λ(𝜃).
The forward and backward steps in the backpropagation algorithm are

completed independently on each GPU and do not require communication.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

446 23. Distributed Training

This is referred to as a perfectly parallel calculation in parallel computing. How-
ever, the parameter update does require communication between the GPUs to
average the gradients from all of the GPUs. The communication time depends
upon the size of the network, network architecture/connection speeds, and the
size of the data that must be transferred. For example, if a large cluster of many
machines is used, the communication times will be much larger than a single
machine withmultiple GPUs. Of course, multiple machines allows for a much
larger minibatch size. Communication times will increase as the size of the
data is increased. In distributed gradient descent, eachmachine must commu-
nicate the model gradients ∇𝜃Λ𝑖(𝜃). The number of model gradients is equal
to the number of model parameters. In deep learning, the standard is to use
floats for the model parameters (and their gradients). Therefore, if there are 𝑑
parameters, the model parameter gradients are 𝑑 × 4 bytes. For large models,
the communication times can potentially be significant, reducing the compu-
tational speed of distributed gradient descent.

The synchronous distributed gradient descent algorithm (presented above)
has a potential computational disadvantage in that machine 𝑖must wait for all
other machines 𝑗 ≠ 𝑖 to complete their calculation of their respective model
gradients before updating themodel. Therefore, the slowestmachine’s compu-
tational time will be a bottleneck for the parameter update. The computational
time for each parameter update is restricted by the slowest machine (even if all
other machines are significantly faster). This inspires the next distributed gra-
dient descent algorithm that we will discuss: asynchronous gradient descent.

23.3. Asynchronous Gradient Descent

Asynchronous gradient descent updates the model parameters on each ma-
chine asynchronouslywithout waiting for the othermachines to complete their
gradient calculations. The typical framework includes amachine as the param-
eter server which holds themaster copy of the model parameters 𝜃. The worker
machines 𝑖 = 1, . . . , 𝑁 will calculate the gradients of the model. Once a worker
has completed its calculation, it will send themodel gradients to the parameter
server which, immediately upon receiving the parameters and without waiting
for the other machines to complete their work, will update the master copy of
the model parameters 𝜃. The updated master copy of the model parameters
will then be transmitted back to the worker machine 𝑖.

The current model parameters on machine 𝑖 are denoted 𝜃𝑖. Due to the
asynchronous updates, at any single point in time, the parameters 𝜃1, 𝜃2, . . . , 𝜃𝑁
may differ. The asynchronous gradient descent algorithm is summarized be-
low. • Initialize model parameters 𝜃 on the parameter server (machine 𝑖 =1).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.3. Asynchronous Gradient Descent 447

• For 𝑖 = 2, . . . , 𝑁 (independently in parallel):

– For 𝑘 = 1, 2, . . . , 𝐾:∗ Copy the model parameters 𝜃 to machine 𝑖. Set 𝜃𝑖 = 𝜃.∗ Randomly select a minibatch of data and evaluate the ob-
jective function,

Λ𝑖(𝜃) = 1𝑀0
(𝑖+1)𝑀0∑𝑗=𝑖𝑀0

ℓ𝑦(𝑗)(𝔪(𝑥(𝑗); 𝜃)).

∗ Then, the gradient of Λ𝑖(𝜃𝑖) is calculated (backpropagation
step).∗ Communicate the gradient ∇𝜃Λ𝑖(𝜃𝑖) to machine 1.∗ Update 𝜃 on machine 1 with stochastic gradient descent.

Asynchronous gradient descent has the advantage that machine 𝑖 does not
have to wait for work to complete on the other machines 𝑗 ≠ 𝑖. Instead, it is
able to complete rapid (noisy) updates to themodel. This is particularly advan-
tageous when the cluster consists of multiple machines with different compu-
tational capabilities/speeds. A disadvantage is that there is an inconsistency
between the model gradients calculated on the different machines. Since up-
dates are performed asynchronously, the model parameters on machine 𝑖 may
not necessarily equal the current model parameters on machines 𝑗 ≠ 𝑖. Sim-
ilarly, the model parameters 𝜃𝑖 on machine 𝑖 may not equal the most recent
master copy of the model parameters 𝜃 on the parameter server.

Therefore, since the gradients are calculated based upon different param-
eters than the current master copy of the parameters, the parameter update is
not guaranteed to decrease the objective function. That is, the gradient calculated
on machine 𝑖 is not necessarily a descent direction for the objective function.
This can become more problematic in larger clusters where communication
times from worker machines to the parameter server machine may be large.
The larger the communication times are, the greater the potential difference
between the model parameters 𝜃𝑖 on machine 𝑖 and the parameter server pa-
rameters 𝜃. This increases the error for the gradient calculated on machine 𝑖
with respect to the objective function Λ(𝜃).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

448 23. Distributed Training

23.4. Parallel Efficiency

The goal of distributing training across multiple machines is to reduce the
computational time required to train a model. The parallel algorithm’s perfor-
mance can be measured via its parallel efficiency. Let 𝑇 be the time required to
complete the task using one machine. Let 𝑇𝑁 be the time required to complete
the same task using 𝑁 machines. The parallel efficiency is

𝐸𝑁 = 𝑇𝑁 × 𝑇𝑁 × 100%.(23.1)

If 𝑇𝑁 = 𝑇𝑁 , the efficiency is 𝐸𝑁 = 100%. If 𝑇𝑁 = 2𝑇𝑁 , the efficiency is𝐸𝑁 = 50%. Typically, parallel algorithms do not achieve 100% efficiency since
large amounts of data must be communicated between machines. The com-
munication time reduces the performance of the parallel algorithm. Commu-
nication costs typically increase as the number of machines 𝑁 increases and
therefore the parallel efficiency will be a function of 𝑁. Perfectly parallel tasks
requiring no communication have 100% efficiency. An example isMonte Carlo
simulation. Monte Carlo simulation can be performed completely indepen-
dently on eachmachine with a single communication at the end to average the
Monte Carlo samples across all machines. Tasks requiring heavy communica-
tion may have significantly less than 100% efficiency.

Formula (23.1) for parallel efficiency is referred to as strong scaling. The
strong scaling of an algorithm measures how quickly a task can be completed
as a function of the number of machines. For example, strong scaling in deep
learning wouldmeasure how quickly (in computational time) the model train-
ing achieves a certain fixed accuracy (e.g., 99% accuracy on theMNIST dataset).
Weak scaling is given by the formula

𝐸𝑁 = 𝑇𝑇𝑁 × 100%,(23.2)

where 𝑇 is the computational time to complete 𝑋 amount of work on a single
machine and 𝑇𝑁 is the computational time to complete 𝑋 amount of work on
each of 𝑁 total machines (𝑁 × 𝑋 total work). For example, here 𝑋 could be
calculating the model parameter gradients on𝑀 data samples (i.e.,𝑁×𝑀 total
data samples).

Distributed gradient descent can typically achieve excellent weak scaling.
However, strong scaling may not necessarily perform as well as weak scaling.
As the number of total data samples 𝑁 × 𝑀 → ∞, each minibatch stochas-
tic gradient descent update will converge to a deterministic gradient descent
update with an 𝐿2-convergence rate ∼ (𝑁 ×𝑀)−2. This may improve the con-
vergence speed to a local minimizer in the total number of parameter update

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.5. MPI Communication 449

steps (since the gradient estimates will be less noisy and, in addition, the learn-
ing rate can be potentially increased since the noise has been reduced). How-
ever, the convergence speed will certainly not improve at a rate proportional
to 𝑁−1. In particular, since it will converge to deterministic gradient descent,
the convergence rate will be limited by the convergence rate for deterministic
gradient descent. Therefore, the marginal benefits of increasing the number of
machines (and the minibatch size) will start to vanish after a certain point.

23.5. MPI Communication

Message passing interface (MPI) is the standard method for communicating
data betweenmultiple processes in parallel computing. Themultiple processes
may be on the same machine or multiple machines. For example, a cluster
could have eightmachineswith 16 processes permachine. In total, therewould
be 128 processes. Each process performs a task (i.e., calculations) and also com-
municates with other processes. The completion of a task on process 𝑖 may
require data from the calculations on the other processes 𝑗 ≠ 𝑖.

Each process 𝑖 = 0, 1, . . . , 𝑁−1 (in the example above,𝑁 = 128) is assigned
a rank. Process 𝑖’s rank is the integer 𝑖. Complex calculations—where each
process may perform a different task with dependencies on communications
between the processes—can be concisely coded as a single program by writing
the calculation as a function of the rank 𝑖. However, in many deep learning ap-
plications, the communication is relatively simple. The synchronous gradient
descent algorithm (presented in the previous section) assigns an identical cal-
culation to each process with the communication operation being an average
of all of the processes’ gradients.

PyTorch hasMPI capabilities, which can be used via the “torch.distributed”
library.

import to r ch . d i s t r i b u t e d as d i s t

The rank of each process and the total number of processes can be obtained
via

num_processes = d i s t . g e t _wo r l d_ s i z e ()
rank = d i s t . get_rank ()

The distributed class is initialized the group of processes via

d i s t . i n i t _p ro ce s s _g roup (`mpi ' , rank = rank , wo r l d_ s i z e =num_nodes)

The key MPI operation for synchronous gradient descent is a communica-
tion operation to average tensors on all the processes. In particular, if there are

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

450 23. Distributed Training

tensors 𝑋0, 𝑋1, . . . , 𝑋𝑁−1 on the processes 𝑖 = 0, 1, . . . , 𝑁 − 1, we need a com-
munication operation that calculates

̄𝑋 = 𝑁−1∑𝑖=0 𝑋𝑖,
and returns ̄𝑋 to all processes 𝑖 = 0, 1, . . . , 𝑁 −1. In the context of synchronous
gradient descent, the tensors 𝑋𝑖 are theminibatch gradients calculated on each
process. In MPI, this communication operation is the All Reduce operation
and it is implemented in PyTorch as
d i s t . a l l _ r educe (X , op= d i s t . reduce_op . SUM)

𝑋 is the tensor on each process. The above command averages the tensors from
all of the processes and replaces 𝑋 with the average. As a concrete example,
consider the following command run on 𝑁 processes.
X = to rch . F loa tTenso r (np . ones (1) * rank)
d i s t . a l l _ r educe (X , op= d i s t . reduce_op . SUM)
pr in t (rank , X)

The printed result will be a scalar value 𝑁 − 1 on all processes (ranks)0, 1, . . . , 𝑁 − 1.
Typical clusters will not have GPU-to-GPU communication available be-

tween machines. That is, if a rank 1 tensor is on the GPU of machine 1, it
cannot be directly communicated to rank 2 on the GPU of machine 2. Instead,
the rank 1 tensor must first be moved to the CPU of machine 1, then sent to
the CPU of machine 2, and then finally moved to the GPU of machine 2. This
is illustrated by the following example.
X = to rch . cuda . F loa tTenso r (np . ones (1) * rank)
d i s t . a l l _ r educe (X . cpu () , op= d i s t . reduce_op . SUM)
X . cuda ()
pr in t (rank , X)

In some more recent advanced high-performance computing (HPC) archi-
tectures, GPU-to-GPU communication between machines is available.

We will now use PyTorch’s MPI All Reduce operation to implement syn-
chronous distributed gradient descent to train a neural network. As in Chap-
ter 7 we work with the MNIST dataset [LBBH98], available from https://yann.
lecun.com/exdb/mnist/. We recall that the original dataset was downloaded
and stored in an hdf5 file, with the input data normalized by the maximum
value of a pixel (255).
import numpy as np
import to r ch
import to r ch . nn as nn
import to r ch . nn . f u n c t i o n a l as F
import to r ch . optim as optim

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/

23.5. MPI Communication 451

from to r ch . autograd import V a r i a b l e
import to r ch . d i s t r i b u t e d as d i s t

import h5py
import t ime
import os

import subprocess
from mpi4py import MPI

num_nodes = d i s t . g e t _wo r l d_ s i z e ()
rank = d i s t . get_rank ()

backend = 'mpi '
d i s t . i n i t _p ro ce s s _g roup (backend , rank = rank , wo r l d_ s i z e =num_nodes)

dtype = to rch . F loa tTenso r

#Load MNIST da ta se t
MNIST_data = h5py . F i l e (' MNISTdata . hdf5 ' , ' r ')
x _ t r a i n = np . f l o a t 3 2 (MNIST_data [' x _ t r a i n '] [:])
y _ t r a i n = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t r a i n '] [: , 0]))
x _ t e s t = np . f l o a t 3 2 (MNIST_data [' x _ t e s t '] [:])
y _ t e s t = np . i n t 3 2 (np . a r r a y (MNIST_data [' y _ t e s t '] [: , 0]))

MNIST_data . c l o s e ()

#Number o f h idden u n i t s
H = 100

c l a s s MnistModel (nn . Module) :
def _ _ i n i t _ _ (s e l f) :

super (MnistModel , s e l f) . _ _ i n i t _ _ ()
i npu t i s 28x28
padding =2 f o r same padding
s e l f . f c 1 = nn . L i nea r (28 * 28 , H)
s e l f . f c 2 = nn . L i nea r (H , H)
s e l f . f c 3 = nn . L i nea r (H , 10)

def forward (s e l f , x) :
x = F . r e l u (s e l f . f c 1 (x))
x = F . dropout (x , p = 0 . 6 , t r a i n i n g = s e l f . t r a i n i n g)
x = F . r e l u (s e l f . f c 2 (x))
x = F . dropout (x , p = 0 . 6 , t r a i n i n g = s e l f . t r a i n i n g)
x = s e l f . f c 3 (x)
return F . log_so f tmax (x , dim=1)

model = MnistModel ()

A l l machines shou ld have a copy o f the same model
for param in model . parameters () :

t ensor0 = param . data
d i s t . a l l _ r educe (tensor0 , op= d i s t . reduce_op . SUM)
param . data = tensor0 *np . s q r t (np . f l o a t (num_nodes))

model . cuda ()

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

452 23. Distributed Training

LR = 0 . 001

op t im i z e r = optim . Adam(model . parameters () , l r =LR)

ba t ch_ s i z e = 1000
L_ Y_ t r a i n = len (y _ t r a i n)

model . t r a i n ()

t r a i n _ l o s s = []
t r a i n _a c cu = []

for epoch in range (10) :
t ime1 = time . t ime ()

I _permuta t ion = np . random . permutat ion (L _ Y_ t r a i n)
x _ t r a i n = x _ t r a i n [I_permutat ion , :]
y _ t r a i n = y _ t r a i n [I _permuta t ion]

fo r i in range (0 , L_Y_ t r a in , ba t ch_ s i z e) :
apply . cuda () to move to GPU
x_ t r a i n_ba t ch = to rch . F loa tTenso r (x _ t r a i n [i : i + ba tch_s i ze , :])
y _ t r a i n_ba t ch = to rch . LongTensor (y _ t r a i n [i : i + ba t ch_ s i z e])
data , t a r g e t = V a r i a b l e (x _ t r a i n_ba t ch) . cuda () , V a r i a b l e (

y _ t r a i n_ba t ch) . cuda ()
op t im i z e r . ze ro_grad ()
output = model (data)
l o s s = F . n l l _ l o s s (output , t a r g e t)
l o s s . backward () # Ca l c u l a t e g r ad i e n t s
t r a i n _ l o s s . append (l o s s . data [0])
A l l - Reduce Communication
for param in model . parameters () :

t ensor0 = param . grad . data . cpu ()
d i s t . a l l _ r educe (tensor0 , op= d i s t . reduce_op . SUM)
tensor0 / = f l o a t (num_nodes)
param . grad . data = tensor0 . cuda ()

op t im i z e r . s tep () # Update parameters

p r ed i c t i o n = output . data . max (1) [1]
accuracy = (f l o a t (p r e d i c t i o n . eq (t a r g e t . data) . sum ()) / f l o a t (

ba t ch_ s i z e)) * 100
t r a i n _a c cu . append (accuracy)

t ime2 = time . t ime ()
t ime_e lapsed = time2 - t ime1
i f (rank == 0) :

pr in t (epoch , accuracy , t ime_e lapsed)

A few elements of the above code deserve to be highlighted. First, all pro-
cesses are initialized with the same model parameters. Second, the parameter
gradients are summed across all processes using theMPI All Reduce operation.
Then, the gradients are normalized by dividing by the number of processes to
obtain the average gradient from all of the processes’ minibatch gradients. The

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.7. PythonMPI Communication 453

above code is for the case of 𝑁 processes (ranks) on 𝑁 machines each with one
GPU (i.e., one process per GPU). MPI-based synchronous gradient descent can
also be implemented for the case of a cluster of machines with multiple GPUs
per machine.

23.6. Point-to-point MPI Communication

The All Reduce communication operation in the previous section is a form of
collective communicationwhere all machines (or processes) communicate with
each other. This simple communication operation is sufficient for distributed
synchronous gradient descent and can be used for distributed training of nearly
all deep learning models in practice. More complex communication is also
possible via point-to-point MPI communication operations. These operations
can send data from a specific process 𝑖 to a specific process 𝑗.

The following code uses point-to-point communication to move a tensor
between a process 𝑖 and the other processes
num_nodes = d i s t . g e t _wo r l d_ s i z e ()
rank = d i s t . get_rank ()
i = 0
N = num_nodes
for j in range (N) :

t enso r = to rch . F loa tTenso r (k *np . ones (1))
i f (i ! = j) :

i f rank == i :
d i s t . send (t enso r = tensor , ds t = j)

i f (rank == j) :
d i s t . r ecv (t enso r = tensor , s r c = i)

The above code sends a tensor from process 𝑖 to all of the other ranks. The
communication is blocking since operations on processes 𝑖 and 𝑗 halt until the
communication between 𝑖 and 𝑗 is completed. The number of communications𝑁 can be changed as long as it less than the total number of nodes. That is, it
is permissible to use point-to-point communications between a subset of the
total number of processes. For example, if 𝑁 = 2, the tensor will be sent from
process 𝑖 = 0 to process 𝑗 = 1 only. Point-to-point communication allows for
complex distributed computing tasks which, in general, can be a function of
all work/operations/outputs across the entire cluster of machines. It should
be noted though that constant point-to-point communication of large tensors
between large numbers of machines can significantly increase communication
costs, slowing down the progress of the overall code.

23.7. PythonMPI Communication

MPI communication can also be directly run in Python scripts, which can be
used for Python-only (e.g., numpy) operations as well as PyTorch code. The

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

454 23. Distributed Training

commands are similar to the distributed PyTorch MPI commands described
above. Some example scripts are provided below. These examples solve the
simple problem of minimizing the objective function,

Λ(𝜃) = 12𝔼[(𝑌 − 𝜃)2],
with stochastic gradient descent. The minibatch stochastic gradient descent
algorithm is

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 1𝑀 𝑀∑𝑗=1(𝑦(𝑘,𝑗) − 𝜃𝑘),
where 𝑦(𝑘,𝑗) are i.i.d. samples from the random variable 𝑌 . The distributed
(synchronous) stochastic gradient algorithm with 𝑁 processes becomes

𝐺(𝑘,𝑖) = 1𝑀0
(𝑖+1)𝑀0∑𝑗=𝑖𝑀0

(𝑦(𝑘,𝑗) − 𝜃𝑘),
𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘 1𝑁 𝑁∑𝑖=1𝐺(𝑘,𝑖),

where𝐺(𝑘,𝑖) is the gradient calculated for an independent minibatch of size𝑀0
on process 𝑖. The gradient estimate from process 𝑖 is therefore 𝐺(𝑘,𝑖), and these
gradient estimates are averaged together to provide a more accurate gradient
estimate to update the parameter 𝜃. The total minibatch size is 𝑁 × 𝑀0. The
distributed training can be implemented via the following code.
import numpy as np
from mpi4py import MPI

name = MPI . Get_processor_name ()
comm = MPI . COMM_WORLD
rank = comm. Get_rank ()
num_nodes = i n t (comm. Ge t _ s i z e ())

N = 100000
I n i t i a l _ L R = 0 . 1
M0 = 10000000
the ta = np . ones (1)

for k in range (N) :

LR = I n i t i a l _ L R / (1 . 0 + k / 1000 . 0)

Y = np . random . randn (M0)
G = - 1 . 0 * (Y - the ta)
G = np .mean (G) *np . ones (1)

i f (k # p r i n t (' rank ' , rank , ' G on each i n d i v i d u a l p ro ce s s ' , G)

G = comm. a l l r e du c e (G , op=MPI . SUM)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.7. PythonMPI Communication 455

G = G/ f l o a t (num_nodes)

i f (k # p r i n t (' rank ' , rank , 'G a f t e r ave rag ing ac ro s s a l l p r o c e s s e s
' , G)

the ta = the ta - LR *G

i f (k pr in t (' k ' , k , ' rank ' , rank , ' the ta ' , t he ta)

As before, a rank is assigned to each process and the All Reduce command
sums the gradients across all of the different processes. The (commented-out)
print statements can be included to confirm that the All Reduce command is
summing the gradients from the different processes.

As an example of point-to-point communication, we reimplement the
above synchronous distributed gradient descent algorithmusing point-to-point
communications:
import numpy as np
from mpi4py import MPI

name = MPI . Get_processor_name ()
comm = MPI . COMM_WORLD
rank = comm. Get_rank ()
num_nodes = i n t (comm. Ge t _ s i z e ())

N = 100000
I n i t i a l _ L R = 0 . 1
M0 = 1000
the ta = np . ones (1)

for k in range (N) :

LR = I n i t i a l _ L R / (1 . 0 + k / 1000 . 0)

i f rank > 0 :

Y = np . random . randn (M0)
G = - 1 . 0 * (Y - the ta)
G = np .mean (G) *np . ones (1)

comm. Send (G , dest =0 , tag =13)

i f rank == 0 :

G = np . ze ros (1)
for j in range (1 , num_nodes) :

G_temporary = np . ones (1)
comm. Recv (G_temporary , source = j , tag =13)
G = G + G_temporary

G = G/ f l o a t (num_nodes - 1)

the ta = the ta - LR *G

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

456 23. Distributed Training

i f rank == 0 :
for j in range (1 , num_nodes) :

comm. Send (theta , des t = j , tag =13)
i f rank > 0 :

comm. Recv (theta , source = 0 , tag = 13)

i f (k pr in t (' k ' , k , ' rank ' , rank , ' the ta ' , t he ta)

In the above code, process 0 contains the trained parameter. Processes1, . . . , 𝑁 − 1 calculate gradient estimates and send them to process 0. Using
these gradient estimates, process 0 updates the model parameter. Then, the
new updated model parameter is communicated back to the other processes1, . . . , 𝑁−1. The above point-to-point communicationswill not be as efficient as
theMPI All Reduce command. However, it serves as a simple example demon-
strating how to use point-to-point communications.

MPI communication can also be used formodel-parallelized training. That
is, different parts of the model will be evaluated on different processes/ma-
chines. Communication will occur to calculate the overall model output and
the model parameter gradients. Model parallelization is useful when the size
of the model is so large it may not fit on a single machine. We will demonstrate
model parallelization via simple example (which could be extended to more
complex models). Consider the model and objective function,

Λ(𝜃) = 12𝔼[‖𝑌 − 𝜃𝑋‖2],
where 𝑌 is an 𝑞 × 1 vector, 𝜃 is a 𝑞 × 𝑑 matrix, and 𝑋 is a 𝑑 × 1 vector. If𝑞 × 𝑑 is very large, the computational cost of the matrix multiplication 𝜃𝑋 will
be large. If the matrix is very large, the matrix 𝜃 may not even be able to be
stored inmemory. Thematrixmultiplication can be distributed acrossmultiple
processes via

𝜃𝑋 = 𝜃(0)𝑋(0) +⋯+ 𝜃(𝑁−1)𝑋(𝑁−1)
= 𝑁−1∑𝑖=0 𝜃(𝑖)𝑋(𝑖),

where 𝜃(𝑖) is thematrix 𝜃∶,𝑖𝑀∶(𝑖+1)𝑀 ,𝑋(𝑖) is thematrix𝑋𝑖𝑀∶(𝑖+1)𝑀,∶, and𝑀 = 𝑑𝑁
(assuming for simplicity that 𝑑 is an integer multiple of 𝑁). We will perform
the calculation 𝜃(𝑖)𝑋(𝑖) on process 𝑖 and then communicate the result to the
other processes. Example code is provided below (for simplicity, we let 𝑞 = 1,𝑌 = ∑𝑑𝑗=1 𝑋𝑖, and 𝑋𝑖 ∼ 𝒩(0, 1)).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.7. PythonMPI Communication 457

import numpy as np
from mpi4py import MPI

name = MPI . Get_processor_name ()
comm = MPI . COMM_WORLD
rank = comm. Get_rank ()
num_nodes = i n t (comm. Ge t _ s i z e ())

N = 100000
I n i t i a l _ L R = 0 . 1
d_per_process = 2
d = d_per_process *num_nodes
the ta = np . ze ros (d_per_process)

for k in range (N) :

LR = I n i t i a l _ L R / (1 . 0 + k / 1000 . 0)

X = np . random . randn (d_per_process)
Y = np . sum (X)
Y = Y *np . ones (1)
f = np . dot (theta , X)
f = f *np . ones (1)

f = comm. a l l r e du c e (f , op=MPI . SUM)
Y = comm. a l l r e du c e (Y , op=MPI . SUM)

G = - 1 . 0 * (Y [0] - f [0]) * X

the ta = the ta - LR *G

E r r o r = np .mean (np . abs (the ta - 1 . 0))

i f (k pr in t (' k ' , k , ' rank ' , rank , ' E r r o r ' , E r r o r)

In the above code, 𝜃(𝑖)𝑋(𝑖) is calculated separately on each process. Then,
using an allreduce operation, the 𝜃(𝑖)𝑋(𝑖) are communicated and summed to
produce∑𝑁−1𝑖=0 𝜃(𝑖)𝑋(𝑖). Finally, the parameter gradients for 𝜃(𝑖) are calculated
separately on each process and updated with stochastic gradient descent.

We now extend this approach for model-parallelized training of a neural
network. Recall that we have previously used data-parallelization to paral-
lelize the calculation of gradients across the data samples in a dataset. In data-
parallelization, each machine calculates the model parameter gradients on a
subset of the overall dataset (or minibatch). Each machine will have a copy
of the model, and communication only occurs to sum the gradient estimates
from all of the machines. In model-parallelization, each machine only stores
part of the model. Communication between machines must therefore occur to
evaluate the model output itself even on a single data sample. Furthermore,
communication must also necessarily occur to calculate the gradient (i.e., the
backpropagation step) for a single data sample.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

458 23. Distributed Training

Consider a single-layer neural network

𝔪(𝑥; 𝜃) = 𝐻∑𝑗=1𝐶𝑗𝜎(𝑊 𝑗,∶𝑥 + 𝑏𝑗),
where the parameters are 𝜃 = {𝐶,𝑊, 𝑏} and𝐻 is the number of hidden units. If
the number of hidden units 𝐻 is very large, then𝔪(𝑥; 𝜃) will be computation-
ally expensive to evaluate. The evaluation of the neural network can be easily
distributed across multiple machines:

𝔪(𝑥; 𝜃) = 𝑁−1∑𝑖=0 𝔪𝑖(𝑥; 𝜃),
𝔪𝑖(𝑥; 𝜃) = (𝑖+1)𝐻0∑𝑖𝐻0

𝐶𝑗,∶𝜎(𝑊 𝑗,∶𝑥 + 𝑏𝑗),
where 𝑁 × 𝐻0 = 𝐻. The model 𝔪𝑖(𝑥; 𝜃) is evaluated on machine 𝑖 and and
then the neural network output 𝔪(𝑥; 𝜃) is calculated by an All Reduce com-
munication which sums the𝔪𝑖(𝑥; 𝜃) from all of the machines. Example code
is provided below:
import numpy as np
from mpi4py import MPI

name = MPI . Get_processor_name ()
comm = MPI . COMM_WORLD
rank = comm. Get_rank ()
num_nodes = i n t (comm. Ge t _ s i z e ())

H0 = 1000
H = num_nodes *H0
d = 100

Parameter ma t r i c e s
W = np . random . randn (H0 , d)
b = np . random . randn (H0 , 1)
C = np . random . randn (1 , H0)

def s igmoid (x) :
sigma = np . exp (x) / (1 . 0 + np . exp (x))
return sigma

def Neural_Network (x) :
Hidden_Layer = s igmoid (np . dot (W, x) + b)
f = np . dot (C , Hidden_Layer)
f = comm. a l l r e du c e (f , op=MPI . SUM)
return f [0] , Hidden_Layer

#Example
x = np . random . randn (d , 1)
f , Hidden_Layer = Neural_Network (x)
i f rank == 0 :

pr in t (f)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

23.9. Exercises 459

The above code evaluates𝐻0 hidden units on each process, where the neu-
ral network has in total 𝐻 = 𝑁 × 𝐻0 with 𝑁 total processes. Similarly, the
backpropagation step can also be distributed across the different machines. In
the case of a single-layer network, the only communication required is to cal-
culate the output of the neural network. The model parameter derivatives can
then be calculated separately on each process.
def Backward (x , y , f , Hidden_Layer) :

e = - (y - f)
C_de r i v = e * Hidden_Layer
de l t a = e *C [0 , :]
z _de r i v = Hidden_Layer [: , 0] * (1 . 0 - Hidden_Layer [: , 0]) * de l t a
B_der i v = z _de r i v
W_deriv = np . dot (z _de r i v [: , None] , np . t ranspose (x))

return C_der iv , B_der iv , W_deriv

For multi-layer neural networks, the values of the hidden units must also
be communicated between the different processes. The implementation of this
slightly more complex distributed algorithm is left as an exercise (see Exercise
23.6).

23.8. Brief Concluding Remarks

Training deep learning models can be computationally expensive due to the
size of the model (i.e., the large number of parameters) as well as the size of
the dataset. In many real-world machine learning training tasks, the compu-
tational cost can become a significant obstacle to training models with a single
machine. Data-parallelization can address this challenge by distributing sub-
sets of the minibatch data samples across multiple machines in order to calcu-
late their gradients. For largemodels, themodel itself can be distributed across
multiple machines, which typically will also require implementation of a dis-
tributed version of the backpropagation algorithm. For more examples and ad-
ditional discussion of parallel computing in deep learning, it is recommended
to read PyTorch’s documentatation on distributed training of deep learning and
the article [DCM+12].
23.9. Exercises

Exercise 23.1. Using the code provided for the MNIST dataset, measure its
strong scaling and weak scaling as a function of the number of machines.

Exercise 23.2. Prove that the distributed minibatch stochastic gradient de-
scent update converges to gradient descent as the number ofmachines𝑁 → ∞.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

460 23. Distributed Training

Exercise 23.3. Implement asynchronous stochastic gradient descent using
MPI point-to-point communication operations.

Exercise 23.4. Modify the distributed training code to train a convolution net-
work on the MNIST dataset.

Exercise 23.5. Use the distributed training code to train a convolutionnetwork
on theCIFAR10 dataset. Measure strong scaling andweak scaling as a function
of the number of machines.

Exercise 23.6. Develop a distributed algorithm for training a model-paralle-
lized two-layer neural network and implement it in Python.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Chapter 24

Automatic
Differentiation

24.1. Introduction

Deep learning involves large, complex, nonlinear models with large numbers
of parameters which must be trained. Examples include multi-layer fully con-
nected networks, deep convolution networks, residual networks, and recurrent
networks. There is a highly flexible choice of model architectures within each
of these model classes. Developing deep learning models typically involves
evaluating a series of different architectures. Each time the model architecture
changes, the backpropagation algorithm also changes. Rederiving the back-
propagation algorithm via the chain rule for each new model architecture is
time-consuming and would substantially limit developing new models.

Automatic differentiation (AD) is a numerical algorithm to evaluate the
backpropagation rule (i.e., the gradients with respect to model parameters) for
a very general class of functions, including deep learning model architectures.
The user only has to define themodel architecture (i.e., the function) and then,
given the model definition, AD will then evaluate the gradient for the model.
This allows for the user to rapidly develop, train, and evaluate a series of deep
learning models without having to rederive the backpropagation rule via the
chain rule for each new model variation.

Automatic differentiation is especially useful for large-scale models with
large numbers of intermediate functions and parameters (e.g., large language
models or residual networks with hundreds of layers).

461

10.1090/gsm/252/25

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

462 24. Automatic Differentiation

24.2. Reverse-mode versus Forward-mode Differentiation

We will first review reverse-mode and forward-mode differentiation. As an
example, consider the sequence of functions𝑧ℓ = 𝔪ℓ(𝑧ℓ−1, 𝑥; 𝜃),𝑧1 = = 𝔪1(𝑥; 𝜃),(24.1)

where 𝑥 is the input data and 𝜃 is the parameter to be trained. Let 𝑥, 𝜃, and 𝑧ℓ
be vectors of length 𝑑𝑥, 𝑑𝜃, and 𝑑ℓ, respectively. For ℓ > 1, the function𝔪ℓ is
therefore a map𝔪ℓ ∶ ℝ𝑧ℓ−1×𝑑𝑥×𝑑𝜃 → ℝ𝑑ℓ . For ℓ = 1,𝔪1 ∶ ℝ𝑑𝑥×𝑑𝜃 → ℝ𝑑ℓ . The
final model output is 𝔪(𝑥; 𝜃) = 𝑧𝐿,
and we are interested in gradients of the following function with respect to the
parameters 𝜃, Λ(𝜃) = 𝜌(𝔪(𝑥; 𝜃), 𝑦),
where 𝑦 is a vector of length 𝑑𝐿 and the function 𝜌 ∶ ℝ𝑑𝐿×𝑑𝐿 → ℝ𝑑𝑂 . In ma-
chine learning, Λ(𝜃) is typically the loss function—which is scalar-valued—
and therefore 𝑑𝑂 = 1.
24.2.1. Reverse-mode Differentiation. We will first review reverse-mode
differentiation, which is equivalent to the backpropagation algorithm. Definê𝑧ℓ = 𝜕Λ𝜕𝑧ℓ , which is a 𝑑𝑂 × 𝑑ℓ matrix. By the chain rule,

̂𝑧ℓ = ̂𝑧ℓ+1 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃).
Reverse-mode differentiation sequentially calculates ̂𝑧𝐿 → ̂𝑧𝐿−1 → ⋯ →̂𝑧1. The parameter gradient is a 𝑑𝑂 × 𝑑𝜃 matrix which can be evaluated via𝜕Λ𝜕𝜃 = 𝐿∑ℓ=1 ̂𝑧ℓ 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃).(24.2)

The computational cost of reverse-mode differentiation depends upon the
functional form of𝔪ℓ(𝑧, 𝑥; 𝜃). Typical deep learningmodels involve linearma-
trix multiplications followed by elementwise nonlinearities. Let’s consider an
example and evaluate its computational cost. Let𝔪ℓ(𝑧, 𝑥; 𝜃) = 𝜎(𝑊ℓ𝑧 𝑧+𝑊ℓ𝑥 𝑥)
where 𝜎(⋅) is an elementwise nonlinear activation function,𝑊ℓ𝑧 is a parameter
matrix with dimensions 𝑑ℓ × 𝑑ℓ−1, and𝑊ℓ𝑥 is a parameter matrix with dimen-
sions 𝑑ℓ × 𝑑𝑥. 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) = 𝜎′(𝑊ℓ𝑧 𝑧 + 𝑊ℓ𝑥 𝑥) ⊙ 𝑊ℓ𝑧 , which is a 𝑑ℓ × 𝑑ℓ−1
matrix. Note that the elementwise multiplication 𝑣 = 𝜎′(𝑊ℓ𝑧 𝑧 + 𝑊ℓ𝑥 𝑥) ⊙ 𝑊ℓ𝑧
is defined as 𝑣𝑖𝑗 = (𝜎′(𝑊ℓ𝑧 𝑧 +𝑊ℓ𝑥 𝑥))𝑖(𝑊ℓ𝑧)𝑖𝑗.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

24.2. Reverse-mode versus Forward-mode Differentiation 463

The equation ̂𝑧ℓ+1 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃) = ̂𝑧ℓ+1𝑣 therefore involves a 𝑑𝑂×𝑑ℓ ma-
trix multiplied by a 𝑑ℓ × 𝑑ℓ−1 matrix, which requires 𝒪(𝑑𝑂 × 𝑑ℓ × 𝑑ℓ−1) arith-
metic operations. Note that 𝑊ℓ𝑧 𝑧 + 𝑊ℓ𝑥 𝑥) has been calculated in the forward
evaluation of the function and is therefore not included in the computational
cost of the backpropagation algorithm. The evaluation of the elementwise non-
linear activation function will be assumed to be small compared to the matrix
multiplications. Consequently, the backpropagation algorithm will approxi-
mately require the following number of arithmetic operations to calculate the
derivatives (̂𝑧ℓ)𝐿−1ℓ=1 : 𝐿∑ℓ=2𝑑𝑂 × 𝑑ℓ × 𝑑ℓ−1,
where we have assumed that the computational cost of calculating ̂𝑧𝐿 is rela-
tively small when 𝐿 is large. If 𝑑ℓ = 𝑑, then the total number of arithmetic
operations becomes (𝐿 − 1) × (𝑑𝑂 × 𝑑2).

In addition, we have to account for the computational cost of the formula
(24.2). 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) involves the calculation of the derivatives𝜕𝔪ℓ𝜕𝑊ℓ𝑥 (𝑧ℓ−1, 𝑥; 𝜃) = 𝜎′(𝑊ℓ𝑧 𝑧 +𝑊ℓ𝑥 𝑥)𝑥⊤,𝜕𝔪ℓ𝜕𝑊ℓ𝑧 (𝑧ℓ−1, 𝑥; 𝜃) = 𝜎′(𝑊ℓ𝑧 𝑧 +𝑊ℓ𝑥 𝑥)𝑧⊤,(24.3)

which require𝒪(𝑑ℓ×𝑑𝑥) and𝒪(𝑑ℓ×𝑑ℓ−1) arithmetic operations, respectively.
Therefore, ̂𝑧ℓ 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) requires approximately 𝒪(𝑑𝑂 × 𝑑ℓ × (𝑑𝑥 + 𝑑ℓ−1))
arithmetic operations. If 𝑑ℓ = 𝑑, the total number of arithmetic operations is
approximately (𝐿 − 1) × (𝑑𝑂 × 2𝑑2) + 𝐿 × (𝑑𝑂 × 𝑑 × 𝑑𝑥).(24.4)

24.2.2. Forward-mode Differentiation. In forward-mode differentiation,
we move from the beginning of the sequence of functions (ℓ = 1) to the end
(ℓ = 𝐿 and Λ(𝜃)) when calculating the derivatives. Forward-mode differenti-
ation tracks the derivative 𝑧ℓ with respect to the parameters 𝜃, in contrast to
reverse-mode differentiation which tracks the derivative of Λ(𝜃) with respect
to 𝑧ℓ. Define ̃𝑧ℓ = 𝜕𝑧ℓ𝜕𝜃 . By the chain rule,̃𝑧ℓ = 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) + 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃) ̃𝑧ℓ−1,
where 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) is a 𝑑ℓ × 𝑑𝜃 matrix, 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃) is a 𝑑ℓ × 𝑑ℓ−1 matrix,
and ̃𝑧ℓ−1 is a 𝑑ℓ−1×1matrix. Forward-mode differentiation sequentially tracks

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

464 24. Automatic Differentiation

̃𝑧1 → ̃𝑧2 →⋯ → ̃𝑧𝐿. The parameter gradient is𝜕Λ𝜕𝜃 = 𝜕𝜌𝜕𝑧𝐿 (𝑧𝐿, 𝑦) ̃𝑧𝐿.
Let us now analyze the computational cost of forward-mode differentiation

for the specific function𝔪ℓ(𝑧, 𝑥; 𝜃) = 𝜎(𝑊ℓ𝑧 𝑧 + 𝑊ℓ𝑥 𝑥). Since 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃) is
a 𝑑ℓ × 𝑑ℓ−1 matrix and ̃𝑧ℓ−1 is a 𝑑ℓ−1 × 𝑑𝜃 matrix, the number of arithmetic
operations for 𝜕𝔪ℓ𝜕𝑧 (𝑧ℓ−1, 𝑥; 𝜃) ̃𝑧ℓ−1 is𝒪(𝑑ℓ×𝑑ℓ−1×𝑑𝜃). 𝜕𝔪ℓ𝜕𝜃 (𝑧ℓ−1, 𝑥; 𝜃) requires𝒪(𝑑ℓ × 𝑑𝑥 + 𝑑ℓ × 𝑑ℓ−1) operations; see equation (24.3). Combining these esti-
mates (and assuming that the elementwise nonlinear activation function has a
small cost compared with the matrix multiplications), the total computational
cost is approximately

𝐿∑ℓ=1(𝑑ℓ × 𝑑𝑥 + 𝑑ℓ × 𝑑ℓ−1 + 𝑑ℓ × 𝑑ℓ−1 × 𝑑𝜃),(24.5)

wherewe have assumed that the computational cost of 𝜕𝜌𝜕𝑧𝐿 (𝑧𝐿, 𝑦) ̃𝑧𝐿 is relatively
small compared to equation (24.5) when 𝐿 is large. If 𝑑ℓ = 𝑑, then the total
number of arithmetic operations becomes𝐿 × (𝑑 × 𝑑𝑥 + 𝑑2 + 𝑑2 × 𝑑𝜃).(24.6)

24.2.3. Comparison of Forward and Reverse Differentiation. Let’s now
compare the computational costs of reverse-mode and forward-mode differen-
tiation in equations (24.4) and (24.6), respectively. If 𝑑𝑂 is large and 𝑑𝜃 is small,
then forward-mode differentiation will have a much lower cost than reverse-
mode differentiation. However, in deep learning we typically consider models
where 𝑑𝑂 = 1 (a scalar objective function or loss) and 𝑑𝜃 (the number of pa-
rameters) is very large. Then, it is clear that reverse-mode differentiation has
amuch lower computational cost since (24.6) grows linearly in 𝑑𝜃.
24.3. Introduction to PyTorch Automatic Differentiation

Both forward-mode and reverse-mode differentiation can be implemented in
computer algorithms for general classes of functions. This is referred to as au-
tomatic differentiation.

Wewill focus on using PyTorch for reverse-mode automatic differentiation.
PyTorch is a define-by-run framework where the function (which will be differ-
entiated) is determined/defined at runtime and then can be subsequently dif-
ferentiated. This provides a high degree of flexibility, since the function to be
differentiated can dynamically be defined (and change) at runtime. Examples
include conditionals (e.g., if-else statements) and for-loops of variable length.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

24.3. Introduction to PyTorch Automatic Differentiation 465

In contrast, define-and-run automatic differentiation software would first
define a static function that cannot be changed during runtime andwould then
be differentiated. PyTorch is also widely used since its syntax is Pythonic (i.e.,
very similar to standard Python code) and is seamlessly integrated into Python.
Function evaluation and differentiation can be easily run on GPUs, which sig-
nificantly accelerates training ofmodels involving large numbers of parameters
and large datasets.

PyTorch provides highly general automatic differentiation for calculating
the gradients of scalar functions. Consider the following example:

import to r ch

x = to rch . ones (2)
x . r equ i r e s _g r ad =True
f = to rch . sum (x ** 3 + x ** 2)
f . backward ()

The first line initializes the tensor which is the input to the function. The
second line uses “x.requires _grad=True” to indicate that we would like to take
the derivative of the function output with respect to the input variable 𝑥. In
the fourth line, the “.backward()” operation implements PyTorch’s automatic
differentiation to differentiate the function output 𝑓 with respect to the input
variable 𝑥. The gradients which are calculated by automatic differentiation
are stored in the tensor “x.grad.data”. Note that PyTorch’s standard automatic
differentiation with the backward() operation requires that the output of the
function to be differentiated be a scalar (and not a vector or tensor). In ma-
chine learning we will typically be evaluating the gradient of the loss, which is
a scalar, and therefore this covers the vast majority of machine learning appli-
cations.

If the tensors are located on the GPU, the automatic differentiation will
also be performed on the GPU. For large tensor operations, this typically sig-
nificantly accelerates the calculation of gradients:

import to r ch

x = to rch . ones (2) . cuda ()
x . r equ i r e s _g r ad =True
f = to rch . sum (x ** 3 + x ** 2)
f . backward ()

pr in t (x . grad . data)

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

466 24. Automatic Differentiation

If the machine has multiple GPUs, we can place the tensor on the 𝑗th GPU
using the command “x = torch.ones(2).cuda(device = j)”. Then, the gradients
would also be calculated on the 𝑗th GPU.

The computational graph showing the sequence of operations which
PyTorch keeps track of to calculate the chain rule can be displayed. Consider
the following sequence of functions:

x = to rch . ones (2) . cuda ()
x . r equ i r e s _g r ad =True
f = to rch . sum (x ** 3 + x ** 2)
f = 2 * f
f = to r ch . s igmoid (f)
f = 5 * f
f . backward ()

PyTorch keeps track of the sequence of operations (and intermediate func-
tion outputs) in order to calculate the chain rule. The computational graph
(and order in which the chain rule is applied) can be displayed via the follow-
ing command:

g = f . g rad_ fn
pr in t (g)
g = f . g rad_ fn . n e x t _ f unc t i on s [0] [0]
pr in t (g)

while (bool (g . n e x t _ f unc t i on s)) :
g = g . n e x t _ f unc t i on s [0] [0]
pr in t (g)

For the specific example of above, the code above displays the following
computational graph:

<MulBackward0 ob j e c t a t 0x7811a52425f0 >
<SigmoidBackward0 ob j e c t a t 0x7811a5242740 >
<MulBackward0 ob j e c t a t 0x7811a52425f0 >
<SumBackward0 ob j e c t a t 0x7810e41a53f0 >
<AddBackward0 ob j e c t a t 0x7810e41a52a0 >
<PowBackward0 ob j e c t a t 0x7811a5242650 >
<AccumulateGrad ob j e c t a t 0x7810e41a4f40 >

PyTorch is able to differentiate a wide class of functions. We next provide a
slightly more complex example of a single-layer neural network:

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

24.3. Introduction to PyTorch Automatic Differentiation 467

Dimens ion o f i npu t data
d = 2
#Number o f h idden u n i t s
H = 5
I npu t data
x = to rch . randn ((d , 1))

#Weight parameter ma t r i c e s
W = torch . randn ((H , d))
B = to rch . randn ((H , 1))
C = to rch . randn ((1 , H))

W. r equ i r e s _g r ad = True
B . r equ i r e s _g r ad = True
C . r equ i r e s_g r ad = True

HiddenLayer = to rch . s igmoid (to r ch . matmul (W, x) + B)
f = to rch . matmul (C , HiddenLayer)

f . backward ()

pr in t (W. grad . data , B . grad . data , C . grad . data)

The above example can also be conveniently implemented by creating a
neural network module:

import to r ch
import to r ch . nn as nn
import to r ch . optim as optim

Dimens ion o f i npu t data
d = 1
#Number o f h idden u n i t s
H = 100

c l a s s S ing leLaye rNeura lNe twork (nn . Module) :
def _ _ i n i t _ _ (s e l f) :

super (S ing leLayerNeura lNetwork , s e l f) . _ _ i n i t _ _ ()

s e l f . f c 1 = nn . L i nea r (d , H) . type (to r ch . F loa tTenso r)
s e l f . f c 2 = nn . L i nea r (H , 1 , b i a s = Fa l s e) . type (to rch . F loa tTenso r)

def forward (s e l f , x) :

HiddenLayer = to rch . s igmoid (s e l f . f c 1 (x))
f = s e l f . f c 2 (HiddenLayer)

return f

model = S ing leLaye rNeura lNe twork ()

#Move model to GPU
model . cuda ()

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

468 24. Automatic Differentiation

LR = 0 . 001
op t im i z e r = optim . RMSprop (model . parameters () , l r = LR , momentum=0 . 0)

M in i ba t ch s i z e
M = 10000

#Number o f o p t im i z a t i o n s t ep s
T = 100000

for i in range (T) :

op t im i z e r . ze ro_grad ()

x = to rch . randn (M, 1) . cuda ()
y = x ** 2

f = model (x)

Loss = to rch . mean ((y - f) ** 2)

Loss . backward ()

op t im i z e r . s tep ()

pr in t (i , Loss . detach () . cpu () . numpy ())

The above example trains a neural network to represent a parabola on a
randomly sampled datapoints. The optimizer object implements the updates of
the parameters. In this case, the RMSProp optimizer is chosen, although other
choices exist (e.g., standard gradient descent or ADAM). “Loss.backward()” cal-
culates the gradients via automatic differentiation.

The gradients of the parameters are available in the fields “model.fc1.
weight.grad.data”, “model.fc1.bias.grad.data”, and “model.fc2.weight.grad.
data”. The parameters are updated with the RMSProp algorithm when “opti-
mizer.step()” is called.

PyTorch, by default, accumulates gradients. This means that every time
“optimizer.step()” is called, the calculated gradients are added to the current
tensors “model.fc1.weight.grad.data”, “model.fc1.bias.grad.data”, and “model.
fc2.weight.grad.data”. That is—by default—these “grad” fields in the neural
networkmodel will actually be the sum of all calculated gradients over all time
steps. The sum of the gradients would then be used to update the parameters,
which is not the correct gradient descent algorithm. Instead, we would like
to only use the gradients calculated at the current training iteration 𝑖. This
can be implemented by including “optimizer.zero _grad()” at the beginning of
each training iteration. The command “optimizer.zero _grad()” sets all of the
gradient fields in the neural network model to zero.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

24.3. Introduction to PyTorch Automatic Differentiation 469

PyTorch can also differentiate over piecewise continuously differentiable
functions which are defined with condition (if-else) statements:

x = to rch . randn (2)
x . r equ i r e s _g r ad =True
i f (x [0] < 0) :

f = to r ch . sum (x ** 3 + x ** 2)
e l se :

f = to r ch . sum (x)
f . backward ()

pr in t (x [0] , x . grad . data)

Ifwewould like to exclude certain parts of the function frombeing included
in the chain rule, we can use the “.detach()” operation:

x = to rch . ones (2) . cuda ()
x . r equ i r e s _g r ad =True
f = to rch . sum (x ** 3 + (x ** 2) . detach ())
f . backward ()

pr in t (x . grad . data)

In the example above, the output of 𝑥2 is treated as a constant and is not
differentiated. Only the first term 𝑥3 is differentiated. From the perspective
of PyTorch’s automatic differentiation, the output of 𝑥2 is frozen as a constant
whose derivative is zero.

In some cases we may not wish to calculate the gradients of a series of
PyTorch operations or functions. An example is when an already trained Py-
Torchmodel is being purely used for predictions (inference). Keeping track of
the computational graph—including storing data from intermediate function
evaluations—in order to calculate the chain rule can have significant mem-
ory costs. If the model is only being evaluated for predictions (and it is not
necessary to keep track of the computational graph), we can use the following
command:

with to rch . no_grad () :
x = to rch . ones (2) . cuda ()
x . r equ i r e s _g r ad =True
f = to rch . sum (x ** 3 + (x ** 2) . detach ())

The computational graph for the function evaluations within the “with
torch.no _grad():” block will not be stored. Automatic differentiation of the

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

470 24. Automatic Differentiation

function 𝑓 is, therefore, not possible. In general, (already trained) PyTorch
models which are being used for predictions (sometimes referred to as
inference) should be evaluated using “with torch.no _grad():” or “with
torch.inference _mode():” to reduce memory costs.

Automatic differentiation of large models for large minibatches can have
both high memory and computational costs. Large numbers of arithmetic op-
erations are required to calculate the chain rule. In the forward evaluation of
the model, the intermediate function outputs must be stored to be later used
to evaluate the chain rule, which can require large amounts of memory. If an
out-of-memory error occurs, the minibatch size can be reduced. The standard
choice for data types in deep learning is 32-bit floating point (float32), which
has lowermemory cost than the default choice in scientific computing of 64-bit
floating point (float64). An alternative approach with even lower memory cost
is 16-bit floating point (float16). Finally, as discussed in the chapter on dis-
tributed model training, Chapter 23, the calculation of the gradient of a mini-
batch can be parallelized across multiple GPUs/machines.

24.4. Brief Concluding Remarks

A fundamental element of deep learning is the design and evaluation of dif-
ferent model architectures, which include a large number of hyperparameters.
Typically, a series of different models will be designed and evaluated on data.
The chain rule for the backpropagation algorithmwill change each time a new
model is designed. If the backpropagation algorithm had to be rederived from
scratch for each newmodel, this would be a significant obstacle to the develop-
ment of deep learning models. Automatic differentiation addresses this chal-
lenge by automatically calculating the chain rule (and gradients with respect
to themodel parameters). Automatic differentiation therefore facilitatesmodel
development and evaluation. For a more detailed discussion of automatic dif-
ferentiation, we recommend reading [ea19], [Gil08], and [GW08].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Part 3

Appendixes

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Appendix A

BackgroundMaterial
in Probability

A.1. Basic Notions in Probability

In this section we review basic things about probability theory and we visit
notions that are frequently seen in the book. There aremany excellent classical
texts for probability theory and convergence topics, see for example [Bil99].

Definition A.1. Consider a probability space (Ω,ℱ, ℙ) where• Ω is the sample space.• ℱ is the so-called 𝜎-algebra (i.e., a collection of subsets of Ω which
is closed under complements and countable unions and which also
contains Ω.)• ℙ is the probability measure.

Definition A.2. Let (Ω1, ℱ1) and (Ω2, ℱ2) be two measurable spaces. A func-
tion 𝑋 ∶ Ω1 ↦ Ω2 is called a random variable if the event {𝜔 ∈ Ω1 ∶ 𝑋(𝜔) ∈𝐴} ∈ ℱ1 for every 𝐴 ∈ ℱ2.
Definition A.3. The expectation of 𝑋 is defined as

𝔼(𝑋) = ∫Ω 𝑋(𝜔)𝑑ℙ(𝜔).
More generally, if 𝑋 ∶ Ω1 ↦ Ω2 is a random variable per the previous

definition and 𝑓 ∶ Ω2 ↦ ℝ is an ℱ2 measurable function, then𝔼(𝑓(𝑋)) = ∫Ω 𝑓(𝑋(𝜔))𝑑ℙ(𝜔).
473

10.1090/gsm/252/26

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

474 A. Background Material in Probability

Note that ℙ(𝑋 ∈ 𝐴) = ∫𝐴 𝑑ℙ(𝜔). Hence, 𝔼(1𝑋∈𝐴) = ℙ(𝑋 ∈ 𝐴).
Definition A.4. If we can write 𝑑ℙ(𝑥) = 𝑓(𝑥)𝑑𝑥, then 𝑓 is called the proba-
bility density of 𝑋 , or pdf for short.
Definition A.5. Let 𝑝 > 0. We say that 𝑋 ∈ 𝐿𝑝(ℙ) if ‖𝑋‖𝐿𝑝 = (𝔼|𝑋|𝑝)1/𝑝 < ∞.

DefinitionA.6. Let 𝑋 ∈ 𝐿2(ℙ). We define the variance of the random variable𝑋 as Var(𝑋) = 𝔼 [(𝑋 − 𝔼(𝑋))2] .
If 𝑋 is a multidimensional random variable, then we are talking about the
variance-covariance matrix which is defined asVar(𝑋) = 𝔼 [(𝑋 − 𝔼(𝑋)) ⋅ (𝑋 − 𝔼(𝑋))⊤] .

Let us see some examples now.

Example A.7. If 𝑋 is distributed as an Exp(𝜆) random variable with 𝜆 > 0,
then ℙ[𝑋 > 𝑥] = 𝑒−𝜆𝑥. In this case the probability density function takes
the form 𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 for 𝑥 ≥ 0 and 𝑓(𝑥) = 0 for 𝑥 < 0. In regards to its
expectation and variance we have, respectively,

𝔼𝑋 = ∫∞
0 𝑥𝜆𝑒−𝜆𝑥𝑑𝑥 = 1𝜆,

Var 𝑋 = ∫∞
0 (𝑥 − 1𝜆)2 𝜆𝑒−𝜆𝑥𝑑𝑥 = 1𝜆2 .

Example A.8. If 𝑋 is distributed as a Uniform(𝜃1, 𝜃2) random variable with𝜃1 < 𝜃2, then for 𝑥 ∈ (𝜃1, 𝜃2), ℙ[𝑋 > 𝑥] = 𝜃2−𝑥𝜃2−𝜃1 . In this case the probability
density function takes the form 𝑓(𝑥) = 1𝜃2−𝜃1 for 𝑥 ∈ (𝜃1, 𝜃2), and 𝑓(𝑥) = 0
otherwise. In regards to its expectation and variance we have, respectively,

𝔼𝑋 = 𝜃2 + 𝜃12 ,
Var 𝑋 = (𝜃2 − 𝜃1)212 .

Example A.9. If 𝑋 is distributed as a Normal(𝜇, 𝜎2) (or equivalently 𝑋 ∼𝑁(𝜇, 𝜎2)) random variable, then the probability density function takes the form𝑓(𝑥) = 1√2𝜋𝜍2 𝑒− 12 (𝑥−𝜇)2𝜍2 for 𝑥 ∈ ℝ. In regard to its expectation and variance we
have, respectively, 𝔼𝑋 = 𝜇,Var 𝑋 = 𝜎2.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.2. Basics on Stochastic Processes 475

DefinitionA.10. The conditional probability of an event𝐵 given another event𝐴 is ℙ(𝐵|𝐴) = ℙ(𝐵∩𝐴)ℙ(𝐴) .

If 𝐴, 𝐵 are independent events, then ℙ(𝐵|𝐴) = ℙ(𝐵) since in that case we
have that ℙ(𝐵 ∩ 𝐴) = ℙ(𝐵)ℙ(𝐴).

If 𝑓𝑋,𝑌 (𝑥, 𝑦) is the joint distribution of (𝑋, 𝑌), then for a nice function 𝑔 ∶ℝ2 ↦ ℝ,
𝔼 [𝑔(𝑋, 𝑌)|𝑌 = 𝑎] = ∫∞−∞ 𝑔(𝑥, 𝑎)𝑓𝑋,𝑌 (𝑥, 𝑎)𝑑𝑥∫∞−∞ 𝑓𝑋,𝑌 (𝑥, 𝑎)𝑑𝑥 .

Theorem A.11 (Bayes theorem). Let 𝐴, 𝐵 be two events with ℙ(𝐴) ≠ 0 andℙ(𝐵) ≠ 0. Then, we have thatℙ(𝐴|𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴)ℙ(𝐵) .
In general, if {𝑍𝑗} is a countable partition ofΩ (i.e.,⋃𝑗 𝑍𝑗 = Ωwith𝑍𝑖∩𝑍𝑗 =∅ for 𝑖 ≠ 𝑗), then

ℙ(𝑍𝑗|𝐵) = ℙ(𝐵|𝑍𝑗)ℙ(𝑍𝑗)∑𝑗 ℙ(𝐵|𝑍𝑗)ℙ(𝑍𝑗) ,
and ℙ(𝐵) = ∑𝑗 ℙ(𝐵|𝑍𝑗)ℙ(𝑍𝑗).
A.2. Basics on Stochastic Processes

Definition A.12. A stochastic process 𝑋𝑡 for 𝑡 ∈ 𝒯 is a collection of random
variables from (Ω1, ℱ1) (the sample space) to (Ω2, ℱ2) (the state space).

Wewrite without distinction 𝑋𝑡, 𝑋(𝑡, 𝜔), 𝑋𝑡(𝜔) for a stochastic process with
the understanding that all of these notations mean the same thing. In many
typical situations Ω2 = ℝ𝑑, and in that case ℱ2 is the 𝜎-algebra of the subsets
of ℝ𝑑.
Definition A.13. For 𝑘 ∈ ℕ and (𝑡1, . . . , 𝑡𝑘) ∈ 𝒯𝑘, the collection of random
variables (𝑋𝑡1 , . . . , 𝑋𝑡𝑘) is called the finite dimensional distribution of 𝑋 .
Definition A.14. A filtration on (Ω,ℱ) is a non-decreasing family {ℱ𝑡}𝑡∈𝒯 of
sub-𝜎-algebras of ℱ such that ℱ𝑠 ⊂ ℱ𝑡 ⊂ ℱ for 𝑠 ≤ 𝑡. We set ℱ∞ = 𝜎 (⋃𝑡∈𝒯 ℱ𝑡).
The filtration generated by 𝑋𝑡 is denoted by ℱ𝑋𝑡 = 𝜎 (𝑋𝑠; 𝑠 ≤ 𝑡). We say that 𝑋𝑡
is adapted to ℱ𝑡 if 𝑋𝑡 is ℱ𝑡-measurable.
Definition A.15. Let 𝑋𝑡 be defined on (Ω,ℱ, ℙ) and letℱ𝑋𝑡 = 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡). We
say that {𝑋𝑡} is a Markov process ifℙ(𝑋𝑠+𝑡 ∈ 𝐴|ℱ𝑋𝑠) = ℙ(𝑋𝑠+𝑡 ∈ 𝐴|𝑋𝑠),
for all 𝑠, 𝑡 ∈ 𝒯 and for all 𝐴 in the state space.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

476 A. Background Material in Probability

Ifℱ𝑡 is a filtration such thatℱ𝑋𝑡 ⊂ ℱ𝑡 for every 𝑡 ∈ 𝒯 andℙ(𝑋𝑠+𝑡 ∈ 𝐴|ℱ𝑋𝑠) =ℙ(𝑋𝑠+𝑡 ∈ 𝐴|𝑋𝑠), then we say that 𝑋𝑡 is a Markov process with respect to ℱ𝑡.
Markov propertymeans that the past is irrelevant and only the presentmat-

ters when it comes to future behaviour!

Definition A.16. We write ℙ(𝑋𝑠+𝑡 ∈ 𝐴|ℱ𝑋𝑠) = 𝑝(𝑠, 𝑡, 𝑋𝑠, 𝐴), and we call the
function 𝑝 the transition function.

The transition function satisfies the Chapman-Kolmogorov equation,

∫𝐸 𝑝(𝑠, 𝑡, 𝑥, 𝑑𝑦)𝑝(𝑡, 𝑢, 𝑦, 𝐴) = 𝑝(𝑠, 𝑢, 𝑥, 𝐴),
for every 𝑠 < 𝑡 < 𝑢 and 𝐴 ∈ ℬ(𝐸).
Definition A.17. Letℱ𝑡 be a filtration on (Ω,ℱ, ℙ) and let 𝑋𝑡 be adapted toℱ𝑡.
We say that 𝑋𝑡 is an ℱ𝑡-martingale if

(1) 𝔼|𝑋𝑡| < ∞ for all 𝑡 ∈ 𝒯.
(2) 𝔼[𝑋𝑡+𝑠|ℱ𝑠] = 𝑋𝑠 for all 𝑠, 𝑡 ∈ 𝒯.
One of the main examples of a Markov stochastic process is the so-called

Brownian motion, otherwise called the Wiener process.

Definition A.18. A one-dimensional Brownian motion𝑊𝑡 ∶ Ω × ℝ+ ↦ ℝ is
a real-valued stochastic process with the following properties:

(1) 𝑊0 = 0 almost surely.
(2) 𝑡 ↦ 𝑊𝑡 is continuous.
(3) 𝑊𝑡 has independent increments. This means that if 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘,

then𝑊𝑡𝑛+1 −𝑊𝑡𝑛 is independent of𝑊𝑡𝑚+1 −𝑊𝑡𝑚 for any 𝑛 + 1 ≤ 𝑚.
(4) 𝑊𝑡 −𝑊𝑠 is distributed as 𝑁(0, 𝑡 − 𝑠).
A 𝑑-dimensional Brownian motion is a collection of one-dimensional

Brownian motions, i.e., 𝑊𝑡 = (𝑊1𝑡 , . . . ,𝑊𝑑𝑡), where 𝑊 𝑖𝑡 , 𝑖 = 1, . . . , 𝑑 is a col-
lection of one-dimensional independent Brownian motions.

Some important properties of Brownian motion follow:

(1) 𝔼𝑊𝑡 = 0.
(2) 𝔼𝑊𝑡𝑊𝑠 = min(𝑡, 𝑠).
(3) 𝔼[𝑊𝑡|ℱ𝑊𝑠] = 𝔼𝑊𝑠 (martingale property).
(4) 𝑊𝑡 is a Markov process.
(5) 𝑊𝑐𝑡 = √𝑐𝑊𝑡 where 𝑐 is a real-valued positive constant.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.3. Notions of Convergence and Tightness 477

(6) 𝑡 ↦ 𝑊𝑡 is continuous but nowhere-differentiable. In this regard, ob-
serve that

Var[𝑊𝑡+∆𝑡 −𝑊𝑡Δ𝑡] = 1(Δ𝑡)2𝔼 [𝑊𝑡+∆𝑡 −𝑊𝑡 − 𝔼[𝑊𝑡+∆𝑡 −𝑊𝑡]]2
= 1(Δ𝑡)2 (𝑡 + Δ𝑡 − 𝑡)
= 1Δ𝑡 → ∞, as Δ𝑡 → 0.

While this calculation is not a proof that 𝑡 ↦ 𝑊𝑡 is not differentiable,
it is strongly suggestive of this fact.

The next result is one of themost used resultswhen it comes tomartingales.

TheoremA.19 (Doob, see [KS98]). Let {𝑋𝑡, 𝑡 ∈ 𝒯} be amartingale with respect
to the filtration ℱ𝑡 that is also right-continuous. Then, for every 𝜆 > 0, 𝑝 ≥ 1,𝑎 > 1 we have

(1) ℙ (sup0≤𝑠≤𝑡 |𝑋𝑠| > 𝜆) ≤ 1𝜆𝑝𝔼|𝑋𝑡|𝑝 for 𝑡 such that 𝔼|𝑋𝑡|𝑝 < ∞.

(2) 𝔼 (sup0≤𝑠≤𝑡 |𝑋𝑠|𝑎) ≤ (𝑎𝑎−1)𝑎 𝔼|𝑋𝑡|𝑎 for 𝑡 such that 𝔼|𝑋𝑡|𝑎 < ∞.
(3) If sup𝑡 𝔼|𝑋𝑡| < ∞, then the limit 𝑌(𝜔) = lim𝑡→∞ 𝑋𝑡(𝜔) exists almost

surely and 𝔼|𝑌| < ∞.

A.3. Notions of Convergence and Tightness

There are many different ways in which a sequence of random variables {𝑋𝑛}
can converge to a random variable 𝑋 as 𝑛 → ∞. Below we review the main
notions of convergence, discuss their relations and present some of the related
key results.

Definition A.20. We say that we have the following.

(1) Convergence in probability (𝑋𝑛 𝑝→ 𝑋): for all 𝜖 > 0,lim𝑛→∞ℙ(|𝑋𝑛 − 𝑋| > 𝜖) = 0.
(2) Convergence with probability 1 or almost surely (𝑋𝑛 𝑎.𝑠.→ 𝑋):ℙ(lim𝑛→∞𝑋𝑛 = 𝑋) = 1.
(3) Convergence in ℒ𝑝 (𝑋𝑛 ℒ𝑝→ 𝑋):lim𝑛→∞𝔼|𝑋𝑛 − 𝑋|𝑝 = 0.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

478 A. Background Material in Probability

(4) Weak Convergence (𝑋𝑛 𝑤→ 𝑋): for every continuous and bounded
function 𝑓(𝑥) we have thatlim𝑛→∞𝔼𝑓(𝑋𝑛) = 𝔼𝑓(𝑋).

Remark A.21 (Relations between different convergence notions). We have
that • 𝑋𝑛 𝑎.𝑠→ 𝑋 implies 𝑋𝑛 𝑝→ 𝑋 .• 𝑋𝑛 ℒ𝑝→ 𝑋 implies 𝑋𝑛 𝑝→ 𝑋 .• 𝑋𝑛 𝑝→ 𝑋 implies 𝑋𝑛 𝑤→ 𝑋

A very useful tool in proving convergence in probability is using Cheby-
chev’s inequality: for every 𝛿 > 0,

ℙ (|𝑋𝑛 − 𝑋| > 𝛿) ≤ 𝔼(𝑋𝑛 − 𝑋)2𝛿2 .
The books [Bil99] and [EK86] are standard resources on the topic of con-

vergence of probability measures. In particular, very useful tools in proving
and characterizing weak convergence are the following theorems.

Theorem A.22. Let {𝑋𝑛𝑡 } be a sequence of continuous stochastic processes de-
fined on (Ω,ℱ, ℙ) satisfying the following conditions

(1) There exists 𝑝 > 0 such that sup𝑛∈ℕ 𝔼|𝑋𝑛0 |𝑝 < ∞.
(2) There exist 𝑎, 𝑏 > 0 and 𝑐 = 𝑐(𝑇) > 0 such thatsup𝑛∈ℕ 𝔼|𝑋𝑛𝑡 − 𝑋𝑛𝑠 |𝑎 ≤ 𝑐|𝑡 − 𝑠|1+𝑏

for every 𝑇 and for every 𝑡, 𝑠 ∈ [0, 𝑇].
Then, if ℙ𝑛 is the law of 𝑋𝑛, {ℙ𝑛} is a tight sequence of probability measures.

Theorem A.22(2) shows that 𝑋𝑛𝑡 will have convergent subsequence. In or-
der to uniquely characterize the limit, we need convergence of the finite di-
mensional distributions. In particular, we have

Theorem A.23. Let {𝑋𝑛}, 𝑋 be continuous stochastic processes defined on(Ω,ℱ, ℙ) satisfying the conditions:
(1) {𝑋𝑛}∞𝑛=1 is a tight sequence.
(2) The finite dimensional distributions of {𝑋𝑛} converge to those of 𝑋 in[0,∞).

Then, we have that 𝑋𝑛⋅ 𝑤→ 𝑋⋅ in 𝐶([0,∞)).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.4. Convergence in the Skorokhod Space 𝐷𝐸([0, 𝑇]) 479

A.4. Convergence in the Skorokhod Space 𝐷𝐸([0, 𝑇])
Let 0 < 𝑇 < ∞, and let 𝐸 be a given set that will be more precisely character-
ized below. In this section we briefly review the basics for the Skorokhod space𝐷𝐸([0, 𝑇]) (definition follows below) and for some of its convergence proper-
ties. This space is very well suited for proving convergence of families of sto-
chastic processes and is heavily used inChapters 19 and 20. An excellent source
on characterization and convergence of stochastic process is the book [EK86]
to which we refer the interested reader for further details.

In practice, formany stochastic processes we can assume that sample paths
are right continuous and have left limits at each time point (the so-called càdlàg
processes). This means that for a stochastic process 𝑋𝑡 ∶ [0, 𝑇] ↦ 𝐸, we shall
have that for each 𝑡 ∈ [0, 𝑇], the limits lim𝑠→𝑡+ 𝑋𝑠 = 𝑋𝑡 and lim𝑠→𝑡− 𝑋𝑠 = 𝑋𝑡−
exist. Such stochastic processes compose the space 𝐷𝐸([0, 𝑇]).

Our interest in this book is primarily in convergence for measure-valued
stochastic processes in which cases we are mainly interested in complete (i.e.,
every Cauchy sequence in a given space converges in that space) and separa-
ble metric spaces (i.e., a topological space containing a countable everywhere-
dense set). Under the appropriate metric, 𝑑 (defined below), the space𝐷𝐸([0, 𝑇]) is a separable metric space if 𝐸 is separable, and (𝐷𝐸([0, 𝑇]), 𝑑) com-
plete if (𝐸, 𝑟) is a complete metric space (this is a theorem). In particular, let-
ting 𝑍 be the collection of Lipschitz continuous, strictly increasing functions𝜁 ∶ [0,∞) ↦ [0,∞) such that

𝛾(𝜁) = sup0≤𝑡<𝑠 ||log 𝜁(𝑠) − 𝜁(𝑡)𝑠 − 𝑡 || < ∞,
and 𝑞 = 𝑟 ∧ 1 = min{𝑟, 1}, set, for 𝑥, 𝑦 ∈ 𝐷𝐸([0, 𝑇])

𝑑(𝑥, 𝑦) = inf𝜁∈𝑍 [𝛾(𝜁) ∨∫𝑇
0 𝑒−ᵆ (sup𝑡≥0 𝑞 (𝑥𝑡∧ᵆ, 𝛾(𝜁𝑡 ∧ 𝑢))) 𝑑𝑢] .

An important result in this direction is that if 𝑋𝑛, 𝑋 ∈ 𝐷𝐸([0, 𝑇]), thenlim𝑛→∞ 𝑑(𝑋𝑛, 𝑋) = 0 if and only if there exists a sequence {𝜁𝑛} in 𝑍 such thatlim𝑛→∞ 𝛾(𝜁𝑛) = 0 and lim𝑛→∞ sup0≤𝑡≤𝑇 𝑟(𝑋𝑛𝑡 , 𝑋𝜁𝑛𝑡) = 0.
We say that the sequence {𝑋𝑛} is relatively compact if the sequence of the

corresponding probability measures ℙ𝑛 is compact. The following two results
are very useful in practice and are used routinely in Chapters 19 and 20.

Theorem A.24 (Theorem 7.2, Chapter 3 of [EK86]). Assume that (𝐸, 𝑟) is a
complete and separable metric space and consider the family of stochastic pro-
cesses {𝑋𝑛} with sample paths in 𝐷𝐸([0, 𝑇]). Then {𝑋𝑛} is relatively compact if
and only if the following hold.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

480 A. Background Material in Probability

• For every rational number 𝑡 ∈ [0, 𝑇] and 𝜖 > 0, there exists a compact
set 𝐾(𝑡, 𝜖) ⊂ 𝐸 such thatlim inf𝑛→∞ ℙ [𝑋𝑛𝑡 ∈ 𝐾(𝑡, 𝜖)] ≥ 1 − 𝜖.(A.1) • For every 0 < 𝑇 ′ ≤ 𝑇 and 𝜖 > 0, there exists a 𝛿 > 0 so thatlim sup𝑛→∞ ℙ [𝑤(𝑋𝑛, 𝛿, 𝑇 ′) ≥ 𝜖] ≤ 𝜖,
where𝑤(𝑥, 𝛿, 𝑇 ′) is the modulus of continuity of 𝑥 in the interval [0, 𝑇 ′]
defined as𝑤(𝑥, 𝛿, 𝑇 ′) = infpartition{𝑡𝑖}⊂[0,𝑇′],min(𝑡𝑖−𝑡𝑖−1)>𝛿max𝑖 sup𝑠,𝑡∈[𝑡𝑖−1,𝑡𝑖) 𝑟(𝑥𝑠, 𝑥𝑡).

Remark A.25 (Remark 7.3 in Chapter 3 of [EK86]). Let {𝑋𝑛} be a relatively
compact sequence. Then for every 𝑇 < ∞ and 𝜖 > 0, there exists a compact set𝐾(𝑇, 𝜖) ⊂ 𝐸 such thatlim inf𝑛→∞ ℙ [𝑋𝑛𝑡 ∈ 𝐾(𝑇, 𝜖) for 0 ≤ 𝑡 ≤ 𝑇] ≥ 1 − 𝜖.(A.2)

Theorem A.26 (Theorem 8.6, Chapter 3 of [EK86]). Assume that (𝐸, 𝑟) is a
complete and separable metric space and consider the family of stochastic pro-
cesses {𝑋𝑛} with sample paths in 𝐷𝐸([0, 𝑇]). Assume that condition (A.1) holds.
Then the following are equivalent.

(1) {𝑋𝑛} is relatively compact.
(2) For each 0 < 𝑇 ′ ≤ 𝑇, there exists 𝛽 > 0 and a family 𝜅𝑛(𝛿) with 0 <𝛿 < 1 of non-negative random variables such that the inequality holds𝔼 [𝑞𝛽(𝑋𝑛𝑡+ᵆ, 𝑋𝑛𝑡)|ℱ𝑛𝑡] 𝑞𝛽(𝑋𝑛𝑡 , 𝑋𝑛𝑡−𝑣) ≤ 𝔼 [𝜅𝑛(𝛿)|ℱ𝑛𝑡] ,

for 0 ≤ 𝑡 ≤ 𝑇 ′, 0 ≤ 𝑢 ≤ 𝛿, 0 ≤ 𝑣 ≤ 𝛿 ∧ 𝑡, ℱ𝑛𝑡 is the 𝜎-algebra generated
by 𝑋𝑛 up to time 𝑡, and in additionlim𝛿→0 lim sup𝑛→∞ 𝔼 [𝜅𝑛(𝛿)] = 0
and lim𝛿→0 lim sup𝑛→∞ 𝔼 [𝑞𝛽(𝑋𝑛𝛿 , 𝑋𝑛0)] = 0.

(3) For each 0 < 𝑇 ′ ≤ 𝑇, there exists 𝛽 > 0 such that
lim𝛿↓0 lim sup𝑛→∞ [sup𝜏∈𝑆𝑛(𝑇′) sup0≤ᵆ≤𝛿 𝔼(sup0<𝑣≤𝛿∧𝜏 𝑞𝛽(𝑋𝑛𝜏+ᵆ, 𝑋𝑛𝜏)𝑞𝛽(𝑋𝑛𝜏 , 𝑋𝑛𝜏−𝑣))] = 0,

where𝑆𝑛(𝑇 ′) is the collection of all discrete {ℱ𝑛𝑡 }-stopping times bounded
by 𝑇 ′, and in additionlim𝛿→0 lim sup𝑛→∞ 𝔼 [𝑞𝛽(𝑋𝑛𝛿 , 𝑋𝑛0)] = 0.
holds.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.5. Some Limiting Results and Concentration Bounds 481

Theorem A.27 (Theorem 9.1 in Chapter 3 of [EK86]). Assume that (𝐸, 𝑟) is a
complete and separable metric space, and consider the family of stochastic pro-
cesses {𝑋𝑛} with sample paths in 𝐷𝐸([0, 𝑇]). Assume that condition (A.2) holds.
In the topology of uniform convergence on compacts, consider a dense subset𝐺 of𝐶𝑏(𝐸). Then {𝑋𝑛} is relatively compact if and only if for each 𝑔 ∈ 𝐺, {𝑔(𝑋𝑛)} is
relatively compact in 𝐷ℝ([0, 𝑇]).

Note that in all of the above we can take 𝑇 to be∞, in which case the rel-
evant space is 𝐷𝐸([0,∞)]). The topic of characterization and convergence of
stochastic processes is very rich and very well developed in probability theory.
An excellent classicmanuscript coveringmany of the basic andmore advanced
related results is [EK86], towhich the interested reader is referred to for further
details and proofs.

A.5. Some Limiting Results and Concentration Bounds

Two of themost classical results in probability and statistics are the law of large
numbers and central limit theorem. We present them below.

Theorem A.28 (Law of large numbers). Let {𝑋𝑛} be a sequence of independent
and identically distributed random variables with 𝔼𝑋𝑛 = 𝜇 < ∞. Define 𝑌𝑁 =1𝑁 ∑𝑁𝑛=1 𝑋𝑛. Then, we have that

(1) 𝑌𝑁 𝑎.𝑠.→ 𝜇.
(2) If 𝔼|𝑋𝑛|𝑝 < ∞, then 𝑌𝑁 ℒ𝑝→ 𝜇.

Theorem A.29 (Central limit theorem). Let {𝑋𝑛} be a sequence of independent
and identically distributed random variables with 𝔼|𝑋𝑛|2 < ∞ such that 𝔼𝑋𝑛 =𝜇 andVar𝑋𝑛 = 𝜎2. Define 𝑆𝑁 = ∑𝑁𝑛=1𝑋𝑛−𝑁𝜇√𝑁𝜍 . Then, we have that 𝑆𝑁 𝑤→ 𝑁(0, 1).

Another useful result is that of Chernoff-type concentration bounds. We
present a special case of interest to us below. Bounds of this type are often
called Chernoff-Hoeffding bounds.

Lemma A.30 (Chernoff bound for Bernoulli random variables). Let {𝑋𝑛} be a
sequence of independent and identically Bernoulli distributed random variables
with ℙ(𝑋𝑛 = 1) = 𝑝 and ℙ(𝑋𝑛 = 0) = 1 − 𝑝. Define 𝑌𝑁 = 1𝑁 ∑𝑁𝑛=1 𝑋𝑛. Then
for any 𝛿 > 0, we have the estimate

ℙ (||𝑌𝑁 − 𝑝|| > 𝛿) ≤ 2𝑒− 𝑁𝛿22𝑝(1−𝑝) .
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

482 A. Background Material in Probability

Note that the Chernoff bound we just saw says something useful. It says
that if we want the average 𝑌𝑁 to be within a ball of radius 𝛿 from its expecta-
tion 𝑝 with probability at least 1 − 𝜖, then we would need to have

𝑁 ≥ 2𝑝(1 − 𝑝)𝛿2 log 2𝜖
samples in our disposal.

If we do not have information about 𝑝, then using the property that𝑝(1 − 𝑝) ≤ 1/4 (true since 𝑝 ∈ (0, 1)), we obtain the cruder (but perhaps more
useful) bounds

ℙ (||𝑌𝑁 − 𝑝|| > 𝛿) ≤ 2𝑒−2𝑁𝛿2
and

𝑁 ≥ 12𝛿2 log 2𝜖 .
To state the next convergence result, we need to introduce the notion of

quadratic variation.

Definition A.31. Let 𝑋𝑡 be a square integrable martingale with respect to ℱ𝑡,
i.e., 𝔼𝑋2𝑡 < ∞ for all 𝑡 ∈ 𝒯. Let {𝑡𝑁𝑛 } be a partition of [0, 𝑡]. Then, we define the
quadratic variation of 𝑋𝑡 to be

⟨𝑋⟩𝑡 = lim𝑁→∞
𝑁∑𝑛=1 (𝑋𝑡𝑁𝑛+1 − 𝑋𝑡𝑁𝑛)2 , in ℒ1.

Theorem A.32 (Martingale central limit theorem). Let {𝑀𝑡} be a sequence of
right continuous, square integrable martingales on a probability space (Ω,ℱ, ℙ)
with respect to a filtration ℱ𝑡. Let ⟨𝑀⟩𝑡 be its quadratic variation. Assume that• 𝑀0 = 0 almost surely.• 𝑀𝑡 has stationary increments.• There is a constant 𝜎 > 0 such that

lim𝑡→∞𝔼 [|| ⟨𝑀⟩𝑡𝑡 − 𝜎||] = 0.
Then, we have that

(1) 1√𝑡𝑀𝑡 𝑤→ 𝑁(0, 𝜎) as 𝑡 → ∞.

(2) 𝜖𝑀𝑡/𝜖2 𝑤→ √𝜎𝑊𝑡, as 𝜖 ↓ 0 where𝑊𝑡 is a Brownian motion.
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.6. Itô Stochastic Integral 483

A.6. Itô Stochastic Integral

In this section we shall introduce the Itô stochastic integral and go over some
of its main properties. We refer the interested reader to excellent textbooks
such as [KS98,Pro05,RW00a,RW00b] for a complete and rigorous treatment
of this subject.

Definition A.33. Let 𝑓(𝑡) ∶ [𝑎, 𝑏] ↦ ℝ and {𝑡𝑛}𝑁𝑛=0 be a partition of [𝑎, 𝑏], i.e.,𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑏. Then,• The variation of 𝑓(𝑡) on [𝑎, 𝑏] is defined to be
Variation(𝑓(𝑡)) = sup{𝑡𝑛}𝑁𝑛=0

𝑁−1∑𝑛=0 |𝑓(𝑡𝑛+1) − 𝑓(𝑡𝑛)|.
• 𝑓(𝑡) is of bounded variation if Variation(𝑓(𝑡)) < ∞.

At this pointwemention that the standardRiemann-Stieltjes integral of the
form∫𝑏𝑎 𝑔(𝑡)𝑑𝑓(𝑡) is well-defined only in the classical sense if 𝑓(𝑡) is of bounded
variation.

Then the question arises. Given that the Wiener process 𝑊𝑡 is not of
bounded variation, how then does one make sense of the integral ∫𝑏𝑎 𝑔(𝑡)𝑑𝑊𝑡 ?

For this purpose, we first state the following definition.

Definition A.34. For real numbers 𝑎 < 𝑏, we will say that 𝑔 ∶ [𝑎, 𝑏] ×Ω ↦ ℝ
belongs in the class ℒ[𝑎, 𝑏] if the following hold.• 𝑔 is ℬ([𝑎, 𝑏]) × ℱ-measurable.• 𝑔(𝑡, ⋅) is ℱ𝑡-measurable for every 𝑡.• ∫𝑏𝑎 𝔼[𝑔2(𝑡, ⋅)]𝑑𝑡 < ∞.

Then, if 𝑔 ∈ ℒ[0, 𝑡], the Itô integral is defined to be the ℒ2 limit of the
Riemann sum

𝐼(𝑡) ℒ2= lim𝑁→∞
𝑁−1∑𝑛=1 𝑔(𝑡𝑛−1)(𝑊𝑡𝑛 −𝑊𝑡𝑛−1),

where {𝑡𝑛}𝑁𝑛=1 is a partition of [0, 𝑡]. We shall write 𝐼(𝑡) = ∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠, and 𝐼(𝑡)
is called stochastic integral.

In contrast to the Riemann-Stieljes integral, where the point at which we
evaluate the function 𝑔 in the approximation above does not matter, the situa-
tion is different when it comes to stochastic integrals. In particular, if we write𝐼(𝑡) = ∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠 ≈ ∑𝑁−1𝑛−1 𝑏𝑛(𝑊𝑡𝑛 −𝑊𝑡𝑛−1), then the following hold:• If 𝑏𝑛 = 𝑔(𝑡𝑛−1), then we get the Itô stochastic integral that we defined

above.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

484 A. Background Material in Probability

• If 𝑏𝑛 = 12 [𝑔(𝑡𝑛−1) + 𝑔(𝑡𝑛)], thenwe get the so-called Stratonovich inte-
gral which is not the same as the Itô stochastic integral defined above.

Let us now close this section by collecting here some of the properties of
the stochastic integral 𝐼(𝑡) = ∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠.

(1) 𝔼 [∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠] = 0.
(2) 𝔼 (∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠)2 = 𝔼∫𝑡0 𝑔2(𝑠)𝑑𝑠 (Itô isometry).
(3) ∫𝑡0 (𝑎𝑓(𝑠) + 𝑏𝑔(𝑠)) 𝑑𝑊𝑠 = 𝑎∫𝑡0 𝑓(𝑠)𝑑𝑊𝑠 + 𝑏∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠.
(4) ∫𝑏𝑎 𝑓(𝑠)𝑑𝑊𝑠 = ∫𝑐𝑎 𝑓(𝑠)𝑑𝑊𝑠 + ∫𝑏𝑐 𝑓(𝑠)𝑑𝑊𝑠.
(5) ∫𝑏𝑎 𝑓(𝑠)𝑑𝑊𝑠 is ℱ𝑏-measurable.
(6) If lim𝑛→∞ 𝔼∫𝑏𝑎 (𝑓𝑛(𝑡) − 𝑓(𝑡))2𝑑𝑡 = 0, then lim𝑛→ ∫𝑏𝑎 𝑓𝑛(𝑡)𝑑𝑊𝑡 =∫𝑏𝑎 𝑓(𝑡)𝑑𝑊𝑡 in the ℒ2 sense.
(7) 𝔼 [∫𝑡0 𝑔(𝑠)𝑑𝑊𝑠|ℱ𝜌] = ∫𝜌0 𝑔(𝑠)𝑑𝑊𝑠 for every 𝜌 ≤ 𝑡.
(8) 𝔼 [∫𝑡𝜌 𝑔(𝑠)𝑑𝑊𝑠|ℱ𝜌] = 0.
(9) 𝔼 [(∫𝑡𝜌 𝑔(𝑠)𝑑𝑊𝑠)2 |ℱ𝜌] = 𝔼 [∫𝑡𝜌 𝑔2(𝑠)𝑑𝑠|ℱ𝜌].

A.7. Very Basics of Itô Stochastic Calculus

We refer the interested reader to excellent textbooks such as [KS98, Pro05,
RW00a,RW00b] for a comprehensive treatment of stochastic calculus. Here
we review the immediate concepts of interest used in this book.

Let (Ω,ℱ, ℙ) be a probability space equipped with a filtration {ℱ𝑡}𝑡≥0. Let𝑊𝑡 be an ℱ𝑡 Wiener process defined on (Ω,ℱ, ℙ) on 𝑑-dimensions.
Definition A.35. An Itô stochastic process on [0, 𝑇] with values in ℝ𝑑 is a
continuous stochastic process {𝑋𝑡, 𝑡 ≥ 0} such that for every 𝑡 ≥ 0,

𝑋𝑡 = 𝑋0 +∫𝑡
0 𝑏(𝑠)𝑑𝑠 +∫𝑡

0 𝜎(𝑠)𝑑𝑊𝑠, ℙ almost everywhere,
with 𝑋0 being ℱ0-measurable, 𝑏(𝑠), 𝜎(𝑠) being ℱ𝑠-measurable such that

ℙ[𝑑∑𝑖=1∫
𝑡

0 |𝑏𝑖(𝑠)|𝑑𝑠 + 𝑑∑𝑖=1
𝑚∑𝑗=1∫

𝑡
0 |𝜎𝑖,𝑗(𝑠)|2𝑑𝑠 < ∞] = 1

and for all 𝑡 ∈ [0, 𝑇].
Sometimes, we often write the differential form ̇𝑋𝑡 = 𝑏(𝑡) + 𝜎(𝑡)𝑊̇𝑡, but we

always mean the integral form stated above.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

A.7. Very Basics of Itô Stochastic Calculus 485

The celebrated Itô formula is nothing else but chain rule involving stochas-
tic integrals. In particular, let 𝑋𝑡 be an Itô stochastic process as defined above,𝑓 ∈ 𝒞2([0,∞) × ℝ]). Then, we have that

𝑓(𝑡, 𝑋𝑡) = 𝑓(0, 𝑋0)
+∫𝑡

0 [𝜕𝑓𝜕𝑡 (𝑠, 𝑋𝑠) + 𝑚∑𝑖=1 𝑏𝑖(𝑠) 𝜕𝑓𝜕𝑥𝑖 (𝑠, 𝑋𝑠)
+12 𝑑∑𝑗=1

𝑚∑𝑖,𝑘=1𝜎𝑖,𝑗(𝑠)𝜎𝑘,𝑗(𝑠) 𝜕2𝑓𝜕𝑥𝑖𝜕𝑥𝑘 (𝑠, 𝑋𝑠)] 𝑑𝑠
+∫𝑡

0
𝑑∑𝑗=1

𝑚∑𝑖=1𝜎𝑖,𝑗(𝑠) 𝜕𝑓𝜕𝑥𝑖 (𝑠, 𝑋𝑠)𝑑𝑊 𝑗𝑠 .
Notice that if we define

ℒ𝑠𝑓(𝑥) = 𝜕𝑓𝜕𝑡 (𝑠, 𝑥) + 𝑚∑𝑖=1 𝑏𝑖(𝑠) 𝜕𝑓𝜕𝑥𝑖 (𝑠, 𝑥) + 12 𝑑∑𝑗=1
𝑚∑𝑖,𝑘=1𝜎𝑖,𝑗(𝑠)𝜎𝑘,𝑗(𝑠) 𝜕2𝑓𝜕𝑥𝑖𝜕𝑥𝑘 (𝑠, 𝑥),

then we can write

𝑓(𝑡, 𝑋𝑡) = 𝑓(0, 𝑋0) +∫𝑡
0 ℒ𝑠𝑓(𝑋𝑠)𝑑𝑠 +∫𝑡

0
𝑑∑𝑗=1

𝑚∑𝑖=1𝜎𝑖,𝑗(𝑠) 𝜕𝑓𝜕𝑥𝑖 (𝑠, 𝑋𝑠)𝑑𝑊 𝑗𝑠 .
In particular, with 𝑓 ∈ 𝐶2(ℝ𝑑) the operator ℒ𝑠𝑓(𝑥) is called the infinitesi-

mal generator of the process 𝑋𝑡 and is defined to be
lim𝑡→0 𝔼𝑓(𝑡, 𝑋𝑡) − 𝑓(0, 𝑥)𝑡 = ℒ0𝑓(𝑥).

To see this is indeed true, let 𝑓 ∈ 𝐶2𝑏(ℝ𝑑), apply the Itô formula, and take
expectation (the mean of the stochastic integral will be zero) to obtain

1𝑡 [𝔼𝑓(𝑡, 𝑋𝑡) − 𝑓(0, 𝑥)] = 𝔼 [1𝑡 ∫𝑡
0 ℒ𝑠𝑓(𝑋𝑠)𝑑𝑠] .

Due to the fact now that 𝑋𝑡 is continuous, which implies that 𝑠 ↦ ℒ𝑠𝑓(𝑋𝑠)
is continuous and ℒ𝑓(⋅) is bounded, we indeed obtain that

lim𝑡→0 𝔼𝑓(𝑡, 𝑋𝑡) − 𝑓(0, 𝑥)𝑡 = ℒ0𝑓(𝑥).
Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

486 A. Background Material in Probability

A useful corollary of the general Itô formula is the so-called product for-
mula. In particular, consider two Itô stochastic processes,

𝑋𝑡 = 𝑋0 +∫𝑡
0 𝑏1(𝑠)𝑑𝑠 +∫𝑡

0 𝜎1(𝑠)𝑑𝑊𝑠,
𝑌𝑡 = 𝑌0 +∫𝑡

0 𝑏2(𝑠)𝑑𝑠 +∫𝑡
0 𝜎2(𝑠)𝑑𝑊𝑠.

Then, by applying the Itô formula to 𝑓(𝑥, 𝑦) = 𝑥𝑦, we have that
𝑋𝑡𝑌𝑡 = 𝑋0𝑌0 +∫𝑡

0 [𝑏1(𝑠)𝑌𝑠 + 𝑏2(𝑠)𝑋𝑠 + 𝜎1(𝑠)𝜎2(𝑠)] 𝑑𝑠
+∫𝑡

0 [𝜎1(𝑠)𝑌𝑠 + 𝜎2(𝑠)𝑋𝑠] 𝑑𝑊𝑠.
We conclude this section, by presenting the notion of strong solution to a

stochastic differential equation.

Definition A.36. Let 𝑏, 𝜎 be Borel-measurable functions, and let 𝜉 =(𝜉1, . . . , 𝜉𝑑) be ℱ0-measurable. 𝑋𝑡 is called a strong solution to
𝑋𝑡 = 𝜉 +∫𝑡

0 𝑏(𝑠, 𝑋𝑠)𝑑𝑠 +∫𝑡
0 𝜎(𝑠, 𝑋𝑠)𝑑𝑊𝑠,(A.3)

if the following hold:
(1) 𝑡 ↦ 𝑋𝑡 is continuous.
(2) 𝑋𝑡 is ℱ𝑡-measurable.
(3) ℙ(𝑋0 = 𝜉) = 1.
(4) ℙ [∑𝑑𝑖=1 ∫𝑡0 |𝑏𝑖(𝑠)|𝑑𝑠 +∑𝑑𝑖=1∑𝑚𝑗=1 ∫𝑡0 |𝜎𝑖,𝑗(𝑠)|2𝑑𝑠 < ∞] = 1, for all 𝑡 ∈[0, 𝑇].
(5) 𝑋𝑡 satisfies the differential equation (A.3) ℙ almost surely.
Then, we have the following theorem.

Theorem A.37. Let 𝑏, 𝜎 be such that• |𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)| + |𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)| ≤ 𝐾|𝑥 − 𝑦|,• |𝑏(𝑡, 𝑥)|2 + |𝜎(𝑡, 𝑥)|2 ≤ 𝐿(1 + |𝑥|2),
where 0 < 𝐾, 𝐿 < ∞. Let 𝔼𝜉2 < ∞. Then, the equation (A.3) has a unique strong
solution such that 𝔼(|𝑋𝑡|2) ≤ 𝐶(1 + 𝔼|𝜉|2)𝑒𝐶𝑡
with 0 < 𝐶 < ∞ and 𝑡 ∈ [0, 𝑇].

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Appendix B

BackgroundMaterial
in Analysis

B.1. Basic Inequalities Used in the Book

We present here some classical inequalities that are used in this book.• Cauchy-Schwarz inequality: for any 𝑎𝑘, 𝑏𝑘 ∈ ℝ
(𝑛∑𝑘=1 𝑎𝑘𝑏𝑘)

2 ≤ (𝑛∑𝑘=1 𝑎2𝑘) (
𝑛∑𝑘=1 𝑏2𝑘) .

In particular if 𝑏𝑘 = 1 for all 𝑘, then we obtain the special case
(𝑛∑𝑘=1 𝑎𝑘)

2 ≤ 𝑛(𝑛∑𝑘=1 𝑎2𝑘) .
• Hölder inequality: for any 𝑎𝑘, 𝑏𝑘 ∈ ℝ and𝑝, 𝑞 > 1 such that 1𝑝+ 1𝑞 = 1,

𝑛∑𝑘=1 |𝑎𝑘𝑏𝑘| ≤ (𝑛∑𝑘=1 |𝑎𝑘|𝑝)
1/𝑝 (𝑛∑𝑘=1 |𝑏𝑘|𝑞)

1/𝑞 .
• Young’s inequality with 𝜖 > 0,

|𝑎𝑏| ≤ 𝜖2𝑎2 + 12𝜖𝑏2.
487

10.1090/gsm/252/27

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

488 B. Background Material in Analysis

• Jensen inequality: for any convex function 𝜑 and the sequence {𝑎𝑘}
such that∑𝑛𝑘≥1 𝑎𝑘 = 1, we have

𝜑(𝑛∑𝑘=1 𝑎𝑘𝑥𝑘) ≤
𝑛∑𝑘=1 𝑎𝑘𝜑(𝑥𝑘).• Basic Grönwall inequality: for a non-negative function 𝛾(𝑡), if the in-

equality

𝑓(𝑡) ≤ 𝑔(𝑡) +∫𝑡
𝛼 𝛾(𝑠)𝑓(𝑠)𝑑𝑠 for all 𝑡 ∈ [𝛼, 𝑇]

holds, then we have

𝑓(𝑡) ≤ 𝑔(𝑡) +∫𝑡
𝛼 𝑔(𝑠)𝛾(𝑠)𝑒∫𝑡𝑠 𝛾(𝑟)𝑑𝑟𝑑𝑠 for 𝑡 ∈ [𝛼, 𝑇].

If, in addition 𝑔 is a non-decreasing function, then we have
𝑓(𝑡) ≤ 𝑔(𝑡)𝑒∫𝑡𝛼 𝛾(𝑟)𝑑𝑟 for 𝑡 ∈ [𝛼, 𝑇].

B.2. Basic Background in Analysis

We review some minimal background in analysis that will be useful for proofs
of mainly the universal approximation theorem results of Chapter 16. For
a more expanded discussion on real and functional analysis, the interested
reader is referred to classical manuscripts such as [Bre11,Lax02,RF10].

Theorem B.1 (Riesz representation theorem). Let 𝜙 ∶ 𝐻 ↦ ℝ be a bounded
linear functional onaHilbert space𝐻 endowedwith the inner product (⋅, ⋅). Then,
there is a unique element 𝑦𝜙 ∈ 𝐻 such that 𝜙(𝑥) = (𝑥, 𝑦𝜙) for all 𝑥 ∈ 𝐻. In ad-
dition ‖𝜙‖ = ‖𝑦𝜙‖.

An important example is the case where 𝐻 = 𝐿2(𝐾), the space of square
integrable functions, say on𝐾 ⊂ ℝ. Consider for example the case of𝐾 = [0, 1].
Then, if 𝜙 ∶ 𝐿2([0, 1]) ↦ ℝ is a bounded linear functional, then there is a
unique ℎ ∈ 𝐿2([0, 1]) such that 𝜙(𝑔) = ∫20 𝑔(𝑥)ℎ(𝑥)𝑑𝑥 for all 𝑔 ∈ 𝐿2([0, 1]).

For 𝑝 ≠ 2, the space 𝐿𝑝([0, 1]) is not a Hilbert space, but a similar result
still holds. In particular if 𝜙 ∈ 𝐿𝑝([0, 1]) ↦ ℝ is a bounded linear functional,
then there exists a unique ℎ ∈ 𝐿𝑞([0, 1]) such that 𝜙(𝑔) = ∫10 𝑔(𝑥)ℎ(𝑥)𝑑𝑥where1𝑝 + 1𝑞 = 1.

For the next result, we denote by 𝐶(𝐾) the space of continuous functions
on 𝐾.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

B.2. Basic Background in Analysis 489

Theorem B.2. Let 𝐾 be a compact set such that 𝐾 ⊂ ℝ𝑑, and let 𝜙 be a bounded
linear functional on 𝐶(𝐾). Then, there is a unique finite signed Borel measure 𝜇
on 𝐾 such that𝜙(𝑔) = ∫𝐾 𝑔(𝑥)𝜇(𝑑𝑥) for every 𝑔 ∈ 𝐶(𝐾), and ‖𝜙‖ = |𝜇|(𝐾).
Theorem B.3. Let 𝐾 be a compact set such that 𝐾 ⊂ ℝ𝑑, and let 𝜙 be a positive
linear functional on 𝐶(𝐾). Then, there is a unique finite Borel measure 𝜇 on 𝐾
such that 𝜙(𝑔) = ∫𝐾 𝑔(𝑥)𝜇(𝑑𝑥) for every 𝑔 ∈ 𝐶(𝐾).
Definition B.4. A subspace𝑈 of 𝑋 is dense in 𝑋 with respect to the norm ‖ ⋅ ‖
if for all 𝑥 ∈ 𝑋 , there exists a sequence {𝑢𝑘} ∈ 𝑈 such that 𝑢𝑘 → 𝑥 as 𝑘 → ∞.

Conversely, a subspace 𝑈 of 𝑋 is not dense in 𝑋 if there exists 𝑥0 ∈ 𝑋 such
that no elements 𝑢 ∈ 𝑈 are close to 𝑥0.
Lemma B.5. Let 𝑋 be a normed, linear space, and let 𝑈 ⊂ 𝑋 be a linear, non-
dense subset of 𝑋 . Then there exists a bounded, linear functional 𝐹 on 𝑋 , such
that 𝐹 ≠ 0 on 𝑋 (i.e., there is at least one point 𝑥′ ∈ 𝑋 such that 𝐹(𝑥′) ≠ 0) and𝐹(𝑢) = 0 for every 𝑢 ∈ 𝑈 .

For the next result we define 𝐼𝑑 = [0, 1]𝑑 to be the hypercube in 𝑑 dimen-
sions, and we letℳ(𝐼𝑑) be the space of finite signed measures on 𝐼𝑑.
Lemma B.6. Consider 𝑈 ⊂ 𝐶(𝐼𝑑) to be a linear, non-dense subset of 𝐶(𝐼𝑑).
Then, we have that there exists a measure 𝜇 ∈ ℳ(𝐼𝑑) with the property that∫𝐼𝑑 𝑔(𝑥)𝜇(𝑑𝑥) = 0 for all 𝑔 ∈ 𝑈 .
Proof of Lemma B.6. Let us consider Lemma B.5 with 𝑋 = 𝐶(𝐼𝑑). Then,
there exists a bounded linear functional 𝐹 ∶ 𝐶(𝐼𝑑) ↦ ℝ with the properties
that 𝐹 ≠ 0 on 𝐶(𝐼𝑑) and 𝐹(𝑢) = 0 for all 𝑢 ∈ 𝑈 . By Theorem B.3, there exists a𝜇 ∈ ℳ(𝐼𝑑) such that𝐹(𝑓) = ∫𝐼𝑑 𝑓(𝑥)𝜇(𝑑𝑥), for all 𝑓 ∈ 𝐶(𝐼𝑑).

Thus, for any 𝑔 ∈ 𝑈 , we get that 𝐹(𝑔) = ∫𝐼𝑑 𝑔(𝑥)𝜇(𝑑𝑥) = 0, concluding the
proof of the lemma. □

Remark B.7. Note that 𝐹 ≠ 0 in the previous lemma actually implies that𝜇 ≠ 0.
We conclude this section with the important Stone-Weierstrass theorem

that gives conditions onwhen a given setA is a dense subset of another set. This
then means that such a set A can be used for approximation purposes. Before

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

490 B. Background Material in Analysis

we present the theorem, we introduce the definition of algebra that separates
points.

Definition B.8. A subset 𝐴 ⊂ 𝐶(𝐾) is called an algebra, if the following hold:
(1) If 𝑓, 𝑔 ∈ 𝐴, then 𝑓 + 𝑔 ∈ 𝐴.
(2) if 𝑓 ∈ 𝐴 and 𝑐 ∈ ℝ, then 𝑐𝑓 ∈ 𝐴.
(3) If 𝑓, 𝑔 ∈ 𝐴, then 𝑓𝑔 ∈ 𝐴.

In addition, we say that an algebra 𝐴 separates points in 𝐾 if for all distinct𝑥, 𝑦 ∈ 𝐾, there exists 𝑓 ∈ 𝐴 such that 𝑓(𝑥) ≠ 𝑓(𝑦).
As an example of a set being an algebra, consider the set of polynomial

functions on an interval, say [𝑎, 𝑏]:
𝐴 = {𝑓(𝑥) = 𝑁∑𝑛=1 𝑐𝑛𝑥𝑘, 𝑥 ∈ [𝑎, 𝑏], 𝑐𝑛 ∈ ℝ,𝑁 = 1, 2, . . . } .

Then, one can check that 𝐴 is an algebra on 𝐶([𝑎, 𝑏]) and in addition one can
see that it separates points in [𝑎, 𝑏].
TheoremB.9 (Stone-Weierstrass theorem). Consider𝐾 to be a compact set𝐾 ⊂ℝ𝑑. Let𝐴 be an algebra of continuous real-valued functions on𝐾. Assume that𝐴
contains the constant functions and that it separates points in 𝐾. Then, we have
that 𝐴 is a dense subset of 𝐶(𝐾).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Bibliography

[ABMM18] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Understanding deep neural networks with
rectified linear units, ICLR (2018), 1–17.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou,Wasserstein generative adversarial net-
works, Proceedings of the 34th International Conference onMachine Learning (Doina Precup
and Yee Whye Teh, eds.), Proceedings of Machine Learning Research, vol. 70, PMLR, 06–11
Aug 2017, pp. 214–223.

[ADBB17] K. Arulkumaran, M.P. Deisenroth, M. Brundage, and A.A. Bharath, A brief survey of deep re-
inforcement learning, arXiv:1708.05866 (2017).

[ADH+19] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang, Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks, 36th Inter-
national Conference on Machine Learning, ICML 2019, 01 2019, pp. 477–502.

[Agr15] Alan Agresti, Foundations of linear and generalized linear models, Wiley Series in Probability
and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2015. MR3308143

[AGS08] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in
the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser
Verlag, Basel, 2008. MR2401600

[ALM23] Andrea Agazzi, Jianfeng Lu, and Sayan Mukherjee, Global optimality of elman-type RNNs in
themean-field regime, Proceedings of the 40th International Conference onMachine Learning
(Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, eds.), Proceedings of Machine Learning Research, vol. 202, PMLR, 23–29
Jul 2023, pp. 196–227.

[AOY19] D. Araujo, R. I. Oliveira, and D. Yukimura, Amean-field limit for certain deep neural networks.

[Bac24] F. Bach, Learning theory from first principles, MIT Press, 2024.

[Bar94] A. Barron,Approximationand estimation bounds for artificial neural networks,MachineLearn-
ing 14 (1994), no. 1, 115–133.

[BB24] Christopher M. Bishop and Hugh Bishop, Deep learning—foundations and concepts, Springer,
Cham, 2024, DOI 10.1007/978-3-031-45468-4. MR4719738

[BCN18] LéonBottou, FrankE. Curtis, and JorgeNocedal,Optimizationmethods for large-scalemachine
learning, SIAM Rev. 60 (2018), no. 2, 223–311, DOI 10.1137/16M1080173. MR3797719

[BD19] Dimitris Bertsimas and Jack Dunn, Machine learning under a modern optimization lens, first
ed., Dynamic Ideas, LLC, Belmont, Massachusetts, 2019.

491

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://arxiv.org/abs/1708.05866
https://mathscinet.ams.org/mathscinet-getitem?mr=3308143
https://mathscinet.ams.org/mathscinet-getitem?mr=2401600
https://mathscinet.ams.org/mathscinet-getitem?mr=4719738
https://mathscinet.ams.org/mathscinet-getitem?mr=3797719

492 Bibliography

[BDK+22] Jeremiah Birrell, Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, and Luc Rey-Bellet,(𝑓, Γ)-divergences: interpolating between𝑓-divergences and integral probabilitymetrics, J.Mach.
Learn. Res. 23 (2022), Paper No. [39], 70. MR4420764

[BEJ19] Christian Beck, Weinan E, and Arnulf Jentzen, Machine learning approximation algorithms
for high-dimensional fully nonlinear partial differential equations and second-order back-
ward stochastic differential equations, J. Nonlinear Sci. 29 (2019), no. 4, 1563–1619, DOI
10.1007/s00332-018-9525-3. MR3993178

[Ber03] P. Dimitris Bertsekas, Convex analysis and optimization, Athena Scientific, 2003.
[BHLM19] Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian, Nearly-tight VC-

dimension and pseudodimension bounds for piecewise linear neural networks, J. Mach. Learn.
Res. 20 (2019), Paper No. 63, 17. MR3960917

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal, Reconciling modern machine-
learning practice and the classical bias-variance trade-off, Proc. Natl. Acad. Sci. USA 116 (2019),
no. 32, 15849–15854, DOI 10.1073/pnas.1903070116. MR3997901

[Bil95] Patrick Billingsley, Probability and measure, 3rd ed., Wiley Series in Probability and Mathe-
matical Statistics, JohnWiley & Sons, Inc., New York, 1995. AWiley-Interscience Publication.
MR1324786

[Bil99] Patrick Billingsley, Convergence of probability measures, Wiley Series in Probability andMath-
ematical Statistics, 1999.

[Bis06] Christopher M. Bishop, Pattern recognition and machine learning, Information Science and
Statistics, Springer, New York, 2006, DOI 10.1007/978-0-387-45528-0. MR2247587

[BKH16] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, Layer normalization, CoRR
abs/1607.06450 (2016).

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, SamMcCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei, Language models are few-shot learners, Advances in Neu-
ral Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, eds.), vol. 33, Curran Associates, Inc., 2020, pp. 1877–1901.

[BMR21] Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin, Deep learning: a statistical view-
point, Acta Numer. 30 (2021), 87–201, DOI 10.1017/S0962492921000027. MR4295218

[Bot12] LéonBottou,Stochastic gradient descent tricks, pp. 421–436, Springer BerlinHeidelberg, Berlin,
Heidelberg, 2012.

[BPM90] Albert Benveniste, Michel Métivier, and Pierre Priouret, Adaptive algorithms and stochastic
approximations, Applications of Mathematics (New York), vol. 22, Springer-Verlag, Berlin,
1990. Translated from the French by Stephen S. Wilson, DOI 10.1007/978-3-642-75894-2.
MR1082341

[Bre11] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universi-
text, Springer, New York, 2011. MR2759829

[BT00] Dimitri P. Bertsekas and John N. Tsitsiklis, Gradient convergence in gradient methods with er-
rors, SIAM J. Optim. 10 (2000), no. 3, 627–642, DOI 10.1137/S1052623497331063. MR1741189

[Cal20] Ovidiu Calin, Deep learning architectures—a mathematical approach, Springer Series in the
Data Sciences, Springer, Cham, 2020, DOI 10.1007/978-3-030-36721-3. MR4240268

[CB18] L. Chizat and F. Bach, On the global convergence of gradient descent for over-parameterized
models using optimal transport, Advances in Neural Information Processing Systems
(NeurIPS) (2018), 3040–3050.

[Cha22] Pratik Chaudhari, Ese 546: Principles of deep learning, Lecture notes available at: https://
pratikac.github.io/, 2022.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=4420764
https://mathscinet.ams.org/mathscinet-getitem?mr=3993178
https://mathscinet.ams.org/mathscinet-getitem?mr=3960917
https://mathscinet.ams.org/mathscinet-getitem?mr=3997901
https://mathscinet.ams.org/mathscinet-getitem?mr=1324786
https://mathscinet.ams.org/mathscinet-getitem?mr=2247587
https://mathscinet.ams.org/mathscinet-getitem?mr=4295218
https://mathscinet.ams.org/mathscinet-getitem?mr=1082341
https://mathscinet.ams.org/mathscinet-getitem?mr=2759829
https://mathscinet.ams.org/mathscinet-getitem?mr=1741189
https://mathscinet.ams.org/mathscinet-getitem?mr=4240268
https://pratikac.github.io/
https://pratikac.github.io/

Bibliography 493

[CHLSS23] S. Chun-Hei Lam, J. Sirignano, and K. Spiliopoulos, Kernel limit of recurrent neural networks
trained on ergodic data sequences, arXiv:2308.14555, 2023.

[CHM+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, G/’erard Ben Arous, and Yann LeCun,
The loss surfaces ofmultilayer networks, Journal ofMachine Learning Research 38 (2015), 192–
204.

[CMV03] José A. Carrillo, Robert J. McCann, and Cédric Villani, Kinetic equilibration rates for granular
media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat.
Iberoamericana 19 (2003), no. 3, 971–1018, DOI 10.4171/RMI/376. MR2053570

[CS17] Pratik Chaudhari and Stefano Soatto, Stochastic gradient descent performs variational infer-
ence, converges to limit cycles for deep networks, ICLR 2018 (2017).

[CSV+19] Sarath Chandar, Chinnadhurai Sankar, Eugene Vorontsov, Samira Ebrahimi Kahou, and
Y. Bengio, Towards non-saturating recurrent units for modelling long-term dependencies, Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3280–3287.

[Cyb89] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals
Systems 2 (1989), no. 4, 303–314, DOI 10.1007/BF02551274. MR1015670

[CYLW19] Q. Cai, Z. Yang, J. D. Lee, and Z. Wang, Neural temporal-difference learning converges to global
optima, Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (2019).

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, North American Chapter of the Asso-
ciation for Computational Linguistics, 2019.

[DCM+12] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z.
Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng, Large
scale distributed deep networks, NIPS (2012).

[DHS11] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (2011), 2121–2159. MR2825422

[DLL+19] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. G, Gradient descent finds global minima of deep neu-
ral networks, Proceedings of the 36th International Conference on Machine Learning, Long
Beach, California, PMLR 97 (2019).

[DMBM17] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe, Variational inference: a re-
view for statisticians, J. Amer. Statist. Assoc. 112 (2017), no. 518, 859–877, DOI
10.1080/01621459.2017.1285773. MR3671776

[DS98] Norman R. Draper and Harry Smith, Applied regression analysis, 3rd ed., Wiley Series in
Probability and Statistics: Texts and References Section, John Wiley & Sons, Inc., New York,
1998. With 1 IBM-PC floppy disk (3.5 inch; DD); A Wiley-Interscience Publication, DOI
10.1002/9781118625590. MR1614335

[E17] Weinan E, A proposal on machine learning via dynamical systems, Commun. Math. Stat. 5
(2017), no. 1, 1–11, DOI 10.1007/s40304-017-0103-z. MR3627592

[ea19] Paszke et al., Pytorch: An imperative style, high-performance deep learning library, NeurIPS
(2019).

[EK86] Stewart N. Ethier and Thomas G. Kurtz,Markov processes: Characterization and convergence,
Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statis-
tics, John Wiley & Sons, Inc., New York, 1986, DOI 10.1002/9780470316658. MR838085

[GAA+17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville,
Improved training of Wasserstein GANs, Proceedings of the 31st International Conference on
Neural Information Processing Systems (Red Hook, NY, USA), NIPS’17, Curran Associates
Inc., 2017, pp. 5769–5779.

[GAG+17] Jonas Gehring,Michael Auli, David Grangier, Denis Yarats, and YannDauphin,Convolutional
sequence to sequence learning, arXiv:1705.03122, 2017.

[GB10] X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural net-
works, Proceedings of Machine Learning Research 9 (13th International Conference on Arti-
ficial Intelligence and Statistics), ML Research Press, 2010, pp. 249–256.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://arxiv.org/abs/2308.14555
https://mathscinet.ams.org/mathscinet-getitem?mr=2053570
https://mathscinet.ams.org/mathscinet-getitem?mr=1015670
https://mathscinet.ams.org/mathscinet-getitem?mr=2825422
https://mathscinet.ams.org/mathscinet-getitem?mr=3671776
https://mathscinet.ams.org/mathscinet-getitem?mr=1614335
https://mathscinet.ams.org/mathscinet-getitem?mr=3627592
https://mathscinet.ams.org/mathscinet-getitem?mr=838085
https://arxiv.org/abs/1705.03122

494 Bibliography

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, Adaptive Computation
and Machine Learning, MIT Press, Cambridge, MA, 2016. MR3617773

[Gil08] Mike B. Giles, Collected matrix derivative results for forward and reverse mode algorithmic dif-
ferentiation, Advances in automatic differentiation, Lect. Notes Comput. Sci. Eng., vol. 64,
Springer, Berlin, 2008, pp. 35–44, DOI 10.1007/978-3-540-68942-3_4. MR2531677

[GK20] L. Graesser and W. L. Keng, Foundations of deep reinforcement learning: Theory and practice
in Python, Addison-Wesley data and analytics series, Addison-Wesley, 2020.

[GMMM20] Behrooz Ghorbani, SongMei, TheodorMisiakiewicz, and AndreaMontanari,When do neural
networks outperform kernel methods?, J. Stat. Mech. Theory Exp. 12 (2021), Paper No. 124009,
110, DOI 10.1088/1742-5468/ac3a81. MR4412837

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio, Generative adversarial nets, International Con-
ference on Neural Information Processing Systems (NIPS 2014), 2014, pp. 2672–2680.

[GW08] Andreas Griewank and Andrea Walther, Evaluating derivatives: Principles and techniques of
algorithmic differentiation, 2nd ed., Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008, DOI 10.1137/1.9780898717761. MR2454953

[GWFM+13] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio,
Maxout networks, Proceedings of the 30th International Conference on Machine Learning,
PMLR 28 (2013), 1319–1327.

[Han19] B. Hanin, Universal function approximation by deep neural nets with bounded width and ReLU
activations, Mathematics 7 (2019), 1–17.

[HBK+20] Yang Hu, Alka Bishnoi, Rachneet Kaur, Richard Sowers, and Manuel E Hernandez, Explo-
ration of machine learning to identify community dwelling older adults with balance dysfunc-
tion using short duration accelerometer data, 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 812–815.

[HGS16] H. Van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double 𝑞-learning, In
Thirtieth AAAI conference on artificial intelligence (2016).

[HJ20] Jeffrey Humpherys and Tyler J. Jarvis, Foundations of applied mathematics. Vol. 2—
Algorithms, approximation, optimization, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2020. MR4077176

[HK70] Arthur E. Hoerl and RobertW. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970), no. 1, 55–67.

[HLLL19] Wenqing Hu, Chris Junchi Li, Lei Li, and Jian-Guo Liu, On the diffusion approximation
of nonconvex stochastic gradient descent, Ann. Math. Sci. Appl. 4 (2019), no. 1, 3–32, DOI
10.4310/AMSA.2019.v4.n1.a1. MR3921998

[Hor91] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4
(1991), no. 2, 251–257.

[HS15] M. Hausknecht and P. Stone, Deep recurrent 𝑞-learning for partially observable mdps, AAAI
2015 Fall Symposium (2015).

[HSW89] K. Hornik, M. Stinchcombe, and H. White,Multilayer feedforward networks are universal ap-
proximators, Neural Networks 2 (1989), no. 5, 359–366.

[HSW90] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an unknown mapping
and its derivatives usingmultilayer feedforward networks, Neural Networks 5 (1990), no. 3, 551–
560.

[HTF10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The elements of statistical learning:
Data mining, inference, and prediction, 2nd ed., Springer Series in Statistics, Springer, New
York, 2009, DOI 10.1007/978-0-387-84858-7. MR2722294

[HVU+19] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,
Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck,
Music transformer:Generatingmusicwith long-term structure., ICLR (Poster), OpenReview.net,
2019.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=3617773
https://mathscinet.ams.org/mathscinet-getitem?mr=2531677
https://mathscinet.ams.org/mathscinet-getitem?mr=4412837
https://mathscinet.ams.org/mathscinet-getitem?mr=2454953
https://mathscinet.ams.org/mathscinet-getitem?mr=4077176
https://mathscinet.ams.org/mathscinet-getitem?mr=3921998
https://mathscinet.ams.org/mathscinet-getitem?mr=2722294

Bibliography 495

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification, 2015 IEEE International Conference on Computer Vision
(ICCV) (Los Alamitos, CA, USA), IEEE Computer Society, Dec 2015, pp. 1026–1034.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual learning for image
recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[IS15a] Sergey Ioffe and Christian Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, CoRR arXiv:1502.03167, 2015.

[IS15b] Sergey Ioffe and Christian Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, Proceedings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July 2015 (Francis R. Bach and David M. Blei,
eds.), JMLRWorkshop and Conference Proceedings, vol. 37, JMLR.org, 2015, pp. 448–456.

[Ito96] Yoshifusa Ito, Nonlinearity creates linear independence, Adv. Comput. Math. 5 (1996), no. 2-3,
189–203, DOI 10.1007/BF02124743. MR1399380

[Jak86] Adam Jakubowski,On the Skorokhod topology (English, with French summary), Ann. Inst. H.
Poincaré Probab. Statist. 22 (1986), no. 3, 263–285. MR871083

[JGH18] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and generalization in
neural networks, Advances in Neural Information Processing Systems 31 (S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), Curran Associates,
Inc., 2018.

[JGR19] Daniel Jakubovitz, Raja Giryes, and Miguel R. D. Rodrigues, Generalization error
in deep learning, Compressed sensing and its applications, Appl. Numer. Harmon.
Anal., Birkhäuser/Springer, Cham, 2019, pp. 153–193, DOI 10.1007/978-3-319-73074-5_5.
MR4182531

[JKO98] Richard Jordan, David Kinderlehrer, and Felix Otto, The variational formulation of the Fokker-
Planck equation, SIAM J.Math. Anal. 29 (1998), no. 1, 1–17, DOI 10.1137/S0036141096303359.
MR1617171

[KB15] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization, Proceedings
of the 3rd International Conference on Learning Representations (ICLR) (2015).

[KCM+20] RachneetKaur, ZizhangChen, RobertMotl,Manuel EnriqueHernandez, andRichard Sowers,
Predicting multiple sclerosis from gait dynamics using an instrumented treadmill—a machine
learning approach, IEEE Transactions on Biomedical Engineering (2020).

[KH91] C. Kuan and K. Hornik, Convergence of learning algorithms with constant learning rates, IEEE
Transactions on Neural Networks 2 (1991), no. 5, 484–489.

[KH09] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images, Tech. Re-
port 1(4), University of Toronto, 2009.

[KKHS20] Rachneet Kaur, Maxim Korolkov, Manuel E Hernandez, and Richard Sowers, Automatic
identification of brain independent components in electroencephalography data collected while
standing in a virtually immersive environment—a deep learning–based approach, 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), IEEE, 2020, pp. 95–98.

[KLM+23] Rachneet Kaur, Joshua Levy, Robert W. Motl, Richard Sowers, and Manuel E. Hernandez,
Deep learning for multiple sclerosis differentiation using multi-stride dynamics in gait, IEEE
Transactions on Biomedical Engineering (2023).

[KLS20] Dmitry Kobak, Jonathan Lomond, and Benoit Sanchez, The optimal ridge penalty for real-
world high-dimensional data can be zero or negative due to the implicit ridge regularization,
J. Mach. Learn. Res. 21 (2020), Paper No. 169, 16. MR4209455

[KMSH22] Rachneet Kaur, Robert W. Motl, Richard Sowers, and Manuel E. Hernandez, A vision-based
framework for predicting multiple sclerosis and Parkinson’s disease gait dysfunctions—a deep
learning approach, IEEE Journal of Biomedical and Health Informatics (2022).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://arxiv.org/abs/1502.03167
https://mathscinet.ams.org/mathscinet-getitem?mr=1399380
https://mathscinet.ams.org/mathscinet-getitem?mr=871083
https://mathscinet.ams.org/mathscinet-getitem?mr=4182531
https://mathscinet.ams.org/mathscinet-getitem?mr=1617171
https://mathscinet.ams.org/mathscinet-getitem?mr=4209455

496 Bibliography

[KMZ+19] Rachneet Kaur, Sanjana Menon, Xiaomiao Zhang, Richard Sowers, and Manuel E. Hernan-
dez, Exploring characteristic features in gait patterns for predicting multiple sclerosis, 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), IEEE, 2019, pp. 4217–4220.

[KNJK18] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade, On the insufficiency
of existing momentum schemes for stochastic optimization, In 2018 Information Theory and
Applications Workshop (ITA), IEEE. 16 (2018), 1–9.

[Kol14] Vassili N. Kolokoltsov, Nonlinear Markov processes and kinetic equations, Cambridge
Tracts in Mathematics, vol. 182, Cambridge University Press, Cambridge, 2010, DOI
10.1017/CBO9780511760303. MR2680971

[KP92] Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equa-
tions, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992, DOI
10.1007/978-3-662-12616-5. MR1214374

[KP12] J. Kober and J. Peters, In reinforcement learning, In Reinforcement Learning. Springer 518
(2012), 579–610.

[KS98] Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed.,
Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991, DOI 10.1007/978-
1-4612-0949-2. MR1121940

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, Imagenet classification with deep con-
volutional neural networks, Advances in Neural Information Processing Systems (F. Pereira,
C. J. Burges, L. Bottou, and K. Q. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[KST+20] Rachneet Kaur, Clara Schaye, Kevin Thompson, Daniel C Yee, Rachel Zilz, RS Sreenivas, and
Richard B. Sowers,Machine learning and price-based load scheduling for an optimal iot control
in the smart and frugal home, Energy and AI (2020), 100042.

[KSZ+19] Rachneet Kaur, Rongyi Sun, Liran Ziegelman, Richard Sowers, andManuel E.Hernandez,Us-
ing virtual reality to examine the neural and physiological anxiety-related responses to balance-
demanding target-reaching leaning tasks, 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), IEEE, 2019, pp. 1–7.

[KW52] J. Kiefer and J. Wolfowitz, Stochastic estimation of the maximum of a regression function, Ann.
Math. Statistics 23 (1952), 462–466, DOI 10.1214/aoms/1177729392. MR50243

[KW13] Diederik P. Kingma andMaxWelling,Auto-encoding variational bayes, CoRR arXiv:1312.6114,
2013.

[KWRL17] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim, Deep learning applications in medical
image analysis, IEEE Access 6 (2017), 9375–9389.

[KY03] Harold J. Kushner and G. George Yin, Stochastic approximation and recursive algorithms and
applications, 2nd ed., Applications of Mathematics (New York), vol. 35, Springer-Verlag, New
York, 2003. Stochastic Modelling and Applied Probability. MR1993642

[Lax02] Peter D. Lax, Functional analysis, Pure and Applied Mathematics: A Wiley Series of Texts,
Monographs and Tracts, 2002.

[LB20] Chaoyue Liu and Mikhail Belkin, Accelerating SGD with momentum for over-parameterized
learning, ICLR 2020 (2020), 1–25.

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86 (1998), no. 11, 2278–2324.

[Lec88] Yann Lecun, A theoretical framework for back-propagation, Proceedings of the 1988 Connec-
tionist Models Summer School, CMU, Pittsburg, PA (D. Touretzky, G. Hinton, and T. Se-
jnowski, eds.), Morgan Kaufmann, 1988, pp. 21–28 (English (US)).

[Led16] Sean Ledger, Skorokhod’s 𝑀1 topology for distribution-valued processes, Electron. Commun.
Probab. 21 (2016), Paper No. 34, 11, DOI 10.1214/16-ECP4754. MR3492929

[LFK+22] Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and An-
drew Gordon Wilson, Pac-Bayes compression bounds so tight that they can explain generaliza-
tion, NeurIPS, 2022.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=2680971
https://mathscinet.ams.org/mathscinet-getitem?mr=1214374
https://mathscinet.ams.org/mathscinet-getitem?mr=1121940
https://mathscinet.ams.org/mathscinet-getitem?mr=50243
https://arxiv.org/abs/1312.6114
https://mathscinet.ams.org/mathscinet-getitem?mr=1993642
https://mathscinet.ams.org/mathscinet-getitem?mr=3492929

Bibliography 497

[LL17] Scott M Lundberg and Su-In Lee, A unified approach to interpreting model predictions, Ad-
vances in Neural Information Processing Systems (I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates,
Inc., 2017.

[LLF98] Isaac Lagaris, Aristidis Likas, andDimitrios Fotiadis,Artificial neural networks for solving ordi-
nary and partial differential equations, IEEE Transactions on Neural Networks 9 (1998), 987–
1000.

[LLFZ18] Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke Zettlemoyer, Long short-termmemory
as a dynamically computed element-wise weighted sum, Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers) (Melbourne,
Australia), Association for Computational Linguistics, July 2018, pp. 732–739.

[LLP00] Isaac Lagaris, Aristidis Likas, andDimitrios Papageorgiou,Neural-networkmethods for bound-
ary value problems with irregular boundaries, IEEE transactions on neural networks / a publi-
cation of the IEEE Neural Networks Council 11 (2000), 1041–9.

[LPB+16] Cesar Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, and Yoshua Bengio, Batch nor-
malized recurrent neural networks, 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2016, pp. 2657–2661.

[MBM+16] V.Mnih, A.P. Badia, M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
Asynchronous methods for deep reinforcement learning, International Conference on Machine
Learning (2016).

[MKS+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
Playing Atari with deep reinforcement learning, arXiv:1312.5602, 2013.

[MKS+15] V.Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,M. G. Bellemare, A. Graves,M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et.al., Human-level control through deep reinforcement
learning, Nature (2015), 529–533.

[MM23] Theodor Misiakiewicz and Andrea Montanari, Six lectures on linearized neural networks.
[MMM19] SongMei, Theodor Misiakiewicz, and AndreaMontanari,Mean-field theory of two-layers neu-

ral networks: dimension-free bounds and kernel limit, Proceedings of the Thirty-SecondConfer-
ence on Learning Theory (Alina Beygelzimer and Daniel Hsu, eds.), Proceedings of Machine
Learning Research, vol. 99, PMLR, 25–28 Jun 2019, pp. 2388–2464.

[MMN18] Song Mei, Andrea Montanari, and Phan-Minh Nguyen, A mean field view of the landscape of
two-layer neural networks, Proc. Natl. Acad. Sci. USA 115 (2018), no. 33, E7665–E7671, DOI
10.1073/pnas.1806579115. MR3845070

[MP43] Warren S. McCulloch and Walter Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (1943), 115–133, DOI 10.1007/bf02478259. MR10388

[MP16] H. N. Mhaskar and T. Poggio, Deep vs. shallow networks: an approximation theory perspective,
Anal. Appl. (Singap.) 14 (2016), no. 6, 829–848, DOI 10.1142/S0219530516400042. MR3564936

[MP17] Marvin Minsky and Seymour A. Papert, Perceptrons: An introduction to computational geom-
etry, MIT Press (Reissue of the 1988 Expanded Edition), 2017.

[MPV21] Douglas C. Montgomery and Elizabeth A. Peck, Introduction to linear regression analysis, Wi-
ley Series in Probability andMathematical Statistics, JohnWiley & Sons, Inc., NewYork, 1982.
MR646067

[MSN08] Charles E. McCulloch, Shayle R. Searle, and JohnM. Neuhaus, Generalized, linear, andmixed
models, 2nd ed., Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken,
NJ, 2008. MR2431553

[Mur22] Kevin P. Murphy, Probabilistic machine learning: An introduction, MIT Press, 2022.
[MV19] Pierre Moulin and Venugopal V. Veeravalli, Statistical inference for engineers and data scien-

tists, Cambridge University Press, Cambridge, 2019. MR3972165
[MZ22] Andrea Montanari and Yiqiao Zhong, The interpolation phase transition in neural networks:

memorization and generalization under lazy training, Ann. Statist. 50 (2022), no. 5, 2816–2847,
DOI 10.1214/22-aos2211. MR4500626

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://arxiv.org/abs/1312.5602
https://mathscinet.ams.org/mathscinet-getitem?mr=3845070
https://mathscinet.ams.org/mathscinet-getitem?mr=10388
https://mathscinet.ams.org/mathscinet-getitem?mr=3564936
https://mathscinet.ams.org/mathscinet-getitem?mr=646067
https://mathscinet.ams.org/mathscinet-getitem?mr=2431553
https://mathscinet.ams.org/mathscinet-getitem?mr=3972165
https://mathscinet.ams.org/mathscinet-getitem?mr=4500626

498 Bibliography

[Nau08] Uwe Naumann, Optimal Jacobian accumulation is NP-complete, Math. Program. 112 (2008),
no. 2, Ser. A, 427–441, DOI 10.1007/s10107-006-0042-z. MR2361931

[Nes83] Yu. E. Nesterov, A method for solving the convex programming problem with convergence rate𝑂(1/𝑘2) (Russian), Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 543–547. MR701288
[Nes04] Yurii Nesterov, Introductory lectures on convex optimization:A basic course, Applied Optimiza-

tion, vol. 87, KluwerAcademic Publishers, Boston,MA, 2004,DOI 10.1007/978-1-4419-8853-9.
MR2142598

[Nes07] Yuri Nesterov, Gradient methods for minimizing composite objective functions, Techincal Re-
port, CORE, 2007.

[Ngu19] P.-M. Nguyen,Mean field limit of the learning dynamics of multilayer neural networks, (2019).

[NKB+20] PreetumNakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever,
Deep double descent: where bigger models and more data hurt, J. Stat. Mech. Theory Exp. 12
(2021), Paper No. 124003, 32, DOI 10.1088/1742-5468/ac3a74. MR4412831

[NP23] Phan-Minh Nguyen and Huy Tuan Pham, A rigorous framework for the mean field limit of
multilayer neural networks, Math. Stat. Learn. 6 (2023), no. 3-4, 201–357, DOI 10.4171/msl/42.
MR4656973

[OBPR16] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, Deep exploration via bootstrapped DQN, In
Advances in Neural Information Processing Systems (2016).

[PB17] Jeffrey Pennington and Yasaman Bahri, Geometry of neural network loss surface via random
matrix theory, Proceedings of the 34th International Conference onMachine Learning, PMLR
70 (2017), 2798–2806.

[PBJ12] John William Paisley, David M. Blei, and Michael I. Jordan, Variational Bayesian inference
with stochastic search, International Conference on Machine Learning, 2012.

[PDGB14] Razvan Pascanu, Yann N. Dauphin, Surya Ganguli, and Yoshua Bengio, On the saddle point
problem for non-convex optimization, (2014).

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, On the difficulty of training recurrent
neural networks, Proceedings of the 30th International Conference on International Confer-
ence on Machine Learning - Volume 28, ICML’13, JMLR.org, 2013, pp. III–1310–III–1318.

[Pol67] B. T. Poljak, Some methods of speeding up the convergence of iterative methods (Russian), Ž.
Vyčisl. Mat i Mat. Fiz. 4 (1964), 791–803. MR169403

[Pri23] Simon J. D. Prince, Understanding deep learning, The MIT Press, 2023.

[Pro05] Philip E. Protter, Stochastic integration and differential equations, 2nd ed., Applications of
Mathematics (New York), vol. 21, Springer-Verlag, Berlin, 2004. Stochastic Modelling and Ap-
plied Probability. MR2020294

[PVU+18] Niki J. Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexan-
der Ku, and Dustin Tran, Image transformer, International Conference on Machine Learning
(ICML), 2018.

[RF10] H. L. Royden and P. M. Fitzpatrick, Real analysis, 4th edition, Pearson, 2010.

[RHK23] Sanjiban SekharRoy, Ching-HsienHsu, andVenkateshwaraKagita,Deep learning applications
in image analysis, vol. 129, Springer Nature, 2023.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, Learning representations by
back-propagating errors, Nature 323 (1986), 533–536.

[RM51] Herbert Robbins and SuttonMonro, A stochastic approximationmethod, Ann. Math. Statistics
22 (1951), 400–407, DOI 10.1214/aoms/1177729586. MR42668

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever, Improving language
understanding by generative pre-training, 2018.

[Ros58] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization
in the brain, Psychological Review 65 (1958), 386–408.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=2361931
https://mathscinet.ams.org/mathscinet-getitem?mr=701288
https://mathscinet.ams.org/mathscinet-getitem?mr=2142598
https://mathscinet.ams.org/mathscinet-getitem?mr=4412831
https://mathscinet.ams.org/mathscinet-getitem?mr=4656973
https://mathscinet.ams.org/mathscinet-getitem?mr=169403
https://mathscinet.ams.org/mathscinet-getitem?mr=2020294
https://mathscinet.ams.org/mathscinet-getitem?mr=42668

Bibliography 499

[RPK19] M. Raissi, P. Perdikaris, andG. E. Karniadakis, Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys. 378 (2019), 686–707, DOI 10.1016/j.jcp.2018.10.045. MR3881695

[RS07] AlvinC. Rencher andG. Bruce Schaalje,Linearmodels in statistics, 2nd ed.,Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ, 2008. MR2401650

[RSB12] Nicolas Roux,Mark Schmidt, and Francis Bach,A stochastic gradientmethodwith an exponen-
tial convergence rate for finite training sets, NIPS 2012 (2012), 2672–2680.

[RVE18] G.M. Rotskoff and E. Vanden-Eijnden,Neural networks as interacting particle systems: Asymp-
totic convexity of the loss landscape and universal scaling of the approximation error, (2018).

[RW00a] L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales: Volume
1, Foundations, Cambridge Mathematical Library, Cambridge University Press, Cambridge,
2000, DOI 10.1017/CBO9781107590120. MR1780932

[RW00b] L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales: Volume 2, Itô
calculus, Cambridge University Press, 2000.

[RWC+19] Alec Radford, JeffWu, RewonChild, David Luan, DarioAmodei, and Ilya Sutskever, Language
models are unsupervised multitask learners, (2019).

[SB18] Richard S. Sutton and Andrew G. Barto, Reinforcement learning: an introduction, 2nd ed.,
Adaptive Computation andMachine Learning,MIT Press, Cambridge,MA, 2018. MR3889951

[SGS15] Rupesh Srivastava, Klaus Greff, and Jurgen Schmidhuber, Highway networks, (2015).
[SH17] Johannes Schmidt-Hieber, Nonparametric regression using deep neural networks with ReLU

activation function, Ann. Statist. 48 (2020), no. 4, 1875–1897, DOI 10.1214/19-AOS1875.
MR4134774

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15
(2014), 1929–1958. MR3231592

[SKZ+19] Rongyi Sun, Rachneet Kaur, Liran Ziegelman, Shuo Yang, Richard Sowers, and Manuel E.
Hernandez,Using virtual reality to examine the correlation between balance function and anxi-
ety in stance, 2019 IEEE International Conference onBioinformatics andBiomedicine (BIBM),
IEEE, 2019, pp. 1633–1640.

[SMS23] Justin Sirignano, Jonathan MacArt, and Konstantinos Spiliopoulos, PDE-constrained models
with neural network terms: optimization and global convergence, J. Comput. Phys. 481 (2023),
Paper No. 112016, 35, DOI 10.1016/j.jcp.2023.112016. MR4559355

[SMSM00] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, Policy gradient methods for rein-
forcement learning with function approximation, Advances in Neural Information Processing
Systems 12 (NIPS 1999) (2000).

[SP97] M. Schuster and K. Paliwal, Bidirectional recurrent neural networks, IEEE Transactions on Sig-
nal Processing 45 (1997), no. 10.

[SS17] Justin Sirignano andKonstantinos Spiliopoulos, Stochastic gradient descent in continuous time,
SIAM J. Financial Math. 8 (2017), no. 1, 933–961, DOI 10.1137/17M1126825. MR3732944

[SS18] Justin Sirignano and Konstantinos Spiliopoulos, DGM: a deep learning algorithm for
solving partial differential equations, J. Comput. Phys. 375 (2018), 1339–1364, DOI
10.1016/j.jcp.2018.08.029. MR3874585

[SS19] Justin Sirignano and Konstantinos Spiliopoulos, Scaling limit of neural networks with the
Xavier initialization and convergence to a global minimum, arXiv:1907.04108, 2019.

[SS20a] Justin Sirignano and Konstantinos Spiliopoulos, Mean field analysis of neural networks:
a central limit theorem, Stochastic Process. Appl. 130 (2020), no. 3, 1820–1852, DOI
10.1016/j.spa.2019.06.003. MR4058290

[SS20b] Justin Sirignano and Konstantinos Spiliopoulos,Mean field analysis of neural networks: a law
of large numbers, SIAM J. Appl. Math. 80 (2020), no. 2, 725–752, DOI 10.1137/18M1192184.
MR4074020

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=3881695
https://mathscinet.ams.org/mathscinet-getitem?mr=2401650
https://mathscinet.ams.org/mathscinet-getitem?mr=1780932
https://mathscinet.ams.org/mathscinet-getitem?mr=3889951
https://mathscinet.ams.org/mathscinet-getitem?mr=4134774
https://mathscinet.ams.org/mathscinet-getitem?mr=3231592
https://mathscinet.ams.org/mathscinet-getitem?mr=4559355
https://mathscinet.ams.org/mathscinet-getitem?mr=3732944
https://mathscinet.ams.org/mathscinet-getitem?mr=3874585
https://arxiv.org/abs/1907.04108
https://mathscinet.ams.org/mathscinet-getitem?mr=4058290
https://mathscinet.ams.org/mathscinet-getitem?mr=4074020

500 Bibliography

[SS20c] Justin Sirignano andKonstantinos Spiliopoulos, Stochastic gradient descent in continuous time:
a central limit theorem, Stoch. Syst. 10 (2020), no. 2, 124–151, DOI 10.1287/stsy.2019.0050.
MR4119247

[SS21] Justin Sirignano and Konstantinos Spiliopoulos, Mean field analysis of deep neural networks,
Math. Oper. Res. 47 (2022), no. 1, 120–152, DOI 10.1287/moor.2020.1118. MR4403748

[SS22] Justin Sirignano and Konstantinos Spiliopoulos, Asymptotics of reinforcement learning with
neural networks, Stoch. Syst. 12 (2022), no. 1, 2–29. MR4414343

[SSB16] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth, Recurrent dropout without memory
loss, (2016).

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David, Understanding machine learning: From theory to
algorithms, Cambridge University Press, 2014.

[SSS+17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al.,Mastering the game ofGowithout humanknowledge, Nature 550 (2017),
354.

[STC04] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis, Cambridge University
Press, 2004.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry, How does batch
normalizationhelp optimization?, 32ndConference onNeural InformationProcessing Systems
(NeurIPS 2018), November 2018.

[SY21] Jiahui Yu and Konstantinos Spiliopoulos, Normalization effects on shallow neural net-
works and related asymptotic expansions, Found. Data Sci. 3 (2021), no. 2, 151–200, DOI
10.3934/fods.2021013. MR4619395

[TH12] Tijmen Tieleman and Geoffrey Hinton, Lecture 6.5-RMSProp: Divide the gradient by a running
average of its recentmagnitude, COURSERA: Neural Networks forMachine Learning 4 (2012),
26–31.

[Tik63] A. N. Tikhonov,On the solution of incorrectly put problems and the regularisationmethod, Out-
lines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), Academy of Sciences
of the USSR, Siberian Branch, Moscow, 1963, pp. 261–265. MR211218

[Tsi94] J. N. Tsitsiklis, Asynchronous stochastic approximation and 𝑞-learning, Machine Learning 16
(1994), 185–202.

[Vap99] Vladimir N. Vapnik, The nature of statistical learning theory, 2nd ed., Statistics for Engineering
and Information Science, Springer-Verlag, New York, 2000, DOI 10.1007/978-1-4757-3264-1.
MR1719582

[VC71] V. N. Vapnik and A. Ja. Červonenkis, The uniform convergence of frequencies of the appearance
of events to their probabilities (Russian, with English summary), Teor. Verojatnost. i Primenen.
16 (1971), 264–279. MR288823

[Vil09] Cédric Villani,Optimal transport, Grundlehren der mathematischenWissenschaften [Funda-
mental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and
new, DOI 10.1007/978-3-540-71050-9. MR2459454

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin, Attention is all you need, Advances in Neural Informa-
tion Processing Systems (I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[Wat89] C.I.C.H. Watkins, Learning from delayed rewards, PhD thesis, University of Cambridge, Cam-
bridge, UK (1989).

[WD92] C.I.C.H. Watkins and P. Dayan, Q-learning, Machine Learning 8 (1992), 279–292.
[WS05] Shuning Wang and Xusheng Sun, Generalization of hinging hyperplanes, IEEE Trans. Inform.

Theory 51 (2005), no. 12, 4425–4431, DOI 10.1109/TIT.2005.859246. MR2243179
[WSH+16] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, Dueling network archi-

tectures for deep reinforcement learning, ICML’16 Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning 48 (2016), 1995–2003.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=4119247
https://mathscinet.ams.org/mathscinet-getitem?mr=4403748
https://mathscinet.ams.org/mathscinet-getitem?mr=4414343
https://mathscinet.ams.org/mathscinet-getitem?mr=4619395
https://mathscinet.ams.org/mathscinet-getitem?mr=211218
https://mathscinet.ams.org/mathscinet-getitem?mr=1719582
https://mathscinet.ams.org/mathscinet-getitem?mr=288823
https://mathscinet.ams.org/mathscinet-getitem?mr=2459454
https://mathscinet.ams.org/mathscinet-getitem?mr=2243179

Bibliography 501

[Yar17] Dmitry Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Networks
94 (2017), 103–114.

[YS23] Jiahui Yu and Konstantinos Spiliopoulos, Normalization effects on deep neural networks,
Found. Data Sci. 5 (2023), no. 3, 389–465, DOI 10.3934/fods.2023004. MR4622926

[ZSBRV21] Chiyuan Zhang, Moritz Hardt Samy Bengio, Benjamin Recht, and Oriol Vinyals,Understand-
ing deep learning requires rethinking generalization, Communications of the ACM 64 (2021),
107–115.

[ZSKS17] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber, Recur-
rent highway networks, Proceedings of the 34th International Conference on Machine Learn-
ing, Sydney, Australia, PMLR, vol. 70, 2017.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

https://mathscinet.ams.org/mathscinet-getitem?mr=4622926

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Index

action𝜖-greedy algorithm, 409
greedy action, 409
pure exploration, 409

activation functions, 87
actor-critic, 410
AdaGrad, 310
ADAM, 316
AdaMax, 317
adjoint equations, 429, 431, 432
asynchronous gradient descent, 446
attention, 203
average loss function, 71

backpropagation, 93, 116, 132, 463
through time, 189

batch normalization, 151, 200
Bellman equation, 399, 402, 407
bidirectional recurrent neural networks,

198
binary cross entropy, 43

channels, 225
multiple, 228
single, 226

Chernoff bound, 481
clipping function, 78, 247
computational cost, 132, 443, 462, 464
computational graph, 466
confusion zone, 310
convergence rate stochastic gradient

descent, 297
convolutional neural networks (CNN), 213

cross-validation, 164

deep neural network (DNN), 266
deep reinforcement learning (DRL), 406
define-and-run, 120, 465
define-by-run, 120, 464
dense space, 261, 489
distributed training, 443
dropout, 141, 199
dual representation, 61
dual variables, 61, 65

Elman networks, 184
encoder-decoder, 209, 236
epoch, 296
evidence lower bound (ELBO), 234
exponential moving average, 313

feature importance, 169
feature permutation, 171
feature space, 62
feed forward networks, 69
forward-mode differentiation, 463

gated recurrent units, 195
generalization, 12, 13, 17, 141, 351, 384,

387
generative adversarial network (GAN), 239
gradient descent (GN), 108, 109
Gram matrix, 63
graphical processing unit (GPU), 126, 444,

445, 465

head, 203

503

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

504 Index

high-performance computing (HPC), 450
hinge loss, 60
hyperbolic tangent function, 87

inductive bias, 9
inequalities, 487
initialization
He/Kaiming, 326
Xavier, 322

Jordan networks, 183

kernel, 62
kernel perceptron, 63

layer normalization, 201
linear regression, 27, 309
logistic function, 87
logistic loss, 60
logistic regression, 39
long-short-term memory (LSTM), 196

mask, 148
masked self-attention, 209
mean field regime, 355
Mercer theorem, 64
message passing interface (MPI), 449
minibatch, 112, 157
mode collapse, 245
momentum method and SGD, 308
multi-layer neural network, 129, 147
multihead self-attention, 204

Nesterov method, 289
neural ODEs, 427
neural SDEs, 433
neural tangent kernel (NTK), 326
Newton method, 275

objective function, 106
one-hot encoding, 55, 107, 110, 131

padding, 229
parallel efficiency, 448
Pearson correlation, 217
perceptron, 60
perfectly parallel, 446, 448
permutation equivariant, 206
point-to-point communication, 453
Polyak method, 286
polynomial regression, 165
position encoding, 209
prompt, 203
PyTorch, 120

𝑄 function, 399, 403𝑄-learning, 399, 406, 408
recurrent neural networks (RNNs), 181
regularization, 137
reinforcement learning, 393𝖱𝖾𝖫𝖴, 69, 88
reverse-mode differentiation, 462
ridge regression, 138, 141
Riesz representation theorem, 488
RMSProp, 311

self-attention, 203
Shapley value, 173
shattering, 389
Skorokhod space, 479
softplus, 90
steepest descent, 107
stochastic gradient descent (SGD), 105,

129, 293
stochastic process, 475
stochastically bounded, 335
Stone-Weierstrass theorem, 490
stride, 223, 230
strong scaling, 448
synchronous gradient descent, 445

Tauberian theorem, 314
TensorFlow, 120
tightness, 477
time series, 181
token, 203
training, 160
transformer, 207
truncated backpropagation through time

(tBPTT), 191
truth tables, 72

universal approximation theorems, 259,
266

validation, 161
vanishing gradient problem, 102, 133
variational auto-encoder, 235, 238
variational inference, 234
VC dimension, 389

Wasserstein GAN, 246
weak scaling, 448
weight initialization, 322

zero-one loss, 60

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

Selected Published Titles in This Series

252 Konstantinos Spiliopoulos, Richard B. Sowers, and Justin Sirignano,

Mathematical Foundations of Deep Learning Models and Algorithms, 2025

251 Eric Carlen, Inequalities in Matrix Algebras, 2025

250 David Eisenbud and Joe Harris, The Practice of Algebraic Curves, 2024

249 David Damanik and Jake Fillman, One-Dimensional Ergodic Schrödinger Operators,

2024

248 J. I. Hall, Introduction to Lie Algebras, 2024

247 Michel L. Lapidus and Goran Radunović, An Invitation to Fractal Geometry, 2024

246 Ale Jan Homburg and Jürgen Knobloch, Bifurcation Theory, 2024

245 Bennett Chow and Yutze Chow, Lectures on Differential Geometry, 2024

244 John M. Lee, Introduction to Complex Manifolds, 2024

243 J. M. Landsberg, Quantum Computation and Quantum Information, 2024

242 Jayadev S. Athreya and Howard Masur, Translation Surfaces, 2024

241 Thorsten Theobald, Real Algebraic Geometry and Optimization, 2024

240 Nam Q. Le, Analysis of Monge–Ampère Equations, 2024

239 K. Cieliebak, Y. Eliashberg, and N. Mishachev, Introduction to the h-Principle,

Second Edition, 2024

238 Julio González-Dı́az, Ignacio Garćıa-Jurado, and M. Gloria Fiestras-Janeiro,

An Introductory Course on Mathematical Game Theory and Applications, Second Edition,

2023

237 Michael Levitin, Dan Mangoubi, and Iosif Polterovich, Topics in Spectral

Geometry, 2023

236 Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin, Alexandrov

Geometry, 2024

235 Bennett Chow, Ricci Solitons in Low Dimensions, 2023

234 Andrea Ferretti, Homological Methods in Commutative Algebra, 2023

233 Andrea Ferretti, Commutative Algebra, 2023

232 Harry Dym, Linear Algebra in Action, Third Edition, 2023

231 Lúıs Barreira and Yakov Pesin, Introduction to Smooth Ergodic Theory, Second

Edition, 2023

230 Barbara Kaltenbacher and William Rundell, Inverse Problems for Fractional Partial

Differential Equations, 2023

229 Giovanni Leoni, A First Course in Fractional Sobolev Spaces, 2023

228 Henk Bruin, Topological and Ergodic Theory of Symbolic Dynamics, 2022

227 William M. Goldman, Geometric Structures on Manifolds, 2022

226 Milivoje Lukić, A First Course in Spectral Theory, 2022

225 Jacob Bedrossian and Vlad Vicol, The Mathematical Analysis of the Incompressible

Euler and Navier-Stokes Equations, 2022

224 Ben Krause, Discrete Analogues in Harmonic Analysis, 2022

223 Volodymyr Nekrashevych, Groups and Topological Dynamics, 2022

222 Michael Artin, Algebraic Geometry, 2022

221 David Damanik and Jake Fillman, One-Dimensional Ergodic Schrödinger Operators,

2022

220 Isaac Goldbring, Ultrafilters Throughout Mathematics, 2022

219 Michael Joswig, Essentials of Tropical Combinatorics, 2021

218 Riccardo Benedetti, Lectures on Differential Topology, 2021

For a complete list of titles in this series, visit the

AMS Bookstore at www.ams.org/bookstore/gsmseries/.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.

	Cover
	Title page
	Copyright
	Contents
	Preface
	Notation
	Chapter 1. Introduction
	1.1. Preliminaries
	1.2. Brief Historical Review of Deep Learning
	1.3. Overview and Notation
	1.4. On the General Task of Machine Learning
	1.5. Quick Overview of Supervised Learning
	1.6. Bias-Variance Tradeoff and Double Descent
	1.7. Some Existing Related Books
	1.8. Organization of this Book

	Part 1. Mathematical Introduction to Deep Learning
	Chapter 2. Linear Regression
	2.1. Introduction
	2.2. Loss Function
	2.3. Minimization
	2.4. Metric
	2.5. Computational Realization
	2.6. Brief Concluding Remarks
	2.7. Exercises

	Chapter 3. Logistic Regression
	3.1. Introduction
	3.2. Formalization of the Problem
	3.3. Metric
	3.4. Transitions and Scaling
	3.5. Normalization
	3.6. Perfect Data and Penalization
	3.7. Multiclass prediction
	3.8. Brief Concluding Remarks
	3.9. Exercises

	Chapter 4. From the Perceptron Model to Kernels to Neural Networks
	4.1. Introduction
	4.2. Perceptron Model and Stochastic Gradient Descent
	4.3. Perceptron Through the Lens of a Kernel
	4.4. Linear Regression and Kernels
	4.5. From Kernels to Neural Networks
	4.6. Brief Concluding Remarks

	Chapter 5. Feed Forward Neural Networks
	5.1. Introduction
	5.2. Truth Tables
	5.3. Numerical Exploration
	5.4. Activation Functions
	5.5. Brief Concluding Remarks
	5.6. Exercises

	Chapter 6. Backpropagation
	6.1. Introduction
	6.2. Introductory Example
	6.3. Backpropagation in a More General Case
	6.4. Backpropagation for Multilayer Feed Forward Neural Networks
	6.5. Backpropagation Applied to a Deep Learning Example
	6.6. Vanishing Gradient Problem
	6.7. Brief Concluding Remarks
	6.8. Exercises

	Chapter 7. Basics of Stochastic Gradient Descent
	7.1. Introduction
	7.2. The basic setup
	7.3. Stochastic gradient descent algorithm
	7.4. Applications to Shallow Neural Networks
	7.5. Implementation Examples
	7.6. Brief Concluding Remarks
	7.7. Exercises

	Chapter 8. Stochastic Gradient Descent for Multi-layer Networks
	8.1. Introduction
	8.2. Multi-layer Neural Networks
	8.3. Computational Cost
	8.4. Vanishing Gradient Problem
	8.5. Implementation Example
	8.6. Brief Concluding Remarks
	8.7. Exercises

	Chapter 9. Regularization and Dropout
	9.1. Introduction
	9.2. Regularization by Penalty Terms
	9.3. Dropout and its Relation to Regularization
	9.4. A Neural Network Example with Dropout Implemented
	9.5. Dropout on General Multi-layer Neural Networks
	9.6. Brief Concluding Remarks
	9.7. Exercises

	Chapter 10. Batch Normalization
	10.1. Introduction
	10.2. Batch Normalization Through an Example
	10.3. Batch Normalization and Minibatches
	10.4. Brief Concluding Remarks

	Chapter 11. Training, Validation, and Testing
	11.1. Introduction
	11.2. Polynomials
	11.3. Training
	11.4. Validation
	11.5. Cross-Validation
	11.6. Brief Concluding Remarks

	Chapter 12. Feature Importance
	12.1. Introduction
	12.2. Feature Permutation
	12.3. Shapley Value
	12.4. Feature Permutation versus Shapley Value
	12.5. Brief Concluding Remarks
	12.6. Exercises

	Chapter 13. Recurrent Neural Networks for Sequential Data
	13.1. Introduction
	13.2. The Plant-Observer Paradigm
	13.3. Jordan Networks
	13.4. Elman Networks
	13.5. Training and Backpropagation for Recurrent Neural Networks
	13.6. Stability
	13.7. Advanced Architectures
	13.8. Implementation Aspects for Recurrent Neural Networks
	13.9. Attention Mechanism and Transformers
	13.10. Brief Concluding Remarks
	13.11. Exercises

	Chapter 14. Convolution Neural Networks
	14.1. Introduction
	14.2. Detection of Known Signal
	14.3. Detection of Unknown Signal
	14.4. Auxiliary Thoughts
	14.5. SGD for Convolution Neural Networks with a Single Channel
	14.6. On Convolution Neural Networks with Multiple Channels
	14.7. Brief Concluding Remarks
	14.8. Exercises

	Chapter 15. Variational Inference and Generative Models
	15.1. Introduction
	15.2. Estimating Densities and the Evidence Lower Bound
	15.3. Generative Adversarial Networks
	15.4. Optimization in GANs
	15.5. Wasserstein GANs
	15.6. Brief Concluding Remarks
	15.7. Exercises

	Part 2. Advanced Topics and Convergence Results in Deep Learning
	Transitioning from Part 1 to Part 2
	1. Motivating Learning: Part 1.
	2. Neural Networks and Universal Approximation: Part 1 ⟶ Part 2.
	3. Training of Neural Networks: Part 1 ⟶ Part 2.
	4. Optimize Training of Neural Networks: Part 1 ⟶ Part 2.
	5. Optimization in the Feature Learning Regime: Part 2.
	6. Selected Topics: Part 1 ⟶ Part 2.

	Chapter 16. Universal Approximation Theorems
	16.1. Introduction
	16.2. Basic Universal Approximation Theorems
	16.3. Universal Approximation Results Using ReLU Activation Functions
	16.4. Brief Concluding Remarks
	16.5. Exercises

	Chapter 17. Convergence Analysis of Gradient Descent
	17.1. Introduction
	17.2. Convergence Properties under Convexity Assumptions
	17.3. Convergence in the Absence of Convexity Assumptions
	17.4. Accelerated Gradient Descent Methods
	17.5. Brief Concluding Remarks
	17.6. Exercises

	Chapter 18. Convergence Analysis of Stochastic Gradient Descent
	18.1. Introduction
	18.2. Preliminary calculations
	18.3. Convergence Results for SGD
	18.4. Comparing SGD with GD
	18.5. Variants of Stochastic Gradient Descent
	18.6. Brief Concluding Remarks
	18.7. Exercises

	Chapter 19. The Neural Tangent Kernel Regime
	19.1. Introduction
	19.2. Weight Initialization
	19.3. The Linear Asymptotic Regime: Neural Tangent Kernel
	19.4. The Linear Asymptotic Regime in the Discrete Time Case
	19.5. Preliminary Bounds and Existence of a Limit
	19.6. Alternative Representation of the Prelimit Process
	19.7. Proof of Main Convergence Results
	19.8. Brief Concluding Remarks
	19.9. Exercises

	Chapter 20. Optimization in the Feature Learning Regime: Mean Field Scaling
	20.1. Introduction
	20.2. Preliminary Thoughts
	20.3. Mean Field Limit for Shallow Neural Networks
	20.4. Central Limit Theorem Behavior for Shallow Neural Networks
	20.5. Deep Neural Networks in Mean Field Scaling
	20.6. In Between the Linear and the Nonlinear Regime
	20.7. Elements of Generalization Performance
	20.8. Brief Concluding Remarks
	20.9. Exercises

	Chapter 21. Reinforcement Learning
	21.1. Introduction
	21.2. Motivating Reinforcement Learning Through an Example
	21.3. Deep Reinforcement Learning
	21.4. 𝑄-learning
	21.5. Convergence Properties of the 𝑄-learning Algorithm
	21.6. Brief Concluding Remarks
	21.7. Exercises

	Chapter 22. Neural Differential Equations
	22.1. Introduction
	22.2. Ordinary Differential Equations with Neural Network Dynamics
	22.3. Backpropagation Formula from the Euler Discretization
	22.4. Training Neural ODEs with Minibatch Datasets
	22.5. Neural Stochastic Differential Equations
	22.6. Examples in PyTorch
	22.7. Brief Concluding Remarks

	Chapter 23. Distributed Training
	23.1. Introduction
	23.2. Synchronous Gradient Descent
	23.3. Asynchronous Gradient Descent
	23.4. Parallel Efficiency
	23.5. MPI Communication
	23.6. Point-to-point MPI Communication
	23.7. Python MPI Communication
	23.8. Brief Concluding Remarks
	23.9. Exercises

	Chapter 24. Automatic Differentiation
	24.1. Introduction
	24.2. Reverse-mode versus Forward-mode Differentiation
	24.3. Introduction to PyTorch Automatic Differentiation
	24.4. Brief Concluding Remarks

	Part 3. Appendixes
	Appendix A. Background Material in Probability
	A.1. Basic Notions in Probability
	A.2. Basics on Stochastic Processes
	A.3. Notions of Convergence and Tightness
	A.4. Convergence in the Skorokhod Space 𝐷_{𝐸}([0,𝑇])
	A.5. Some Limiting Results and Concentration Bounds
	A.6. Itô Stochastic Integral
	A.7. Very Basics of Itô Stochastic Calculus

	Appendix B. Background Material in Analysis
	B.1. Basic Inequalities Used in the Book
	B.2. Basic Background in Analysis

	Bibliography
	Index

