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Preface

This book is an outgrowth of a belief that the mathematics and, in general, the
scientific community might be well served by an introduction to deep learn-
ing and neural networks in the language of mathematics. To borrow from
Churchill, Shaw, and Wilde, mathematics and computer science are two dis-
ciplines separated by common notation. We believe that this book might help
students, researchers, and practitioners more easily see and explore connec-
tions to this increasingly important collection of computational tools and ideas.
Over several years of research and teaching in neural networks, the authors
have come to the conclusion that

« There are many interesting and open mathematical research ques-
tions in the field of deep learning.

« Mathematical maturity gives students and researchers an advantage
in thinking about machine learning.

Mathematical thinking innately has unique strengths in generalizing and
abstracting ideas and also providing rigorous bounds on complex phenomena.
We believe that a greater mathematical presence in the field of deep learning
and neural networks can in turn contribute to the larger scientific community.

This book is aimed at advanced undergraduate students and graduate stu-
dents as well as researchers and practitioners who want to understand the
mathematics behind the different deep learning algorithms. The book is com-
posed of two parts. Part 1 contains a mathematical introduction, while Part
2 discusses more advanced mathematical and computational topics, hinting
at further research directions. This represents something of a “separation of

xiii
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xiv Preface

scales” in our effort: the basics of deep learning are “microscopic”, while large-
scale structural analysis is more “macroscopic”. Our hope is that the combina-
tion of both points of view will offer a better comprehension of the topic.

The first part of the book (Part 1) assumes knowledge of basic linear alge-
bra, multivariate calculus, and some statistics and calculus-based probability.
This part of the book should be accessible to an advanced mathematics, sta-
tistics, computer science, data science, or engineering undergraduate student.
Part 1 starts with some classical topics in statistical learning theory (such as
linear regression, logistic regression, and kernels), then gradually progresses to
deep learning related topics (such as feed forward neural networks, backpro-
gagation, stochastic gradient descent, dropout, batch normalization), and con-
cludes with a broad spectrum of deep learning architectures and models (such
as recurrent neural networks, transformers, convolution neural networks, vari-
ational inference, and generative models). We have also included sections and
chapters on classical statistical topics as regularization, training, validation and
testing, and feature importance. The purpose of the earlier chapters in Part 1 is
to introduce the reader to the subject of deep learning in a gradual way through
classical topics in statistics and machine learning. These early chapters al-
low us to illustrate known issues that come up in deep learning architectures
through easier-to-present concrete settings that often allow explicit computa-
tions, the latter being rarely the case for general deep learning architectures.

The second part of the book (Part 2) contains material that is more ad-
vanced than Part 1, either mathematically, conceptually, or computationally.
This part of the book should be accessible to advanced undergraduate students
and graduate students aiming to go deeper in certain topics of deep learning.
Certain aspects of the second part of the book (e.g., uniform approximation the-
orems, convergence theory for gradient and stochastic gradient descent, linear
regime and the neural tangent kernel, feature learning regime and mean field
field scaling, neural differential equations) would be easier to read given a basic
understanding of real analysis and stochastic process. A self-contained appen-
dix with more advanced required background material has been included to
aid the reader. Other aspects of the second part of the book, e.g., distributed
training and automatic differentiation, require less mathematical background
but are more advanced either conceptually or computationally.

Part 1, potentially together with selected topics from Part 2, could serve as
standalone material for an advanced undergraduate course or for a first year
graduate introduction to the mathematics of deep learning (we have done so
in related course offerings in our respective universities).

The topic of deep learning is already huge and is constantly growing. While
we have attempted to provide a fairly broad overview, we do not claim to have
covered all possible angles. Our aim has been to cover topics that we viewed
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Preface XV

as important, foundational, and reasonably well-developed at the time of writ-
ing. We have tried to establish a unified and consistent mathematical language,
connecting those topics in a comprehensive way and keeping in mind that deep
learning is both mathematically interesting and a tool in applied data analysis.

Our efforts have concentrated around the idea of presenting essential ideas
as clearly as possible. As such, we may not have always presented the sharpest
possible versions of the results, but we have pointed to research articles and
other monographs where the interested reader can find more refined results.
No attempt has been made to provide comprehensive historical attribution of
ideas. We do however give appropriate references which will hopefully provide
entry points into the literature.

The book is focused on developing a mathematical language for deep learn-
ing and unifying the presentation of concepts and ideas but also maintaining
rigorous mathematical results. The goal is not only to understand the math-
ematical principles behind deep learning algorithms, but also to offer tools to
quantify uncertainty in deep learning. Two of the questions that this book is
trying to answer are

Why do things work the way they work?
and

How can we guarantee significance and robustness of our conclusions?

Website

Beyond reading the mathematical literature, the readers of this book will
hopefully have the opportunity to experiment with the algorithms presented.
Deep learning is a tool in data analysis. For the reader’s convenience we have
included Python code which will hopefully give the reader some appreciation
for how deep learning might actually be used in practice. The datasets and
Python codes referenced in various chapters of the book can be found and
downloaded at the dedicated website for the book

https://mathdl.github.io/.

In addition, corrections and errata to the book will be updated there.

In many of the chapters of the book, exercises have been included to aid
the reader in better comprehension of the material. Upon request, a solutions
manual is available to the instructor of a class using this book.

We hope that this book will help open a door through which the mathe-
matics and research community can pass in order to contribute even more to
the ever-growing field of research and applications of deep learning. Whatever
goals have motivated us to write these chapters, we admit to partial success
only.
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Notation

In this section we provide a reference list of the notation that is consistently
used throughout the book. Most of the mathematical objects defined here are
described in Chapter [, Introduction.

Parameters

« 0O: learnable parameter to be estimated from data
« 1: learning rate in (stochastic) gradient descent methods
« M: number of datapoints in a given dataset

« N: number of hidden units in a given neural network layer

Data

(x,)M_,: feature data
(V)M _,: label data

D= {(xm,ym)}]\r:f:l: available dataset
o Diin: train dataset

o D, test dataset

Spaces

« RP: the Euclidean space of D-dimensional tuples of real numbers
(typically arranged as column vectors)

« RPXD2: the collection of D; X D, matrices of real numbers
xvii
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Xviii Notation

« X: the space of features

Y. the space of labels
« O: the parameter space
« LI(RP) with 1 < q < oo: the space of functions f on RP such that

T ( fR ) If(x)lqu)l/q <o

« L®(RP): the space of functions f on RP such that

Iflle = sup |f(x¥)] < eo

xeRDP

Norms
1

“ Ifllg = (fo If(X)|%dx) . the L9(RP) norm of a function f taking

values in RP for 1 < q < oo
¢ [Ifllo = sup,cgo |f(X)]: the L*(RP) norm of a function f taking val-

ues in RP

D q 1/q

* xllg = <Zi=1 xl-) for ¢ > 0 and x € RP
o |lxll = lIx|l; for x € RP

e Xl = max;_y,...p |x;| for x € RrRDP

Functions

« g(x): activation function

+ S(x): logistic function

o Seoftmax(X): softmax function

« ReLU(x): rectified linear unit function

« m(x): function we want to estimate/learn

« m(x;0): parametric model for m(x) with & € © being the learnable
parameter

¢ {€,}yey: collection of error functions
s Ax,)(6) o &,(m(x; 0)): per datapoint loss function
. A(O) o % > (xy)eD A(x,y)(0): average (empirical) loss function

* Apop(6): population loss function
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Notation Xix

def |1 ifz€A
14(2) = 0 el : indicator function, where z is taken to be in
else

some set S and A is a subset of S

Probabilities and Expectations
« [P: probability measure
« [E: expectation operator associated with a given probability measure
« Pj: empirical probability measure

« Ej: associated expectation operator

Special operations

(x ®Y)qg = xqyq forall1 < d < D: Hadamard multiplication for
x and y in RP
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Chapter 1

Introduction

1.1. Preliminaries

Deep Learning is a collection of ideas, algorithms, and computational imple-
mentations concerned with constructing functions, roughly, of the form

(Nonlinear function) o (linear transformation) o (Nonlinear function)e

(1.1) o (linear transformation) o ---;

i.e., the composition of layers of linear transformations and nonlinear func-
tions. The nonlinear functions in ([[.T) are usually fairly simple, e.g., a vec-
torized logistic function or hyperbolic tangent. The internal layers may in fact
be very high-dimensional, and there may be many layers. The iterative and
large-scale combination of these simple operations yields a very powerful and
flexible model for input-output relations.

Neural networks are not new; they have been used as far back as the 1980s.
However, the real impact of deep learning started becoming apparent only in
the late 2000s. Since then, deep learning has come to dominate some of the
most important areas of machine learning, such as image, text, and speech
recognition, and it is poised to have a significant impact on many other appli-
cations across science, engineering, medicine, and finance.

What precipitated the rapid rise of deep learning? It can be attributed to
the fortuitous combination of several things:

« It turns out that the functional framework of ([L.T) is broad enough
(see Chapter [L6, Universal Approximation Theorems) that it can ap-
proximate any “reasonable” function.

1
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2 1. Introduction

« The parameters in the linear transformations need to be tuned, usually
by minimizing an appropriate error function on ground-truth data.
More mathematically, formulas for sensitivities (derivatives) with re-
spect to the parameters determining the linear transformation of ([L.1)
are used in gradient descent algorithms. Notwithstanding the num-
ber of parameters in large-scale modern networks (large networks of
the form ([L.1)) with many internal layers may have millions to billions
of parameters), these calculations can be written in a scalable and par-
allelizable way (Chapters [, 1, B, 3, and 24)).

« High-dimensional neural networks and large training datasets require
significant computational resources; modern widely available compu-
tational tools (viz., GPUs) can meet these needs.

Neural networks that are specifically of type ([L.T) are called feed forward,
and are the starting point for understanding deep learning (Chapter §). More
complicated networks, e.g., recurrent neural networks for sequential data,
transformers (Chapter [3) and convolution neural networks (Chapter [[4), take
advantage of some unique structure in the problem. Although a given neural
network is often too complex for rigorous statistical analysis, it typically is the
combination of smaller classical parts (which on their own can be rigorously
studied).

Deep learning is a departure from traditional statistics, which emphasizes
hypothesis tests, confidence intervals, and other statistical properties. Despite
the lack of such statistical guarantees, deep learning has had remarkable suc-
cess. Although there are ad hoc aspects of deep learning, many of its advances
are the result of careful and thoughtful design of network architectures and
training methods. Examples include convolution networks for image recogni-
tion, long short-term memory (LSTM) networks for text recognition and time
series data, transformers for machine translation and large language models,
and more.

This book aims to cover the fundamental concepts underpinning deep
learning and provide the computational methods to implement deep learning
models. It focuses on mathematical principles but at the same time it aims to
understand the practical components of training neural networks successfully
as well as the possible factors that can cause the failure of training.

The focus of this book is mainly on the following topics of deep learning:

« Approximation: What types of functions and problems can be approx-
imated and solved by neural networks?

 Optimization and training: How do we decide what types of architec-
tures to use for a given problem? How do we train such models?
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1.2. Brief Historical Review of Deep Learning 3

« Generalization: Assume that a finite dataset was used to obtain a good
model approximating the unknown function of interest. Will this
model perform well on data that have not been observed?

Deep learning has been very successful in many applications, but there are
no guarantees that it will easily work in any given situation. Mathematical
theory helps to provide rigorous guidelines for design of algorithms and also
sheds light onto convergence properties of the algorithms.

1.2. Brief Historical Review of Deep Learning

Deep learning is part (a very significant part, in fact) of the much larger field
of machine learning. In order to appreciate the scientific developments, let us
briefly go over some of the history of deep learning.

It is largely accepted that the field of deep learning and the deployment of
neural network models to describe functional relationships find their roots in
neuroscience, starting with the work of McCulloch and Pitts in 1943 [MP43].
That work introduced the idea that simple components of our brain work to-
gether to perform complicated tasks. In such models, linear combinations of
neurons become inputs to a nonlinear function, forming the basis of what is
now called a neural network model.

The next big breakthrough was the work of Rosenblatt in 1958 on the per-
ceptron model [Ros58]. In its basic form, the perceptron model is a single neu-
ron for binary classification

m(x; w) = sign(w;x; + -+ + wpxp + b)

-1 ifwyx;+ - +wpxp+b<0,
1 ifw1x1+--~+waD+bZO,

where the weights w and the bias b are trainable parameters, and the x;’s are
input signals. In this model the neuron fires if the output of the addition oper-
ation w;x; + --- + wpxp + b is larger than a threshold (taken to be zero here).
The perceptron model is a true milestone in deep learning, and we will study it
in Chapter @. In today’s language the perceptron model is a single layer neural
network.

When initially conceived, the perceptron model was very influential espe-
cially due to its ability to learn from data in a way similar to the human brain.
However, soon it was realized that the perceptron model has limitations due
to being a single-layer neural network with a single hidden unit, leading to dif-
ficulties when asked to distinguish between complicated data. In particular,
the properties of perceptrons were analyzed in the book of Minsky and Rapert
in 1969 [MP17] and their limitations were explored and pointed out. These
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4 1. Introduction

limitations partially dampened interest in perceptrons and related models of
artificial intelligence.

A second challenge with neural networks was in training; there was no
effective and scalable way to find the weights and biases. The paper by Rumel-
hart, Hornik, and Williams in 1986 [RHW86 | on backpropagation (see Chapter
B) resolved this impasse, iteratively using the chain rule of elementary calcu-
lus to obtain the gradient of the loss function with respect to model parameters.
This led to a resurgence of interest in the field. Again, however, development
slowed when applications to real problems increasingly required ad hoc pro-
cessing and fine-tuning.

The story then again changed in the early 2000s with advances in com-
putational power and growing amounts of available data. Graphical process-
ing units (GPUs), initially developed for handling linear algebraic calculations
needed for visualizations and video games in particular, turned out to be ideal-
ly suited to the calculations of training deep neural networks. Perhaps the
first breakthrough was the work of Krizhevsky, Sutskever, and Hinton in
2012 [KSH12], where a convolutional neural network (CNN) was successfully
trained to classify images from a large image dataset. At that point in time deep
neural networks caught the attention of many people. Another breakthrough
in 2017 was the paper [VSP*17] where the authors proposed combining an
attention mechanism and a feed forward neural network into what is now
known as transformer architecture; this is the backbone of many very success-
ful large language models.

Currently, very large models are trained on thousands of GPUs and can
perform very complicated tasks. Deep learning is used in many practical ap-
plications ranging from machine translations to strategy games to image clas-
sification to solution of complex equations (such as high dimensional partial
differential equations, optimization equations, etc.) to robotics, chemistry, bi-
ology, finance, and the list goes on and on. Typical applications have data that
may be very high-dimensional but many have low-dimensional structure.

1.3. Overview and Notation

Mathematically, we are interested in maps from some space X to another space
Y. These maps are parametrized by elements of some other space ©. We shall
generically denote such a structureas m : X’ X ® — Y. We want to find a
parameter 6% € © such that the map x — m(x; 6*) achieves some desired goal.
We will often write m(x; 0) instead of m(x, 6) to emphasize the difference in
the roles of x and 6; x refers to a point in the feature space, while 6 refers to a
tunable parameter.
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1.3. Overview and Notation 5

In the case of supervised learning, X is usually the space of features and Y is
the space of labels; we want to use m(-; 6*) to predict the label for future (out-
of-sample) points in feature space. We want to find 6* based on a collection
of ground-truth feature-label pairs. These ground-truth points can typically
be enumerated as a sequence (x,,)M_; of points in X and a corresponding se-
quence (y,,)M_, of points in ¥. When we are proving performance bounds, the
pairs (X, y,) for m = 1, ..., M are typically random samples originating from
some ground-truth distribution on X' X Y. Since

« a pair (x,,, y,,) may be repeated (e.g., two cars with the same mileage
(feature) may need the same repair (label)), and

« the ordering of the (x,,, ¥,,)’s is unimportant,

we can also think of the (x,,,,,)’s as a multiset (an unordered collection al-
lowing multiplicities) 2 of points in feature-label space X X Y. Visualizing the
ground-truth data as points in X X Y emphasizes that supervised learning is
essentially a question of drawing a graph near an existing collection of existing
points.

In the case of supervised learning, we want m(x; 6) to approximate y for as
many ground-truth datapoints (x, y) € D as possible. To quantify this, we will
usually use a collection {£,},cy of error functions. Foreachy € Y, ¢, : ¥ —
[0, 0o) (preferably in some smooth way), with £,(y") = O ifand only if y = y".
For each ground-truth datapoint (x,y) € D and 6 € 0, the per datapoint loss
function

def
A, () = & (m(x;6))
then quantifies how well m(x; 8) matches up with y.

The per datapoint loss functions are then aggregated into the average loss
function

M

def 1 1
MO = 2 Awn® =37 2 Apam)(©)
|D| M =~
(x,y)eD m=1
for each 6 € ©. Sometimes, A(0) as defined in the formula above, is also re-
ferred to as the empirical loss function. The parameter space © is usually Eu-
clidean, so we can then try find the best parameter 6* by some type of gradient
descent on A.

Some of our notation and organization of thoughts differs from that of stan-
dard computer science literature; e.g., multisets, per datapoint, and average
loss functions. We regularly force the ground-truth data into subscripts (e.g.,
¢, and A(y ) to emphasize that we shouldn’t differentiate with respect to x
and y. Our notation reflects the privilege of trying to holistically present a de-
veloping field to a new audience. We believe that, once the ideas have been
understood, any translation of notation should be fairly natural.
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6 1. Introduction

Much of our mathematical notation is standard. We use R to denote the
Euclidean space of D-dimensional tuples of real numbers (typically arranged
as column vectors) and RP*Pz to denote the collection of D; x D, matrices of
real numbers. We use ® to denote Hadamard multiplication; for x and y in
RP, (x ® y)g = x4y4 for all 1 < d < D (and similarly for matrices as needed).
We also use

14(2z) =

def |1 ifzeEeA
0 else

to denote the indicator function, where z is taken to be in some set S and A is
a subset of S.

For 1 < q < oo, we say that a function f € LY(RP), if f is such that
1/q
Ifllg = (fin 1£G0)|%dx) ™ < 00. If q = oo, then [|flle, = sup,gp f(X)].

1/q
D
If x € RP, then we define Ixllg = (Zi=1 x?) forqg > 0. When q = 2,
x|l = |lx||, is the standard Euclidean norm. In addition, we shall write ||x||, =
max;_ . p |Xil-

Various algorithms rely on randomization, and a number of our advanced

(rigorous) results are probabilistic. Generically, we can think of this random-

ness as coming from some call to numpy.rand on a computer.

For a given dataset D = {(x,,, ym)}%zl, an element (x,,, y,) € D is typi-

cally considered to be coming from a given ground-truth distribution. We will
use P to denote the background probability measure of this randomness and
use E to denote the associated expectation operator. Very often, we will want
to think of the empirical measure generated by the ground-truth data. We will
use Py, and E, to denote the associated empirical probability measure and the
associated expectation operator, respectively. We use the distinct notation of
P vs. Py to reinforce the fact that applications of deep learning in practice are
governed by a fixed dataset. This dataset may have been collected at great cost
and, consequently, may be of limited size. Gold standard ground-truth datasets
from academia are typically also collected under carefully thought-out proto-
cols.

1.4. On the General Task of Machine Learning

Let us be a bit more explicit. Assume that we have observations {(x,,,, ym)}]r\n/[:1
of ground-truth points in ' X ¥ and we want to model how the y,,’s depend
on the x,,’s. We would like to do so by considering a collection {m(+; 6)}gcg Of
maps from X to ¥ and then learning the best parameter 6.

Supervised learning addresses the case where both input data (the x,,’s)
and output data (the y,,’s) are available. Supervised learning is the main focus
of this book and we briefly review the general structure in Section [L.5.
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1.4. On the General Task of Machine Learning 7

Unsupervised learning is concerned with the case where only the input
data (the x,,’s) are available, namely no labels are given to the learning. In
contrast to supervised learning, unsupervised learning tries to find patterns in
data (i.e., there are no designations as feature or label). Generative Adversarial
Networks (GANs) in Chapter [[3 are something of an exception; part of the GAN
problem relies on algorithmically finding patterns in data.

Different machine learning algorithms make different choices for the
model m(x; 8). They may also use different methods to estimate 6.

An important factor in the success of a particular choice of model for
m(x; 0) depends on the suitability of the chosen class of models with respect to
complexity of the data that we are dealing with and on the amount of data M
that is available. For example, if x — m(x; ) is a linear model, i.e.,

(1.2) m(x;0) =0"x

and the data suggest quadratic behavior, there is little hope that m(-;0) will
work. Complex, nonlinear relationships require general models m(x; 6) which
are able to capture a rich enough collection of nonlinearities. Even if we do
choose a correct general model, for example m(x;0) = x'0x, in the case of
quadratically related data, it may be challenging to accurately estimate 0 if the
number of data samples M is very small. For example, suppose that the feature
space X is d-dimensional. Even in this simple setting, the model has d X d
degrees of freedom (6 is a d X d matrix) and a large number of data samples M
is required to accurately estimate 6. If the number of data samples M <« d, the
model m(x; 6) will be inaccurate. Inaccuracy due to the dataset being much
smaller than the model’s degrees of freedom can oftentimes lead to overfitting;

see Subsection [1.5.3.

The art in deep learning is trying to find the right collection of models.
While computational methods and capacity are increasingly large, they are fi-
nite, as is the available amount of training data. In addition, in real-world ap-
plications, not only the exact functional form of the underlying relationship
suggested by the data is unknown, but also the feature space X is typically very
high-dimensional. It is impractical to consider all maps from feature space to
label space. If the amount of training data is too small compared to the num-
ber of model parameters, we may overfit, potentially finding parameters which
work well for the training data, but don’t work for statistically similar new data
(thisis related to questions of hyperparameter selection, covered in Chapter [LT)).

There are broad epistemological properties which can guide in model selec-
tion. Translation-invariance is often appropriate for image classification; one
wants to detect an object in an image regardless of its location in the image.
Many systems are naturally causal; future events can’t influence past or present
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8 1. Introduction

events. Convolutional neural networks (Chapter [[4) reflect translation invari-
ance, while recurrent neural networks (Chapter [13) reflect causality. Trans-
formers (Chapter [[3) can also learn causality in data. In all of these cases, these
architectures can be appropriately high-dimensional, but they are much lower-
dimensional than the collection of all maps on, for example, raw pixel space or
raw historical data or text in, say for instance, the English language.

Many widely used models can be iterated and can have many internal di-
mensions. One generally wants to consider model architectures that can cap-
ture intricate patterns in the data with corresponding model dimensions which
are large enough to describe all reasonable maps from feature to labels but that
at the same time fit the computational constraints.

Deep learning not only uses models that have a large number of degrees of
freedom (multi-layer neural networks), but it has also been able to embed prop-
erties such as translation-invariance or causality into its model architectures.
In addition, carefully designed optimization and statistical methods have been
developed to control issues like overfitting. The combination of these aspects
has been an important factor in the success of deep learning.

1.5. Quick Overview of Supervised Learning

Let us expand a bit on the task of supervised learning. Consider the problem
of finding a model m(x; 6) for given data {(x,,, ym)}],\n/lzl. At a high level, we are
searching for a parameter 6 € © such that, on average across the data sam-
ples, m(x,,; 6) is close to y,,. Otherwise said, we want the graph of m(-; 6) to
optimally pass through the ground-truth data. That is,

0= argmln i z &y, (M(x,,;0")),

where £,(y") is a measure of how close the prediction y” is to y or, stated other-
wise, the error being made when y’ is used to predict y (we will often normalize
loss functions by the number of datapoints being considered; this gives scale
invariance in the size of data). Recall that for a generically given function g
with domain Z, argmin,,_, g(z) is the minimizer of g:

argming(z) = {z € 2 © g(z) < g(z') forall 2’ € 2}.

ZEZ

Setting up this problem correctly involves several mathematical challenges.
For example, for a given problem at hand:

« What is an appropriate loss function A ,,(6) = €,(m(x; 0)) to use?
« What is an appropriate class of models m(x; ) to use?
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1.5. Quick Overview of Supervised Learning 9

« How should we solve the minimization problem to obtain the optimal
value for the parameter 67

« What if the dimension of the parameter space ® and/or the number
of datapoints M are very large? What if the number of available data-
points M is not large enough?

« How do we know whether our constructed model works well in new,
unseen data from the same or a somewhat different class of problems?

The choices that the user makes for the error function, for the model and
for the minimization algorithm to use can have a profound effect not only on
how well the model works on in-sample or out-of-sample data, but also on the
computational complexity of the resulting algorithm. In short, these choices
(choices that the user needs to make) are of paramount importance as they
impact the ability of the model to produce accurate predictions. Oftentimes this
set of choices (or assumptions) that the algorithm uses to produce predictions
goes by the name inductive bias.

In this book, we attempt to provide insights to these questions through a
rigorous mathematical formulation. As a warm-up example let us briefly visit,
in the next two subsections, two classical settings: the regression problem and
the classification problem.

1.5.1. Theregression problem. The choice of €,(y") depends upon the appli-
cation. For example, suppose that X' = R% and ¥ = R, and m(x;0) : R - R.
Then, a suitable choice for £,(y") would be the squared error (y— y)?and6 € ©
is the estimator from the familiar least-squares problem

M

1 w2

(1.3) 6 = atgmin & D Om — m(xy:6))
m=1

Defining a loss function

M
1
(14) A©) = 37 2 b (m(xm:0)),
m=1
the problem ([L.3) leads to the more general problem of calibrating a model by

minimizing a function. See Chapter P for a more comprehensive treatment of
linear regression.

A shallow neural network adds a nonlinearity and is defined as follows:
N
(1.5) m(x;6) = ). c"o(w" - x + b"),
n=1

where

+ o (typically nonlinear) is called the activation function.
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10 1. Introduction

« N is the number of hidden units.

¢ 0 = (c",w",b"),=1,  n is the vector of parameters that need to be
estimated from data.

If o is the identity map, this reduces to a linear model m(x;6) = w - x + b.
We can again try to minimize ([.4), leading to parameter selection as in ([L.3).
Typically, we use gradient descent to iteratively reduce ([[.4); we consider the
recursion

(1.6) Ok+1 = Ok — nVA(Oy),

where 7 > 0 is called the learning rate. We run this algorithm until we are
convinced that we have converged.

Tracing through ([L.4), differentiating A with respect to 8 involves differen-
tiating 6 — (y,, — M(X,,; 0))? for each m. In more complicated (i.e., deeper)
neural networks, each such computation may be computationally expensive
(Chapter f]). Stochastic gradient descent (Chapters i, B, and [[§) provides a the-
oretically justified way to randomly break this into batches, each one of which
is more computationally viable.

1.5.2. The classification problem. Another common class of applications
are classification problems where Y is a categorical (i.e., discrete-valued) vari-
able. Suppose, for example, we are trying to decide if an image contains a car
or not. Let’s assign label 1 if the image contains a car, and label 0 if not, so that
our label space is ¥ = {0, 1}.

At a high level, we would like to calibrate a parametrized mapping from X
to Y. This is a bit problematic, however, now that the label space is discrete.
The iterative calibration procedure ([[.6) depended on the parametrized models
being differentiable in the modeling parameter; this is impossible if the label
space is discrete (a small change in the model can’t change the label by only a
small amount). For binary logistic regression, we instead take the label space to
be (0, 1), which we interpret as the probability of label 1. This is indeed better
as (0, 1) is a continuum. Informally, we would like to calibrate a parametrized
probability m(x; 8) € (0,1) for the probability that the label is 1 if the feature
value is x; more formally, we want

« m(x;0) is the probability that the label is 1 if the feature is x.
« 1 — m(x; 0) is the probability that the label is 0 if the feature is x.

Classical detection theory [MV19] then suggests model calibration by max-
imum likelihood; what is the parameter which gives observed data the highest
probability? Namely, given ground-truth data {(x,,, y,,)}_; of a collection of
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1.5. Quick Overview of Supervised Learning 11

points in X X ¥ = R x {0, 1}, let’s try to find

M
(1.7) argmax,_g H mYm(x,,; 0)(1 — m(x,,; 6))! Vm.

m=1
This formula uses the convenience that
_ ;0 ify=1
m(6;0) (1 — mx; )Y = M50 Y
1-—m(x;0) ify=0;

i.e., the left-hand side is the modeled probability that the label is y if the fea-
ture is x. In ([.7) we are then maximizing the probability that the sequence of
labels is (y;, ¥, --- ypr) if the sequence of features is (x;, x5 -+ xp,) (implicit here
is also an assumption that, conditioned on the feature sequence, the labels are
independent).

With a few transformations we can rewrite ([[.7) to look like the structure
of Subsection [[.5.]. We can take logarithms (which preserve ordering) to get
an additive structure like ([L.4); (I.7) is equivalent to

M
argmax, g Z Y Inm(x,,;0)+ (1 — y,,) In(1 — m(x,,;0))}.

m=1
We can switch also signs and normalize to get a minimization problem,
L M
(1.8) argmin — Z {(=ymInm(x,,;6) — (1 —y,) In(1 — m(x,,;0)}.
IS0 M m=1

Writing

, def , ,
(1.9) &) = —ylny’ =1 -y)In(1 - y’),
we can now rewrite ([.§) in terms of the loss function (negative log-likelihood)

M

m 21 éy(m(x; 0)),

A E 1

which is the same structure as ([.4). The error function ([.9) is in fact the
binary cross entropy and more generally reflects a way to compare probability
measures.

In standard logistic regression, the model m(x; 0) is given as a composition
of a linear map and a logistic function; see Chapter B.

As a final step, once we have found an optimal parameter value 6%, we can
decide upon a label in ¥ by voting; our final map from X to ¥ is

+ Decide label 1 if m(x; 6*) > 1 — m(x; 6*). Equivalently, decide label 1
if m(x; 6%) > 1/
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12 1. Introduction

« Decide label 0 if m(x; 6*) < 1 — m(x; 6*). Equivalently, decide label 0
if m(x; 0%) < 1/,

In the example we just discussed, there were only two possible labels: an
image could contain a car or not contain a car. One can easily imagine asking
the same kind of question for a multiclass prediction problem. For instance,
suppose one is trying to classify whether an image contains a car, an airplane,
or neither; in this case we have three labels. We will study such questions in
Section B.7 through the lens of logistic regression. Then, in Chapters[] and §
we will study the problem for multiclass prediction problems when the model
m(x; 6) is a softmax function of a neural network.

We remark here that in deep learning, in either the problem of regression
or classification that we just described, two main issues would always come up:
overfitting and generalization. We briefly introduce these notions in Subsec-

tions and [1.5.4 respectively.

1.5.3. Overfitting. Overfitting occurs when a model is trained to closely
match an observed dataset yet is inaccurate on new datapoints not in the train-
ing dataset. This is the result of a model with many more degrees of freedom d
than the number of data samples M in the dataset.

In the regime where d > M, there are typically many different models
which exactly fit the data samples. These models can vary considerably on new
datapoints. For example, consider the model m(x;0) = ax? + bx + ¢, where
© = (a, b, c) and a dataset that is composed of a single datapoint (x°, y°). Then,
there are an infinite number of models m(x; 6) which exactly fit the datapoint
(x%,¥9), i.e., choose ¢ = y°, b = —ax?, and let a be any real number. The vast
majority of these models will be inaccurate on new datapoints.

Complex models with large numbers of parameters, such as neural net-
works, are particularly susceptible to overfitting. The best way to reduce over-
fitting is to have a larger dataset, which will help fully resolve the degrees of
freedom of the model. The deep learning field has also developed a number
of techniques to control and reduce overfitting (dropout, data normalization,
penalties, etc.), which will be discussed in later chapters; e.g., Chapters g and

10.

1.5.4. Generalization. Nature gives us data X and targets ¥, X — Y. How-
ever, nature does not necessarily tell us that a specific x € XX corresponds to a
specific prediction y € Y.

Let’s say that P is the probability distribution over our dataset 2. Assume
that the training set is Dy = {(Xxi, Vi) ~ IP’}?:I. The goal of machine learning
is tolearn predictors that work well outside the training set Dy,,;,,. The training
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1.6. Bias-Variance Tradeoff and Double Descent 13

set Dypain is only a source of information that nature gives us to find such a
predictor.

Assume Dyq¢ = {(x;,y;) ~ P}2; is a new collection of datapoints coming
from the same distribution P. Our model has not been constructed knowing
Dest but needs to perform well on Dy To accomplish this, we need to search
within a class of functions that is neither too big nor too small and that fits well
both training and test data.

The error that our model makes on the training set D,,i, is called training
error, whereas the error that it makes on the D, set is called test error. We
train the models on D;;,in, but we want them to generalize well, i.e., to work
well on Dyeg;. We discuss aspects of train error versus test error, that are of
particular relevance to deep learning, in Section [[.6, and in further depth in
Chapter [[1.

1.6. Bias-Variance Tradeoff and Double Descent

Now that we have seen a bit, at a high-level, of the supervised learning para-
digm, let us discuss the issues of under-parametrization, over-parametrization,
and generalization for both classical statistics and deep learning.

Consider a feature-label dataset D = {(xX,,;, y)}¥_;, and suppose we fit a
parametric model m(-; 0) to the data. We would of course like the best m(+; 6*)
to both capture the feature-label structure of the training data, and also gener-
alize well to unseen data. Let’s understand bias-variance tradeoffs in trying to
do so.

Assume that the data D comes from sampling an underlying distribution P
on feature-label random variables (X, Y), with associated expectation operator
E. In the standard regression setting, we choose the parameter by minimizing
the average square error between the true label and the predicted label; in terms
of P, this means we want to minimize

(1.10) E[(Y - m(x;6))°].

Theoretically, the conditional expectation m(X) o E[Y|X] is the true
minimum mean square error estimator of the label random variable given the
feature random variable, the minimum being taken over all measurable maps
from feature to label space. Our search over parametrized maps is thus an at-
tempt to approximate the conditional expectation; generically, our parametric
models {m(-; 6)}gcp are a proper subset of the collection of all such measurable
maps.
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14 1. Introduction

Let 6* be the parameter vector which minimizes ([[.10), we can compare
m(x; 0%) to myp(x) = E[Y]|X = x] by writing
E[(Y - m(X; 6*))2] =E :{(Y = (X)) + (Mep(X) — m(X; 9*))}2]
= E[(¥ = mou(0)’ | + E[ (mope6) — m(X; )]
+ 2E [(Y = mgpe(X)) (Mpe(X) — m(X;69))]

=E[(v- mopt(X))z] + E [ (mope ) = m(X; e*))z] :

2 .
Bayes error bias” +variance

The cross term disappears due to the projection property [Bil95] of condi-
tional expectation,

E[{Y —E[YIX]}GX)] =0

for all bounded measurable functions G; see [Bil95]. The first term is the Bayes
error, which tells us how far E[Y|X] is from the true label (sometimes referred
to as the Nature’s model). However, it is important to note that the true model
is not mp (x).

Let us now investigate the second term. The second term represents bias
and variance, which tells us how far the best parametrized model is from the
true minimum mean square error model. It is important to realize that the
model m(-;6*) has been constructed using a training dataset . This means
that the model m(-; %) depends on the randomness of the dataset D, which
contains points (x, y) sampled from the true distribution P.

At this point, we recall the definition of E; denoting the expectation oper-
ator with respect to the dataset 2. For a given point x in the feature space, we
add and subtract Epm(x; 6*) within the expectation of the second term, and
we get

(Mop () = M(x; 692 = (Mope(x) — Epm(x; 6°) + Epm(x; 6%) — m(x; 6%))’
= (Mope(X) — Epm(x; 69))° + (m(x; 6%) — Epm(x; 6%))?
— 2 (mgp(x) — Epm(x; 6)) (m(x; 6*) — Epm(x; 6%)).

Taking now the expectation over D, the cross term will vanish, i.e.,

Ep [(mop(x) = Epm(x; 6%)) (m(x; 6*) — Epm(x; 6))]
= (Mopi(x) = Epm(x; 6*)) Ep [(m(x; ) — Epm(x; 6%))]
=0,
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which then gives
2 2
Ep (mopt(x) - TII(X; 9*)) = (mopt(x) - EDm(X; 9*))
bias®

+ Ep (m(x;6%) — Epm(x; %))

variance

In the expression above, the first term, i.e., the square of the bias, measures
the difference of the optimal model m,,(-) and our constructed model m(-; 6*)
across different experiments each one with a potentially different dataset D.
The second term (the variance) measures the sensitivity of our constructed
model m(-; 6*) with respect to the dataset D.

Hence, all in all, we can write
(1.11) E [(Y — m(X))Z] = Bayes error + E [bias2 + variance] .

The formula ([L.11)) we derived is very insightful. In practice, we minimize
the empirical loss function, creating a model using the available data . Even
though not much can be done about the Bayes error component, the bias and
variance components indicate that:

o If the dataset is too small and the model m(x;9) is not trained on a
sufficient number of datapoints, and then the model will have a large
variance.

« If the model m(x;0) is large or complex (e.g., many parameters)
and training is done correctly, then the distance between the optimal
model and the fitted model (on the dataset the model is calibrated to)
will be small. In other words, large models typically lead to small bias.

« Ifthe modelislarge (complex), then one typically needs a large dataset
to properly calibrate the model. So, if one does not have a large enough
dataset but has a large (complex) model, then this leads to small bias
and large variance.

We can visualize this relationship with the graph in Figure [.1.

Figure [.T shows the famous U-shaped curve for the squared-bias and vari-
ance terms. It shows that for a given dataset one should choose a model that
minimizes both the squared-bias and the variance. We will revisit this topic in
Chapter [L1], where a proper decomposition of the dataset can be employed to
to help address these issues.

However, in (very) deep learning Figure [[.1 does not always describe the
full picture. As a matter of fact, it has been observed empirically in many in-
stances that the loss keeps decreasing even as we fit larger and larger models
in the same dataset. The typical picture is the so-called double-descent curve
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Figure 1.1. Bias-variance tradeoff.
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Figure 1.2. Double-descent curve in deep learning and the contrast to clas-
sical statistical wisdom.

of Figure [.2. The papers [HZRS16, BHMM19, NKB*20] contain ample em-
pirical evidence of this phenomenon.

Figure .2 shows that after a certain threshold of model complexity,
the loss function associated to deep neural networks keeps decreasing even
if the dataset is not getting larger as the model gets larger. As discussed in
[BHMM19], the transition from the classical regime to the modern deep neu-
ral network regime occurs when the model is large enough that it perfectly fits
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1.8. Organization of this Book 17

the training data. In conclusion, it is observed empirically that very large mod-
els trained with stochastic gradient descent lead to good generalization proper-
ties. As we shall see in Chapters [9 and R0, properly defined architectures also
have an impact on generalization performance.

In the chapters that follow, we define, link, and understand the questions
of approximation, optimization, training, and performance for different prob-
lems and for different neural network architectures. Section [[.§ presents the
organization of the book.

1.7. Some Existing Related Books

This book aims to present deep learning from a mathematical lens, unifying
the presentation of a number of concepts and ideas. We tried to do so always
having in mind that deep learning is a tool in data analysis. The hope is that
this book helps open a door through which the mathematical, broader scien-
tific community, and practitioners can enter to better explore connections and
advance our understanding and the state of the art in this increasingly impor-
tant collection of computational tools and ideas.

There are many excellent books that have been written on the general topic
of machine and statistical learning and a few that are more specialized for
deep learning. Some of the existing books are more introductory than others,
while others are more advanced mathematically. The books [Bis06, HTF10,
Mur22,Bac24] cover various aspects of machine and statistical learning, while
[GBC16, Cal20, Pri23, BB24] focus more on deep learning.

1.8. Organization of this Book

The big-picture idea of presenting deep learning that we have implemented in
this book can be summarized in Figure [[.3.

Some of the elements of Figure [[.3 (even within each of its blocks) are more
introductory whereas others are more advanced (either mathematically, com-
putationally or conceptually). Therefore, we have organized this book in two
parts. In Part 1 our goal is to introduce the different aspects of deep learning
using an appropriate mathematical language. This part of the book should be
accessible to an advanced mathematics, statistics, computer science, data sci-
ence, or engineering undergraduate student. As we mentioned in the Preface,
Part 1 together with select topics from Part 2 could serve as standalone teaching
material for a course on a mathematical introduction to deep learning. Part 1
covers most of the aspects of Figure [[.3 with the exception of the optimization
in the feature learning regime and some of the selected topics that require more
advanced tools (both of which are covered in Part 2).
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Figure 1.3. Conceptual organization of the book.

In Part 2 we go over deeper mathematical results regarding deep learn-
ing where we present the universal approximation theory, as well as conver-
gence proofs for gradient descent, stochastic gradient descent, and different
deep learning algorithms. In Part 2 we also discuss more involved computa-
tional aspects of deep learning including distributed training, message passing
interface (MPI) and automatic differentiation. Part 2 should be accessible to
graduate students and researchers aiming to go deeper into certain topics of
deep learning, and it covers aspects of Figure [[.3 that were not covered in Part
1.

Certain chapters in Part 2 will require some prior exposure to analysis,
probability theory, and stochastic processes. Some chapters of Part 2 are not
necessarily more advanced mathematically than those in Part 1, but they are
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1.8. Organization of this Book 19

included in Part 2 because the topics are more advanced conceptually or com-
putationally.

For the reader’s easy reference we have added Appendixes [A and B, where
we have collected the main mathematical background in probability, stochastic
processes, and analysis that is used in various parts of the book.

The idea of combining in one book both Part 1 and Part 2 is to give a more
complete discussion of the topic and to offer to the reader, who wants to go
deeper in certain topics, the ability to do so by jumping into Part 2. Alterna-
tively, a reader may choose to go over the basic chapters of Part 1 and then
selectively read other chapters. Our hope is that the combination of Parts 1
and 2 gives a good overview of the flow diagram [.3. Figure [[.4 summarizes
the prerequisites for each chapter and provides a useful guide for reading the
book.

1.8.1. Part 1: Mathematical introduction to deep learning. We start in
Chapters P and B with linear and logistic regression, respectively. These are
classical statistical topics that one can find in many textbooks. However, here
we introduce them in a way that is suitable for and motivates deep learning.
Training of deep neural networks heavily relies on notions that are present in
the simpler-to-present cases of linear and logistic regression. In Chapter § we
motivate neural networks through the perceptron (one of the earliest neural
network models) and its relation to kernels (another classical machine learn-
ing topic). The perceptron model also allows us to introduce the concept of
gradient descent in an intuitive way. Then, Chapter J§ presents feed forward
neural networks, probably the simplest form of a neural network. We define
feed forward neural networks and connect them to truth tables. The fact that
feed forward neural networks are universal approximators is discussed in some
detail in Chapter [L§ of Part 2 of the book.

The backbone of training of neural networks is backpropagation, which is
explained next in Chapter f§. Essentially backpropagation is a smart way to ap-
ply chain rule and thus allows us to efficiently differentiate the loss function of
complicated models and perform (stochastic) gradient descent. Stochastic gra-
dient descent in turn is presented in Chapter [ (for shallow neural networks)
and in Chapter B (for deep neural networks). We also present some examples
of Python code and discuss GPUs versus CPUs to aid the reader with coding
aspects. We do emphasize however that the focus of the book is on the math-
ematical foundations of deep learning and not so much on its computational
aspects, but as discussed in the Preface, accompanying code can be found in
https://mathdl.github.io/. The well-known issue of vanishing gradient is also
discussed.
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Then, we move on to discussing regularization techniques that are widely
used in deep learning in order to accelerate training and reduce overfitting. In
particular, in Chapter f we discuss adding penalty terms to the loss function
which is a well-developed method in statistics; see also classical texts in statis-
tical learning such as [HTF10]. In Chapter § we also discuss dropout in some
detail, which is a regularization method that is unique in deep learning and
is very popular in practical applications. Another popular technique is batch
normalization and is discussed in Chapter [I(. The process of training, valida-
tion, and testing that is present in any application of deep learning is discussed
in Chapter [[1 while feature importance, a central topic in deep learning, is dis-
cussed in Chapter [[2.

Next, we present three very popular deep learning models. In Chapter [3
we discuss recurrent neural networks that are designed to model time series
and dependent data. In addition, we present and formulate mathematically
the attention mechanism and the transformer architecture that are also used
to model dependent data. We compare the attention mechanism to recurrent
neural networks. In Chapter [[4 we discuss convolution neural networks that
have found great success in modeling imaging data.

In Chapter [[3 we discuss variational inference and generative models. The
goal here is to learn appropriate distributions so that we can generate data from
them in order to match some empirical distribution. We achieve this via appro-
priately formulating a minimization problem with respect to an appropriate
metric in the space of probability distributions. Variational inference is based
on maximizing an appropriate lower bound stemming from a proper manip-
ulation of the Kullback-Leibler divergence, called the evidence lower bound.
Generative adversarial networks (GANs) are also discussed where we moti-
vate them by revisiting the basic logistic classification problem leading to the
discriminator-generator framework. Optimization in GANs and the Wasser-
stein GAN are also discussed.

Part 1 has few rigorous proofs; the goal is to help the reader understand
what the major deep neural networks are and how to work with them. All
chapters of Part 1 conclude with a “Brief Concluding Remarks” section sum-
marizing what was covered in the specific chapter, what follows next, and of-
tentimes giving pointers to the literature for the interested reader.

1.8.2. Part2: Advanced topics and convergence results in deep learning.
In Part 2 of the book we dive into more advanced topics and theoretical aspects
of deep learning. In Chapter [L§ we present the main universal approximation
theory going back to classical results from the 1980s, but we also present very
recent theory developed for neural networks with ReLU nonlinearities. This
part uses, to some extent, functional analytic notions and theorems that are
reviewed in Appendix [Al.
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In Chapter [[7 we study gradient descent from a more theoretical perspec-
tive, reviewing convergence results and associated choices of learning rate
schedules under both convexity and nonconvexity assumptions. We also dis-
cuss accelerated gradient descent methods, including second-order methods.
Then, in Chapter [[§ we turn our attention to theoretical properties of stochas-
tic gradient descent. We study convergence rates and convergence properties
of stochastic gradient descent under both convexity and nonconvexity assump-
tions, and we compare gradient descent with stochastic gradient descent. We
also discuss accelerated methods as well as more advanced stochastic gradient
descent methods (like RMSProp, ADAM, AdaMax) and their convergence prop-
erties.

In Chapters 19 and PJ we turn our attention to the asymptotic behavior of
neural networks when trained with stochastic gradient descent. The question
we want to answer is: will the algorithm recover the ground truth after training
neural networks with stochastic gradient descent?

We answer this question via an investigation of the limit behavior of the
neural network as the number of units per hidden layer and training steps
grows to infinity. In order to obtain meaningful limiting behavior, we need
to appropriately scale the neural network. The neural network limit training
dynamics can then be analyzed to establish guarantees of convergence to the
ground truth. An important practical byproduct of the mathematical analysis
is that it offers insights into how to choose the learning rate hyperparameter.
In particular, the learning rate hyperparameter needs to be chosen in specific
ways with respect to the scalings in order for convergence to the ground truth
to be possible. We discuss two of the main scalings: the neural tangent kernel
(sometimes called the linear regime) in Chapter 19, and the mean field scal-
ing (sometimes called the nonlinear regime) in Chapter 0. In Chapter P( we
also compare these different scalings and we comment on generalization per-
formance.

In Chapter 21 we discuss reinforcement learning. Reinforcement learning
could be a book by itself (probably multiple books), and there are many excel-
lent textbooks on the topic. Our goal is to motivate deep reinforcement learn-
ing through a mathematical approach. We also present convergence results
for neural Q-learning, which is reinforcement learning with neural network
approximators.

In Chapter P2 we discuss neural ordinary differential equations (neural
ODEs) and neural stochastic differential equations (neural SDEs). In partic-
ular, we model ODEs and SDEs using neural networks and then the goal is
to learn the parameters of the neural network so that the resulting solution
matches some predetermined profile in an appropriate metric (e.g., mean
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square sense). We show how adjoint equations can be used to efficiently opti-
mize neural ODEs.

In Chapter P3 we discuss computational problems that arise in training of
potentially very large deep learning models on potentially very large datasets.
Due to the large model size and large amount of memory-per-data-sample, it
may be challenging to evaluate and calculate the backpropagation step for a
large minibatch on a GPU. Computational problems quickly arise due to issues
including limited memory, parallelization problems, and more. Distributing
training over multiple GPUs becomes advantageous. We discuss the topics of
synchronous versus asynchronous gradient descent, parallel efficiency, and as-
pects of MPI communication. Illustrative computational examples in PyTorch
MPI and Python MPI are presented.

In Chapter P4 we discuss automatic differentiation. In deep learning, we
design and evaluate different model architectures that typically have a large
number of hyperparameters. Deep learning would have faced a large obstacle
if one had to derive from scratch the chain rule for implementing the backprop-
agation algorithm for each new model. Automatic differentiation addresses
this challenge by automatically calculating the chain rule (and gradients with
respect to the model parameters), facilitating model development and evalua-
tion.

The chapters of Part 2 conclude with a “Brief Concluding Remarks” section
summarizing what was covered in the specific chapter and giving pointers to
the literature for the interested reader.

1.8.3. Appendixes. Appendix [Al has some background material on probabil-
ity, stochastic processes and stochastic analysis. Appendix B has some back-
ground on basic inequalities used throughout the book and real and functional
analysis. Notions that are discussed in these appendixes appear throughout the
book and are particularly useful in Part 2 of the book.

1.8.4. Flow diagram of the book. Figure [[.4 shows a flow diagram of how
the book is organized. Arrows demonstrate the background material needed
to proceed to the next indicated chapter.
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Chapter 2

Linear Regression

2.1. Introduction

Don'’t skip this chapter! We begin our journey with the obligatory sojourn in
linear regression. This is a classical topic in statistics. Our goal is to set up a
framework and notation in a familiar setting; we want to test some new ideas
with an old friend.

Let’s start with some sample ground-truth data (see the github repository),
the first lines of which are in Table .I. The ground-truth data is a collection
of (feature, label) pairs. Both feature and label are R-values; i.e., they are both
numerical.

Let’s try to predict the label based on the feature. A scatter plot of this data
is in Figure .1, and its data sort of clusters around a line. For (w,b) € R X R,
define a linear model

(2.1) m(x; 0) & wx+b X €ER,

Table 2.1. Sample data

X y
5.8 19.0
1.5 35
2.7 104
9.4 19.2
6.5 6.6
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Figure 2.1. Scatter plot of ground-truth data for linear regression

where

def [Ww
(2.2) 6= ( b)

are the parameters of the model. We want to find the best parameter value 6*

in the parameter space © < R? such that the graph of x ~ m(x;6*) in some
sense optimally passes through the ground-truth data. Namely, our predictor
will be the map x — m(x; 6%).

We have already introduced several important notions.

« The features lie in some Euclidean space R (here F = 1).
« The labels lie in some Euclidean space RY (here L = 1).
« The parameters take value in some Euclidean space ® (here © = R?).

« We have selected a parametrized model m(x; 6) to predict the label
based on the features.

This structure will underlie all of our efforts.

We want to learn (i.e., calibrate) our model to the ground-truth data of Table
B.1l. so that the graph of m(x; 6) in some optimal way passes through a scatter
plot of the ground-truth data. In Figure R.2, we see two such possible graphs
of m(x; 6). As we shall see later on in Figures R.3 and R.4, one can find a better
curve when the choice of the best is done in a principled way.

The ground-truth data consists of a collection of points in feature X label
space. Some of these may be repeated (for example, two different houses with
the same square footage may also have the same price), so our ground-truth
data should actually be a multiset D of points in feature X label space. Recall
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Figure 2.2. Variation of linear regression parameters

that a multiset consists of a collection of possibly repeated points (i.e., mul-
tiplicity larger than 1). The cardinality |A| of a multiset A is the number of

elements, with multiplicity included. In other words, if A dzef {1,1,2,4,5,5,5},
then |A| = 7. Directly thinking of multisets in feature-label space (as opposed
to indexing by an enumeration) will allow us to retain notational access to fea-
tures and labels. We believe that this will help with notational transparency
when we consider stochastic gradient descent (Chapters [] and B) and train-
ing, validation, and testing (Chapter [[T). We are also wary of having too many
enumeration indices (gradient descent, dropout, epochs, and recurrent neural
networks will all require their own indices).

2.2. Loss Function

We need to define the notion of best which we will use to define the optimal 6
of (B.2). Let’s first of all define an error function

def

(2.3) 60N =0 -y
for y and y’ in RE, and then define a per-datapoint loss function
def
(2.4) Axy)(0) = 6, (m(x;6))
for (x,y) € D and 6 € RP, and then define an average loss
def 1
(2.5) AB) = = D) Ay)®
|D| (x,y)eD
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Figure 2.3. Contour plot of loss A for linear regression

for & € RP. Our best parameter vector 0% is given by
6* = argmin {A(6) : 6 € RF}.
A few thoughts have guided our choice of notation:

« The per-datapoint loss of (2.4) separates the model from the error
function; the same notation can be easily adapted to more compli-
cated feed forward neural networks.

« The per-datapoint vs. average loss separates the effect of parameter
variation from the effect of averaging; this notation can be easily adap-
ted to stochastic gradient descent algorithms.

We have converted our search for a best line running through the points
of D to a problem of minimizing a function on the parameter space RF. Since
P = 2, we can construct a contour plot of A; see Figure R.3. Computationally,
it looks like A has a minimum (which we will more rigorously understand in a
moment), and the minimizer looks like a good choice of the slope and intercept
for a line passing through the data; see Figure P.4.

2.3. Minimization

Our interest in linear regression is in setting up some generalizable ideas; let’s
see how we might carry out gradient descent on A (conveniently forgetting that
the explicit solution of linear regression is well known). In Section we
will revisit the topic of (stochastic) gradient descent applied to linear regres-
sion. Gradient descent seeks to minimize a function by moving in the direction
of largest descent, i.e., the negative gradient. Namely, we want to construct a
sequence (0 )y-; given by

(2.6) Ok+1 = Ok —nVA(Bk),

where 7 > 0 is a learning rate.
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Explicitly,
1
VA®) = D Vi (©)
12| (x.y)eD
and, by the chain rule,
Im/faw(x; 0)
V(€)= 400 (et
2.7)

= -2y — m(x;0)) (T) .

This allows us to explicitly write VA, ) as the sensitivity of the error func-
tion with respect to changes in the prediction model and in the sensitivity of
the model with respect to the parameters.

Collecting things together, we have

VA®) = —2— 3 ((y— m(x; 6)) x)

W(x,y)el) y_m(x; 9)
_ 51 (y—wx—->b)x
=] 2 (y—wx—b
(2.8) (x.y)eD
_ Xy —wx2—bx
y—wx—>b

-4()(3)
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where in turn

Of course with an explicit (linear) formula for the VA, the first-order con-
ditions of optimality should help us explicitly find the minimizer. Explicit for-
mulas are the exception rather than the rule, so we relegate these standard
calculations to Section P.6.

Gradient descent of (R.€) is thus (explicitly)

Wk 41 Wy Wi xy
= — 2nA +2n1 =2 |.
(bk+1) (bk) 7 (bk) 77<y)
Subtracting,

(wk+1 - wk) _ <wk - wk—l) _ (wk - wk—l)
= nA

bxy1—b by — by_ bx — by

(2.9) k+1 ~ Dk k — Dk-1 k = Dk-1

where

Let’s understand the eigenvalues of A. The characteristic equation of A is
then

2 _F — —
0=det</1 X x>=/12—<x2+1)/1+x2—x2,
-x A-1

the two solutions of which are
A= %{<§+ 1) i\/(§+ 1)2 —4(F—E2>}.
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Since

2—4(F—§2)=(F+ 1)2—4ﬁ+4§2

(F+1)

(2.10) -
=(x - 1) + 4%,

which is positive, the eigenvalues of A are real (which of course also follows

2 =
from the fact that A is symmetric). By the Cauchy-Schwarz inequality, x < x2,
so we can continue (2.10) as

(1) —4(@-%) < (F-1) +aw = (@ +1)

implying that
(2.11) 0<A_ <A, <x2+1.

The left inequality implies that A is nonnegative definite. Alternately, for
any (a, o) € R?,

o — _
(a1 ay)A (é) = a3x? + 2a;04X + o3
1 2.2 2
= 3 > {odx® + 20ya,x + o}
12| (x,y)eD

1 2
= ﬁ Z (a1x +ay)” > 0.
(x,y)eD

The eigenvalues of I, — 2nA are then 1 — 2n4, and 1 — 2»A_. The system
(B.9) converges if it is a contraction, which occurs if

I1—2n9A, <1,
ie.,if
-1<1-2n9, <1,
i.e., if
< min{i i} -1
’7 PR R
Conversely, if > % the loss will diverge under gradient descent for a

generic initial condition. ‘See Figures P.6 and R.5.
Following from (R.11]), we are assured stability if

n <

X2 +1
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Figure 2.5. Converging gradient descent: 6;,; = 6, — 0.119VA(8,), where
Neritical = 0.140; trajectory of gradient descent (left) and loss values (right).
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Figure 2.6. Nonconverging gradient descent: 6;,; = 6; — 0.161VA(6y),
where 70 = 0.140; trajectory of gradient descent (left) and loss values

(right).
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Figure 2.7. Iterations of gradient descent in loss landscape

2.4. Metric

The loss function A serves as an objective function to minimize and quantify
best, but it may in fact be a mathematically convenient substitute for a metric,
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which we use to report the performance of our machine learning, and which
may make more sense to stakeholders. If, for example, the labels are prices
(and thus nonnegative), we might in fact be interested in the relative error of
the prediction

def 1 ly — m(x; 6%)|
pm(;0M) = = Y, T2
1Dl Sen y

In this case,

loss = 18.66 and metric = 0.52.

The absolute value function fails to be differentiable (at 0). Classification
algorithms (see Chapter ) in particular have a wealth of metrics reflecting rel-
ative combinations of different types of errors.

2.5. Computational Realization

Ifwe look at how PyTorch implements linear regression, we will find that things
are transposed. Suppose we have the matrix A € R*?

def

A= (3 2),
and we want to use this as a linear map from R? (feature space) to R (label
space) via

A(xl) = 3x, + 2%,
X2

and we want to apply it to a collection of R? input (feature) vectors which would
be computationally listed as

(2.12) [[3,4],[-1,0],[4,2]].

Mathematically, we want to compute

(3 2)<i)=9+8=17,
(3 2)(“01) =-3+0=-3,

(3 2)(3):12+4=16.

The standard mathematical way to do this would be to horizontally stack
all of these computations together as

(2.13) (3 2)[5’L _01 3]=[17 -3 16].
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However, we usually think of the input (2.12) as

3 4
-1 o].
4 2

Transposing (B.13), we have the vertically stacked calculation

3 4 17
(2.14) -1 0|AT =|-3],
4 2 16

which corresponds to an output list

In practice, one rarely tries to access coefficients of linear transformations,

so (R.19) is preferred as it directly maps (2.12) to (R.13).

2.6. Brief Concluding Remarks

Our review of linear regression was structured to introduce the framework we
will use to understand deep neural networks. Deep neural networks will con-
sist of parametrized models (generalizations of (2.1])) which we will try to fit to
a ground-truth dataset. Error functions (generalizations of (2.3)) will allow us
to construct per-datapoint losses (generalizations of (2.4)) which we can then
aggregate to define an average loss (B.3). Gradient descent will help us mini-
mize this average loss, once we use the chain rule (as in (B.7)) to calculate the
gradient of the per-datapoint loss.

Of course with (R.§), the explicit solution of linear regression follows from
the first-order conditions of optimality; VA = 0 at the point

A () L 1 =X\ (xy
v e @ \-x x2J\y
x2—X

1 Xy—Xxy )

2-7 (—Wﬂ;y

! Yo%y
22 \—-XPE+ (2 -%)y)

This coincides with the standard formula: if we are given a new feature
value x, .y, Our best guess of the label, under linear regression, is

G-5y,  —O-I+(E-F) mosy,
T pew + = = (Xpew — X) + ).

— — 2
X2 —Xx x2—x x2—x
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Explicit solutions of deep learning problems are the exception rather than
the rule.

Linear regression and linear models in general are a classical topic in statis-
tics and many excellent textbooks are available; see for example [Agrl5, RS07]
for an excellent comprehensive treatment of the topic. There are many other
excellent sources on this as well ([[DS98, MPV21]). The book [HTF10] also has
good coverage with an eye towards statistical learning.

2.7. Exercises

Exercise 2.1. Consider the loss function f(x) = 9x3 +x3 for x = (x;,x,) € R,
(1) Write down the iteration x(k + 1) = x(k) — nV f(x(k)), where x(k) =
(x1(k), x,(k)) and 7 is the learning rate.
(2) For what values of n will gradient descent converge?

Exercise 2.2. Consider the loss function f(x) = 9x3 + (x, — 3)? for x
(x1,x,) € R2.
(1) Identify the minimum point of x* = (x7, x3) of f.
(2) Write down the iteration x(k + 1) = x(k) — nV f(x(k)), where x(k)
(x;(k), x,(k)) and 7 is the learning rate.

(3) Define y(k) = (y1(k), y2(k)), with y;(k) = x;(k) — x7 and y,(k) =
x,(k) — x5. Write down an iteration for y.

(4) For what values of 7 will the iteration for y converge?

Exercise 2.3. Consider the loss function f(x) = 9x3 +x3 for x = (x;,x,) € R

(1) Fixn>o0and consider the gradient descent x(k+1) =x(k)—nV f(x(k)),
where x(k) = (x;(k), x,(k)) and initial conditions x(0) = (1,2). De-
fine X = x(|t/n|) where |-] is the integer floor function. Find an
ordinary differential equation (ODE) for X, = lim, o X} .

(2) Explicitly solve the ODE for X(¢).

Exercise 2.4. Consider the loss function f(x) = Ax? for x € R.

(1) Write down the iteration x(k + 1) = x(k) — nf'(x(k)), where 7 is the
learning rate. Describe it explicitly.

(2) For what values of n will the iteration for x converge?

Exercise 2.5. What is the loss function for linear regression on the three points
(0,1),(2,0), and (1, 3)?
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Chapter 3

Logistic Regression

3.1. Introduction

Logistic regression, another classical topic in statistics, is a bit more compli-
cated than linear regression because i) it involves a nonlinearity, and ii) it does
not have an explicit solution. These two aspects will both be true for deep
neural networks. Logistic regression is something of a bridge from linear re-
gression to the full framework of deep neural networks. In thinking through
logistic regression, we shall see that the way we framed linear regression is ap-
propriate for the wider problems of deep neural networks.

Let’s start with some sample ground-truth data (see the github repository),
the first lines of which are in Table B.1. The ground-truth data is a collection of
(feature, label) pairs. While the feature is R-valued (i.e., numerical), the label
is now {0, 1}-valued; i.e., the label is categorical (and in fact binary).

Again, let’s try to predict the label based on the feature. Let’s construct a
binned frequency plot of the labels as a function of the features; see Figure B.1l.

Table 3.1. Ground-truth data for binary classification

X

10.84
6.49
7.66

14.40

11.47

— == O = | d

wI
o
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Figure 3.1. Binned frequency plot of ground-truth data for logistic regression
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Figure 3.2. Logistic function

Roughly, we see that the normalized frequencies of the labels increase as the
frequency increases.

Logistic regression tries to fit a shifted and scaled logistic function (plotted
in Figure B.2),
def €7 1
S = = ,
@) 1+ez 1+4e2

to Figure B.1. In betting parlance, the S(z) is the probability with odds of e? to
1. Figure B.3 gives a visual idea of the result. We want to do so in a robust way
which bypasses the details of binning. Let’s work through this, but do so in a
way which mimics some of the notation of linear regression and to simultane-
ously introduce several tools which will be useful in our development of deep
neural networks.

z€eR,
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Figure 3.3. Binned frequency plot with fitted logistic function

3.2. Formalization of the Problem

Let’s alter our perspective a bit. Instead of trying to directly predict the cate-
gorical label, let’s combine the idea of binned frequency plots and the logistic
function S to try to predict probabilities. Since probabilities are numerical (they
take valuesin [0, 1]) as opposed to categorical, we should be able to reuse some
of the ideas of continuous optimization and gradient descent that we developed
for linear regression in Chapter P This becomes even more appealing when
we realize that our labels in this case can easily be reinterpreted as probabilities
that the label is 1:

label = P{label is 1}.

Namely, if a ground-truth label is 1, it must (with probability 1) be of type
1. Conversely, if a ground-truth label is 0, it can’t (i.e., it has probability 0) be
of type 1. The binary labels 0 and 1 are thus extreme (i.e., the boundary of the
collection [0, 1] of allowed probabilities), but we can nevertheless try to use S
to approximate these probabilities.

Let’s format logistic regression using some notation similar to that of Chap-
ter P. Let’s try to predict the probability that a feature value x has label 1 with
model

ewx+b 1

3.1) m(x;0) < S(wx + b) = x € R,

1 + ewx+b = 1 + e—(wx+b)’

IThe field of combinatorial optimization, on the other hand, is dedicated to optimization over finite
sets, e.g., a finite collection of labels.
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Figure 3.4. Voting quantization
where
w
3.2 6=
(32 ()

are the parameters of the model, taking values (again) in ® = R?. The logistic
function S maps R in to (0,1) (a subset of the probability space [0,1]), and
X — wx + b scales and shifts the features). In some way, we want to find the
best parameter vector 6* that captures the idea of Figure B.3.

Once we have found an optimal 6%, we can predict the probability that a
feature value x has label 1 and then quantize by voting. Namely, for a feature
value x, our prediction will be given by

predict class 0 if m(x; 6*) < 12
(3.3) = q(m(x;6"))
predict class 1 if w*x + b* > 0
{predict class 0 if w*x + b* < 0,

{predict class 1if m(x;0*) > 1/

where the voting quantizer q (see Figure B.4) is

1 ifz>1
0 ifz<1p.

(3.4) q(2) = {

We’ll have a bit more to say later about the discontinuity value of gat z = 1/2.

We want to find the optimal parameter vector 6* by some optimization
problem. Let’s reuse some of the ideas of Chapter P: for y and y’ in our la-
bel space [0, 1], let £,(y") be error function which compares y and y’. We want
¢,(y") = 0 with equality if and only if y = y’. Given ¢, we can construct a
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3.2. Formalization of the Problem 43

per-datapoint loss function

def
(3.5) A y)(©) = €,(m(x; 6))
for each (x,y) € R x [0,1] and 6 € R”, and then define the average loss
def 1
(3.6) AO= 57 2 Aen(®
(x,y)eD

for each 6 € RP. The argmin of A will be the best parameter vector 6*.
For logistic regression, the error function ¢,(y") is given by the binary cross
entropy,
1-y
1-y"

(3.7) 60" = yln}% +(1-y)n

More exactly €,(y") is the relative entropy of y with respect to y'. We define
0InoO dzef 0, and since our ground-truth labels are in {0, 1}, we have
—Iny’ ify=1
£,(y") = =—ylny —(1-=y)In(1 —y").
) Cm(—y) ify=o YV (1=y)In1 -y’
In Figure B.3 we plot the entropy for labels 0 and 1. For y’ € (0,1) (i.e., the
range of S), Iny” and In(1 — y’) are negative, so £,(y") > 0. Asymptotically,
def
€0(0+) = lim ¢,(y') =0
0(0+) M, o(¥")
def
£,(1-) = lim ¢,(y") = 0;
1(1-) M 17")
the error becomes small when )’ is close to y. We also have that

6(1-) < 1im £4(y") = o
vy /1
6,004) E 1im ¢,(y")
= = 00,
1 N y

so the error becomes infinite when y’ gets close to the wrong binary label.
Let’s write out Ay ,,)(6) of (B.3). We have that
1
1—S(Z)—H—ex, x € R.
For x € R and 6 given by (B.2),
Ax.0)(8) = —In(1 — S(wx + b)) = In(1 + e¥**P)
Ax)(0) = —InS(wx + b) = ln(l + e_(w“b)).
For a ground-truth datapoint (x,0) (i.e., label 0), A, 0)(6) is small when
wx+b ~ —oo, while for a ground-truth datapoint (x, 1) (i.e., label 1), A(x,l)(e) is
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Figure 3.5. Entropy for labels 0 and 1

small when wx+b = oo. This makes sense: for a ground-truth datapoint (x, 0),
minimizing A4 y(6) should drive wx + b — —oo, implying that m(x;6) ~ 0
for all x € R, implying that all predictions end up being label 0 according
to (B.3). On the other hand, for a ground-truth datapoint (x, 1), minimizing
A(x,1)(0) should drive wx + b — oo, implying that m(x;0) ~ 1 forall x € R,
implying that all predictions end up being label 1. Informally, minimizing A of
(B.6) means that in each bin of Figure B.T, we have a competition of minimizing
A(x,0)(0) and A, 1)(0) for x in that bin. See Figure B.6.

As with linear regression, we want to carry out gradient descent. Namely,
we want to construct a sequence (6 )y, given by

(38) 6k+1 = Qk - nVA(@k),
where 7 > 0 is a learning rate.
Once again,
1
VA(6) = D] D1 V().
(x.y)eD
Similarly to linear regression, the chain rule gives us
L ) om/aw(x; 0)
(3.9) Vx,p)(0) = €(m(x; 0)) <6m/ab(x; 6)) .
Here, however, the formula for &; is a bit more complicated:
1
—— ify=1
) y Yy 1- Yy
(3.10) &) = == 7
1—;;;/ ify=0 yol=y
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Figure 3.6. Binned frequency plot and variation of logistic regression parameters

We also have

, e ? e ? 1 1
S (Z) = == X = ’
1+e2)2 14eZz2 1+4+e2 (1+e%)(1+e2)

z€E€R,

SO

S’(wx + b)x , X
:(S'(wx+b)>zs(wx+b)(1)'

For linear regression, the per-datapoint loss was a composition of the square
error function and a linear map; here the per-datapoint loss is a composition
of binary cross entropy, the logistic function, and a linear map. The chain rule
is a bit more complex than for linear regression. We obtain the gradient of the
per-datapoint loss (B.9) by combining (B.10) and (B.9). Combining everything
in one place, we have

om/aw(x; 6)
<6m/ab(x; 6))

VA x(6) = E)(S(wx + b))S'(wx + b)) (’1‘) :

The results of gradient descent are in Figure B.7. For linear regression, we
had an explicit formula for the solution and could use that as a reference point
for gradient descent. Here, we have used sklearn, i.e., another numerical algo-
rithm, to give us a numerical approximation 8* of the solution. The optimal
values are

w* =2.22 and b* = —15.49.
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Figure 3.7. Converging gradient descent: 6;.,; = 8,,—0.01VA(8,); trajectory
of gradient descent (left) and loss values (right).

3.3. Metric

How does our logistic regression algorithm perform? For the sake of specificity,
let’s take the optimal value 6* of our parameters to be that given by sklearn;

(3.11) w* = 2.22 and b* = —15.49

We can then use (B.3). There are then a number of metrics we might use to
assess our prediction algorithm. The simplest might be to compute an average
classification error. Since a dataset might be imbalanced, we might alternately
use a metric which combines classification error with the frequencies of the
different labels.

3.4. Transitions and Scaling

Let’s take a closer look at our optimal x — m(x; 6*) for predicting the proba-
bility that a feature has label 1. With

* w*
=5
given by sklearn (B.11]), we explicitly have

%\ _ * %\ _ X~ Xc
m(x;0%) = S(w*x+b )—S(sgn(w )T),

def
where sgn(z) = Z/lz| is the sign function for z # 0, and the location x. and scale
s are given by

Xe = —b"fw
(3.12) ¢ “
s = Yjuw|.
For our data,
(3.13) X, = 6.9689 and s = 0.45.
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Figure 3.8. Transition of logistic function

We haven’t defined sgn (0), but this is only relevant if w* = 0, in which case
our logistic regression would be x — S(b*).

The data of (B.13) also helps understand the natural mathematical question
of what dowe do if we are given a feature value x,,,, exactly such that w*xew+
b* =0, i.e., xpew = X.? Can you find a datapoint with feature exactly equal to
x:?

Returning to Figure B.6, we see that the transition from 0 to 1 visually agrees
with the value of x, in (B.13). Analytically, we can invert the logistic function:
if S(z) = p, then e? = p/1 - p, implying that

1%
1-p
Thus 95% of the transition of the logistic function (i.e., from 0.05 to 0.95)
occurs in the interval
0.05 0.95 0.05 0.95
1 Ny ):(1 1 —)= ~2.95,2.95).
(nl—0.0S 112005 . (=2.95,2.95)

1095 0.0
See Figure B.8. Solving

z=1In

X — X

= +2.95,

we see that 95% of the transition in logistic regression should occur on the in-
terval

(xc —2.955, x. + 2.955).
See Figure B.9.

Another nice feature of the logistic function is that it is symmetric around
(0,1/2):
1 e?
S(—z) = =1- .
=2 1+ ez 1+ez

In other words, given that the point

(2,5(2)) = (z, % + (S(Z) - %))
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Figure 3.9. Empirical location and scale for fitted logistic function

is on the graph of S, the point
1 1
(—z, 5~ (S(z) — E)) =(—z,1-5(2))

is also on the graph of S. Consequently, the categorical predictions should be
invariant under the choice of which category is given label 1 (as opposed to
label 0).

3.5. Normalization

Returning to Figure B.8, the transition from label 0 to label 1 occurred in the tail
of S (compared to the fact that most of the transition in S is between —3 and
3. By scoring the feature data, we can use the intrinsic scale of the data, and
make it more likely that the transition in the data matches the transition in S.
In particular, gradient descent is likely to perform poorly in the tail, where the
derivative of S is exponentially small. Define?

u def 1 X
;= —
|D| (x,y)eD
1/2
ol Y a-w)
o-Z - |D| _ 1 X luz ’

(x,y)eD

2Recall Bessel’s correction https://en.wikipedia.org/wiki/Bessel%27s_correction for computing stan-
dard deviation.
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where, we compute

(3.14) u, =704 and o, = 2.30.

We then define a scored dataset

D d:ef{(x;’uz,y) : (x,y)el)}.

zZ

The feature data in this new dataset, by construction, has mean zero and
variance 1; see Table B.2.

Scoring allows us to consider a number of reference calculations.

« It allows us to easily identify outlier data, which is more than several
standard deviations away from the mean.

+ Relevant behavior in the graph of scored data (%) will occur at fea-
ture values of order 1. This suggests that optimal values for models
with scored data will also be of order 1. This suggests that gradient
descent algorithms also be initialized at values of order 1.

« Scoring forces multidimensional data to all be at the same scale. This
suggests that different elements of the optimal parameter values will
also be of common order 1.

Table B.3 gives the optimal parameter values for these different datasets,
and Figure gives the contour plot for the loss for the scored data. We see
that the optimal parameter values for the scored and ground-truth data are of
order 1. We also see that the level curves of the loss function are more regular
for the scored data, suggesting that gradient descent algorithms will be more
robust.

Of course the optimum parameters in the different coordinate systems are
all related. If x is the feature, our model assigns label 1 with probability

X

S(wix + b)) =S ((1000w;) o

+b;).

This shows the conversion between the optimum parameters (wj, b}) in
the original coordinate system and the optimum parameters (w*, b*) in what
we have called our ground-truth data:

w* = 1000w
b* = b}.

Similarly, we can write

S(wyx +b5) = S ((wi0) (F=5) + (05 + wi).
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Table 3.2. Scored ground-truth data

XYy
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0.27 1
3.24 1
195 1
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feature
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Figure 3.10. Scored data

Table 3.3. Optimal parameter values for original and scored ground-truth data

original scored

w: 2.22 5.06
b: —15.49 0.17

which shows the conversion between (w}, b)) and the optimal parameters
(w3, b3) in the scored coordinate system,
w; = w0
b; = by + wju.
The combination of (B.14) and Table B.3 confirm this.

We will expand upon the notions of scoring in Chapter [I0.

Of course the assumption of scoring is statistical homogeneity. If new data
has different statistics, both the scoring and the parameters of logistic regres-
sion must be recalculated.
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=

0.25 1
0.00 1
—0.25

—-0.501 /
Figure 3.11. Contour plot of loss A for scored data

3.6. Perfect Data and Penalization

Perfect data for linear regression would mean that all feature-label points lie
on a common line. Perfect data for logistic regression might be a collection of
datapoints for all datapoints to the right of a threshold would all have label 1,
and all datapoints to the left of the threshold would have label 0. What happens
to logistic regression in this case?

Let’s consider a collection of N = 100 feature values which are distributed
normally with mean 0 and variance 1. Let’s furthermore assume that all
ground-truth points with positive feature values are assigned label 1, and all
ground-truth datapoints with negative feature values are assigned label 0. See
Table B.4.

Informally, logistic regression should give us
S(o0x)

and any positive feature value should always (i.e., probability 1) have label 1,
so we should be evaluating S at a very large value. Conversely, any negative
feature value should never (i.e., probability 0) have label 1. The effect of the
bias b should be negligible.

Starting with {X,,})\_; normally chosen points, none of them are likely to be
exactly 0, In fact, the transition from 0 to 1 in our perfect dataset will be given
related to the minimum of {|X,,|}\_,. This minimum will become smaller as
N becomes larger, and (B.12) then implies that m should become larger as N
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Table 3.4. Perfect ground-truth data

X

1.79
0.44
0.10
—1.86
—0.28

O O R <

becomes larger. For any level € > 0,

£
Pl > ¢}

(vt = )

'/‘é/N e—Zz/Z N
- dz)
—¢/N V2T

=

£
P{ min |X,|> —
Lgllsr}vl nl N}

1l
—

n

=

S
1l
—

=(1
2
2¢ 1 N
Xl —=—
( 27TN)
zexp[——€],
27

where this approximation becomes more precise as N becomes larger (i.e.,
a limiting statement). In other words, N min; ., <y |X,,| is approximately (as

N /' ) exponentially distributed with parameter 2/4/27. Thus, the mini-
mum min; .y<n |X,| should approximately have expectation

1 2
[E[ min |Xn|] N ——,
1<N<N N.\[ox

which can also be interpreted as an asymptotic for the transition within our
dataset. Taking m to be the reciprocal of this transition width (i.e., (8.12)), m
should be of order N. In our case,

(3.15) Mperfeet = 25295 and by = —0.71.

This is unfortunate. For perfect data, logistic regression diverges. We can
regularize logistic regression by penalizing large values of m and b. Fixing a
parameter C > 0, we can replace the per-datapoint loss of (B.3) with

def
(3.16) A0, ©) = 4 (m(x:6)) + Cll6]>
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Table 3.5. ground-truth data for multiclass classification

Xy X ¥y
3.73 1.30 2
2.16 6.82 2
394 —-283 3
2.10 —-0.35 2
—0.01 1.33 1
[ ]
6 - ]
41 i a
2 . ."". .
>? 0 n »
* +. * ’1- e
-2 F
* * *
—4- * . .
*
—61 . |
-4 -2 0 2 4
X1

Figure 3.12. Scatter plot of ground-truth data for multiclass classification

This will be similar to the loss of (B.3) for reasonably small values of 6, but
will penalize large values of 8. This makes more sense for scored data (Section
B.3), where we might expect the optimal parameters to be of order 1. In this
case, the minimal loss for perfect data will significantly differ from the logistic
regression loss when |m| > 1/\/6, i.e., when the transition between labels is at
scale less than 1/\/6. We will revisit this issue in Chapter § where we discuss
regularization methods.

3.7. Multiclass prediction

How can we generalize this to multiple classes, as in Table B.5? See also Figure
B.12. Here, the features are points (x1,x,) € R? and the labels are in {1, 2, 3},
corresponding to elements in R3, rather than in {0, 1}, which corresponded to
probabilities.

In predicting binary labels, one-dimensional logistic regression compares
the feature to a threshold; recall (B.3). The decision regions are thus half-lines.
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54 3. Logistic Regression

With higher-dimensional features and multiclass labels, we might expect deci-
sion regions to be polytopes.

At a high level, binary one-dimensional logistic regression consisted of two
parts; a calibrated probability model, viz. (B.I), and then a voting procedure,
viz. (B.4). With a binary label, it was sufficient to optimize over a model for
the probability of label 1; the probability of label 0 was complementary. This
also meant that our loss function (B.7) could be written as a function of one
argument, namely the probability of class 1. Similarly, with a binary label, the
class with the higher probability was also the class with probability larger than

50%.
Logistic probabilities were essentially a function of one variable; the valued
function
(17) xe (1-SG) S(x))—( 1 L) XER
' ’ T \1+ex’1+ex)’ ’

modeled the probability of class 0 and 1, respectively, as a function of x € R.
The class of models we calibrated in (B.1]) was the composition of logistic prob-
abilities with a linear map x — wx + b. Let’s now consider softmax probability
map

X1
def eX1 eX2 eXs
— — 3
Ssoftmax (%) = ( 3 S — ) x=[x,] eR.
Zi’:l eXi Zi’:l eXi’ Zi’:l eXi X

Let’s take our model of probabilities of the classes to be softmax probabil-
ities composed with linear transformations from feature space into R3. In our
example,

m(X; 6) = Ssoftmax(wx + b)’
where
0=(W,b)

is a parameter vector in @ = R¥2 x R? consisting of weight and bias compo-
nents of an affine transformation of R2. Once we have a model for probabilities,
we can use plurality voting to predict the class. Writing

m(x; 6) = (m;(x; 6), my(x; 6), m3(x; 6))
to denote the different components of m(x; 8), we will predict

predict class 1 if m;(x; 6) > max{m,(x; 6), ms(x; 0)}
(3.18) predict class 2 if m,(x; 8) > max{m,(x; 0), m;(x; 6)}
predict class 3 if mz(x; 6) > max{m,(x; 6), m,(x; 6)}.
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Extending (B.7), let’s define

def i
(3.19) 4= Y pln
ie{1,2,3} L

for probability vectors (i.e., a vector of elements taking values in [0, 1] whose
elementsadduptol) p=(p; p, ps)andp’ =(p; p, p3)suchthatp’ €
(0,1)3. We should write our ground-truth label data as vectors representing
certainty of the different classes:

« assign label (1 0 0) if the label is 1,
« assign label (0 1 0) if the label is 2,
« assign label (0 0 1) if the label is 3.

These labels are one-hot vectors: one entry is 1, and the others are 0. One-hot
vectors are a common way to encode categorical data. Our ground-truth data
D is then a collection of points (x,y) in R? X R3, where the y’s are one-hot
probability vectors.

The per-datapoint loss is
Aan(® = 6,(m(x0),  (xy) €D,
and the average loss is
def 1

AB) = — A 0).
( ) |D| (x%:Ep (x,y)( )

Making (B.I9) a bit more explicit, we have

6y (p) = —Inp;

if p’ is the one-hot vector whose ith element is equal to 1 and the rest of the
elements are equal to 0. We note that (B.19) thus naturally generalizes (B.7)
to higher dimensions (this being one of the appeals of using entropy as a loss
function).

To be specific, let’s work through the quantization rule of (B.18) if the op-

timal parameter vector is
2 1
-1 0
ot — 1 -3
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56 3. Logistic Regression

i.e., our model is

2 1 X 3
m(X; 0") = Ssoftmax || —1 O (xl) +| 0
1 =3/ \? -1
2x1+x2+3 x_(x1>€R2
= Ssoftmax X1 X2 ’
X1 — 3x2 -1

er1+x2+3 exl ex1—3x2—l
N D D’ D
where

D d_ef e2x1+x2+3 + X1 4 eX1— 3x,— 1

We can then rewrite (B.18) as

e2X1+X+3 exl eX1-3x2-1
> maxy—
{e2x1+x2+3 X1 sz 1

predict class 1 if

. .o efl
predict class 2 if — > max
X1-3x5-1

predict class 3 if 2

D 82x1+x2+3D X1
> max{ , —}
D D

predict class 1 if e2¥17%2+3 > max {e1, e¥173%271}
= ¢ predict class 2 if e*1 > max {e2x1+x2+3 X1—3x2—1}
predict class 3 if e¥173%2~1 > max{ 2X1+x2+3 xl}

predict class 1 if 2x; + x5 + 3 > max{x;, x; — 3x, — 1}
= 4 predict class 2 if x; > max{2x; + x, + 3,x; — 3x, — 1}
predict class 3 if x; — 3x, — 1 > max{2x; + x; + 3, x;}.

Looking a bit more closely at the requirements for predicting class 1, the
inequality

2x7 + X5 + 3 > max{xy,x; — 3x, — 1}

is equivalent to
2x1+ X%, +3>x; and 2x1+x,+3>x;—3x, — 1,
which is equivalent to
X1 +x, > -3 and X, + 4x, > —4.

In other words, we decide class 1 if
X X
(1 1) (x;> >-3 and (1 4) (x;) > —4.
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This captures the decision rule for class 1 as the intersection of two hy-
perplanes (defined by their normals). Alternately, we could write the require-
ments for deciding class 0 as

1
Xy, > —X;—3 and Xy > =2Xp = 1,

which captures the decision rule for class 0 as half-spaces defined by lines. As
with univariate logistic regression, we are unlikely to ever face a feature vari-
able (x;, x,) on the boundary lines or the triple-point where all inequalities are
replaced by equalities. In summary, multiclass multivariate logistic regression
leads to polytopes.

The framework of multiclass classification reduces to standard logistic re-
gression for binary labels. If we would try to predict a {1, 2}-valued label on the
basis of a scalar label x in the above way, multiclass prediction would search
over probabilities of label 2 of the form

1 ewx+b
(1 - S(wx + b), S(wx + b)) = ( )

1 + ewx+b’ 1 4 pwx+b
= Ssoftmax (0,wx + b)

= S ((2) +(9))

so the collection of models considered by binary logistic regression is a subset
of the collection of models considered by multiclass prediction. On the other
hand, for general

we have

Ssoftmax (Wx + B)
ew1x+b1 ew2x+b2
= <6w1x+b1 + ew2x+b2 > ew1x+b1 + ew2x+b2)
1 e(wz—wl)x+(b2—b1)
1 4+ e(wz—w)x+(b2=b1)’ 1 4 e(wy—w)x+(by~by)

= (1 —=S((wy —wy)x + (b; — by)), S (w; —wy)x + (b — by))).

Thus, the models of multiclass predictive probabilities collapse to the col-
lection of models of logistic regression probabilities. Optimizing over models
with logistic regression predictive probabilities is consequently the same as op-
timizing over models with multiclass predictive probabilities.
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3.8. Brief Concluding Remarks

Logistic regression is another classical topic in statistics. Many excellent text-
books are available in the literature. The books [Agr15, MSNO08] contain a nice
exposition of logistic regression and more generally to generalized, linear, and
mixed models, but there are many other excellent sources on this topic as well;
see for example ([DS98, MPV21]). The book [HTF10] also has a good coverage
with an eye towards statistical learning.

Our review of logistic regression was structured to introduce prediction of
categorical variables. Deep neural networks heavily use the logistic function to
model probabilities. Entropy, the softmax function, and one-hot encoding all
scale well to higher-dimensional problems. We will extend our use of gradient
descent to the more complex problems in deep neural networks.

3.9. Exercises

Exercise 3.1. Prove that the softmax function Sgogmax(X) : RP — RP pro-
duces a probability distribution.

Exercise 3.2. Consider logistic regression with the two feature-label data-
points (x;,y;) = (=2,0) and (x,,y,) = (1,1). Compute the loss function at
parameter values 6 = (w, b) = (1/2,1).

Exercise 3.3. Consider the relative entropy

H(p',p)=p' ln% +(1-p)ln

!’ 1 _ pl

1 _ b

with p, p’ € (0,1). Show that the function p’ —» H(p, p’) is convex for each
p €[0,1].

Exercise 3.4. Consider the relative entropy

!/

’ ’ p ’ 1-— p
H(p',p)=p'In > +(1-p)n = p’
with p, p’ € (0,1). Let us use entropy as a means to understand Euler’s equa-
tions of optimality. Show that the Legendre-Fenchel transform of relative en-
tropy, i.e., L(6, p) = maxpy¢o,ni6p’ —H(pP', p)}, is the logarithm of the moment

generating function of the Bernoulli random variable.

’

Exercise 3.5. Compute the Legendre-Fenchel transform
L(6.p) = max {8p' —In(pe® + (1 - p))};
p'e(0,1)

and compare your answer to the setting of Exercise B.4.
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Chapter 4

From the Perceptron
Model to Kernels
to Neural Networks

4.1. Introduction

The goal of this chapter is to offer a different angle on how one can approach
the classification problem with the ultimate goal of building towards the neural
network formulation. We start with the simple perceptron model, show its
connection to kernels, which then naturally leads to the conception of a neural
network as a classifier and function approximator.

Kernel methods and kernel-based formulations are standard statistics and
machine learning topics that one can find in many textbooks. In this chapter
we use the framework of perceptron and kernels in order to introduce neural
networks and motivate stochastic gradient descent. We describe the percep-
tron model in Section @.2, which will motivate the stochastic gradient descent
algorithm for neural networks. Then, in Section f.3 we revisit the perceptron
model and reformulate it through the lens of a kernel. In Section §.4 we revisit
linear regression and connect it to kernels. In Section .5, we motivate neural
networks through the lens of kernels.

We introduce the idea of the neural network as a classifier and function ap-
proximator through the lens of the kernel formulation. As we will see, neural
networks naturally come up as function approximators via the kernel perspec-
tive, building towards deep learning.

U]I
©
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60 4. From the Perceptron Model to Kernels to Neural Networks

4.2. Perceptron Model and Stochastic Gradient Descent
Consider the problem of binary classification. In particular, assume that y €
{—1,1} and set (again with 6 = (w,b)")

-1 ifw-x+b<0,

;0) =si -Xx+b) =
mx0) =sign(w-x+b)=1 . " hso.

This is the perceptron model introduced in [Ros58]. Consider, for example,
the case where w = (w;,w,). Here w,,w, could for instance be length and
weight, respectively, and we may, for example, be interested into classifying
cats versus dogs.

An obvious loss function is the 0 — 1 loss function
| M
No—1(8) = — D7 Ly, sm(xmi®)
M m=1

Note that the function AgL1(0) = 1y, 2m(x,6); 1S not a differentiable
loss function. This lack of differentiability makes it hard to use optimization
tools to minimize Ay_;(6) in order to find the potential minimizer 8*. Other
(smoother) loss functions that can be used in place of 1§ () are for example

H10e(0) = ReLU(= (1 - Xy + b)) = Max(0, ~3yuw - X + b)),
Alrggistic(e) = 10g(1 + e_Ym(w~xm+b)).

Then, the optimization problem becomes
L M
: * __ P m
(4.1) Find 6* = argmin i mzzlxl )
for the chosen A™(6), which, for example, could be any of the hinge loss,

Aitinge(6), or the logistic loss, A{0.;;(6).

A simple, but powerful, idea to solve this optimization problem is

Update the weights in the direction of the negative gradient.

Assume now that b = 0. Alternatively, note that b can be absorbed into w
by extending the vector x to have its first element be defined to be equal to one.
In either case, let the parameter 6 be defined to be 6 = w. In the case of hinge
loss for example, we then compute

m —YmXm  if yu(w - x,,) < 0 (.e., x,, incorrectly predicts)
V/lhinge(w) = .
0 otherwise.

The algorithm becomes

« At time k, select a datapoint (xy, y,) sampled uniformly from Dy;ip-
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4.3. Perceptron Through the Lens of a Kernel 61

« Update the weights

Wi + ypxg  if yi # sign(wy - xi)

4.2) ket otherwise.

Notice that the weight wy, ; becomes wy +yj - X, only if a mistake happens.
In fact, by direct substitution, using the fact that yz = 1 yields

VeWig1 - Xi) = Yie(wy - i) + [lxi|1%,
which says that an update leads to the quantity y,(w-x; ) getting a push towards

the positive direction, i.e., it increases. Thus, the algorithm inherently attempts
to correct itself, eventually leading to a positive value for y,(w - xy).

This algorithm is essentially the stochastic gradient descent (SGD) algo-
rithm that we study in detail in Chapter [7. In short, if we have an optimization
problem like (£.1)), SGD tries to approximate 6* by iteratively computing

Ok+1 = Ok —nVA"(6)

for a randomly chosen m € {1,...,M}. Here 7 is the learning rate. We study
the SGD algorithm in detail in Chapters [] and § and later its theoretical aspects
in Chapter [I§.

4.3. Perceptron Through the Lens of a Kernel

In this section, we present how one can go from a perceptron to a kernel which,
as we will see in Section /.3, then naturally leads to a neural network formula-
tion.

Recall the update wy,, via (B.2). Let a,,, € {0,1,2,...} denote how many
times the perceptron sampled the datapoint (x,,,),,) and led to an incorrect
prediction. Then, we accumulate all those times in the linear combination

M
¢= Z AmYmXm»
m=1

which naturally leads to the model, classifying the prediction to be —1 or 1,

M
m(x; 0) = sign(¢- x) = sign( Z A VmXm x),

m=1
where 6 = ¢é. Observing the last formula, we note that if for a given x we want
to compute the classifier m(x; 8), we have two options. The first option is to
keep track of ¢ at the end of training. The second option is to keep track of
{or1,...,p ). As we shall see next, this second option can be thought of as a
representation in which the kernel formulation arises in a natural way. In fact
this second option carries the name of dual representation and the {«;, ..., ays}
are called the dual variables. Another interpretation of the dual variables is
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that they constitute the weights that linearly combine with the training dataset
{x1,...,xp} to multiply the new input x to produce the corresponding predic-
tion.

Let’s assume now that we want to map x to a higher-dimensional space
called the feature space, represented by, potentially, a high-dimensional vector
¥(x), called the feature vector. To have a concrete example in mind, we may
think of the situation of polynomial regression where a polynomial of higher
order seems to fit the data the best instead of the straight line. For example, if
x = (a, b) is two-dimensional and the feature space is quadratic, we could set
P(x) = (a?, \/Eab, b?) to obtain the quadratic feature space. We will see more
such concrete examples in Chapter [[1. Then, we can set

et yep(xr) i yi # sign(ex - P(x)
k+1 — .
Ck otherwise.

Following the previous logic, we write for the accumulation of times that
the perceptron predicted incorrectly

M

¢= o‘mymlp(xm)'
m=1

In this case, in order to do a prediction for a given input x, we use the model

M
m(x; 0) = sign(¢- P(x)) = Sign( Y A (Xm) - ¢(x))
m=1

M
= sign( D CnYm @Xm) - ¢<x)>) :
m=1

It is interesting to note that we no longer have a linear combination
of the data {x,,}_,. Instead, we have a linear combination of the features
{(x,)¥M_,. In addition, we also notice that to compute the prediction for a
new datapoint x, we need to keep track of the product

K(xp, %) = T ()P ().
In the quadratic example above, where x,, = (a,;,b,;) € R? and x =
(a,b) € R?, we have K(x,,,, x) = (a,,a + b,,b)? = (x,, - x)%.
It turns out that the perspective that led to the formulation above and the

function K(, -) that we just defined are of broader interest. In fact, such func-
tions K are called kernels.

Definition 4.1. IfK : X' XX ~ Rissymmetric and positive semidefinite then
it is called a kernel.
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Let us look at the perceptron model through the lens of a kernel based on
the dual representation (see also [STC04]). This is sometimes referred to as the
kernel perceptron update rule. Instead of adding y - x to w when x is misclas-
sified (see (.2)), we add 1 to the corresponding dual variable a:

« Initialize at «,,, = 0 for every m € {1,...,M}.

« Sample at the mth iteration a datapoint (X, Vi+) € Dirain Uniformly
at random.

« If there is an error, namely if we have that

M
Ve # Sign( > YK (X, xm*)) ,
m=1

then update a,,. = ;. + 1.

Note that, in this reformulation, we do not compute 1(x) anymore, which
could be a very high-dimensional vector, and thus, is very expensive to com-
pute. Instead, we compute the so-called Gram matrix of the data G; j = K(x;, x;).
We recall that we arrived at this formulation by setting K(x;, x;) = T (x;)P(x i)-

Remark 4.2. Some comments on the kernel formulation versus the feature-
space version are in order. While the kernel perceptron uses all available data
samples at each iteration, the Gram matrix instead computes the kernel on all
different pairs in the available dataset. Generally in machine learning, even
though the Gram matrix formulation is preferable when the feature vector is
large, the feature-space version is more attractive when the dataset is large.
Low rank approximations methods can be used to make the calculation of the
Gram matrix more tractable.

Let us now point out another interesting connection between Gram matri-
ces and features. We have seen that given features, we can define the Gram
matrix of the data G via the relation G; ; = K(x;,x;) = ¢T(xi)1p(xj). It turns
out that one can go in the other direction as well.

To see this, we first note that the Gram matrix of any dataset is a positive
semidefinite matrix. Indeed, for all £ € RM | we have that

M M T M
gTGg = Z ging(xi’xj) = (Z gmzvb(xm)) (Z §m¢(xm)) 20,
i,j=1 m=1 m=1

showing that G is a positive semidefinite matrix.
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Second, by Mercer’s theorem, we have that for a function K : X XX — R,
which is
« symmetric;

+ square integrable, i.e.,
f IK(x, x)|?dxdx’ < co,
(x,x")exxx

(which, in the finite-dimensional case X' = {x1,..., X}, translates to
M
Dij=1 |K(x;, x;)|* < c0); and such that,

« forall h € I?(X)
/ K(x, x")h(x)h(x")dxdx' > 0,
(x,x")exXxx

(which, in the finite dimensional case X = {x,..., X}, translates to
requiring that for any & € RM, Z%:l & &K(x;, xj) > 0),

there exist ); : X' —» R and y; > 0 such that

K(x,x') = D uithf (x) - i().

i>1

Mercer’s theorem demonstrates that indeed we can also go from kernels to
features. This is an important and powerful observation. In particular, kernels
allow us to not have to worry much about feature spaces. Mercer’s theorem
essentially says that if the function K that we have chosen to work with is a
kernel, then there will be a feature space to which K corresponds. We will
further explore this key property in Section f.3 to motivate deep learning.

4.4. Linear Regression and Kernels

Now that we have seen what a kernel is and how it applies in the perceptron
model case, let us see how kernels naturally emerge in the setting of linear
regression that we saw in Chapter 2.

Let us consider the case of linear regression with penalization. Similar to
(B.16), we consider
c
(4.3) A2 (6) = 6,(m(x;0)) + Cll8|1.
where we set

& (m(x;0)) = %(y — m(x;0))?, with m(x;0) = w'y(x) + b,

6=w
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(for the sake of exposition, we assume that b is known) and (x) is a potentially
nonlinear feature space mapping. With |D| = M, let the average loss be

M
A©) == 29 (o)
- M (xm5ym) :

m=1

This can still be viewed as a linear regression problem, as even though the
dependence on x may not be linear, the dependence on the unknown parame-
ter 6 = w is affine.

Taking the gradient V,,A(6) = V,,A(w) = 0, we obtain the equation for the
corresponding w

1 M
w= _f Z (leyb(xm) + b)z;b(xm)
m=1

We deliberately do not solve this equation for w. Instead, we define «,,, =
—%(ngb(xm) + b). With this definition, we then write for the optimal w in
terms of the «,,,’s,

M

(4.4) w= Y anh(X).

m=1
The next step is to plug that into A(w). For this purpose, we let K(x;, x;) =

sz(xi)lp(xj) be a kernel, let G = [G; j]%.:l be the Gram matrix with elements

Gij = K(x;,x;), b= (b,...,b)", and let & = (aty,...,apr)". We can then write
that

171 ] e
A(w) = i [§|r>cTG|2 +a'Gb + EbTb + CocTGoc].

Now, we notice that instead of viewing A as a function of w, we can also
view it as a function of . Namely, abusing notation, we write

17071 U (U
Ala) = i [zlocTGl2 +a'Gh + EbTb + CocTGoc] .

The aforementioned expression is called the dual representation, and « are
the dual variables.

Setting now the gradient V,A(a) = 0, we subsequently obtain for the solu-
tion with respect to the dual variables

a=—(G +2CD~'b.
How can this be used for model prediction when a new datapoint x* comes

in? Going back to (§.4) and defining the design matrix ¥ to be the matrix whose
kth column is given by ¥(x;) gives

w = Yaq,
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giving for the corresponding model’s prediction y* (we assume b is known here
for convenience)

y* — szp(x*) +b= O(TIPTII)(X*) +b.

Note that in the last display, W' (x*) is simply the vector with elements
K(x;, x™).

Therefore, we have obtained that the linear regression problem can be for-
mulated simply in terms of the Gram matrix G (through the dual variables a)
and the kernel function K. Hence, as we show with the perceptron model in
Section B.3, in the linear regression setting we can work explicitly with the
kernel function K. Then, thinking in the reverse direction, if we do indeed
work with the kernel formulation, then Mercer’s theorem guarantees that there
would be a feature space to which the chosen kernel K corresponds.

4.5. From Kernels to Neural Networks

In the previous sections, we show that linear models such as linear regression
and the perceptron can be written in the dual representation in terms of a Gram
matrix G, or equivalently (in these cases) in terms of a kernel K. Mercer’s the-
orem says that if K satisfies certain properties, then there is a feature space to
which K corresponds.

A natural question arises. Is there a practical way to understand the under-
lying feature space? How could we choose 1 representing the feature space?

We take the perspective of learning the feature vectors 3 instead of fixing
them a priori! This is one of the key ideas behind deep learning.

In the case of the perceptron we saw that
N
m(x; 0) = sign(c - P(x)) = sign(z c”¢”(x)) ,
n=1

where ¢ = (cl,...,c) are weights and ¥(x) = (¥'(x),..., N (x)) are features.

Let us set p(x) = o(w- x) for a (potentially) unknown matrix w. Our model
now has become

m(x;c, w) = sign(c - o(w - x)),

and we want to augment 6 to include w as an unknown parameter. We define
6=(cl,...,cN,w!,...,wN), and we instead consider the model

N
m(x;0) = sign(Z co(w” - x)).

n=1
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We can define the features to be "(x) = o(w" - x). We then find 6 through
the operation

M N
* : 1
o* = argming_. e 37 Z A (ym, Z co(w" - xm)) ,
m=1

n=1

where A could for example be the hinge loss that we saw earlier (or the logistic
loss or any other loss function of our choice).

The latter step of modeling ¥"(x) = o(w" - x) and considering 8 = (c, w)
as the parameter to be learned is very consequential. The problem suddenly
becomes (a) nonlinear, (b) nonconvex, and (c) high dimensional. Indeed:

« nonlinear: the model is now a nonlinear function of (c, w).

« nonconvex: the optimization with respect to c was a convex problem,
whereas now the optimization with respect to the augmented variable
(c, w) is a nonconvex problem.

« high dimensional: previously we were only dealing with the vector
¢, whereas now we also need to learn the matrix w.
. N
In fact, m(x;6) = &gn(Z

nep Clo(W™ - x)) is a neural network!

4.6. Brief Concluding Remarks

The conception of the perceptron model by Rosenblatt in 1958 [Ros58] was one
of the biggest milestones in the development of neural network-based artificial
intelligence. The book [MP17] goes deeper into the properties of perceptron
learning.

Kernel methods for pattern analysis and statistical learning is a huge and
very well-developed subject. Kernel functions enable us to be able to work with
lower-dimensional algorithms and play a central role in the problem of linear
approximation in the high-dimensional limit. Excellent texts that significantly
expand on the topic of kernel methods include [STC04, Bis06, HTF10, Bac24].
There, kernel methods are discussed and analyzed for generic statistical and
machine learning problems (not necessarily specific to deep learning).

The reader who is interested in how kernel methods compare to neural
network-based methods is referred to [GMMMZ2(] and the references therein.
In particular, a number of empirical studies has shown that for many tasks,
suitable kernel-based methods can replace neural network-based methods
without much of a decline in performance. On the other hand, it has also
been shown that neural networks suffer less from the curse of dimensionality
and can approximate functions which cannot be learned through kernel-based
methods.
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Our goal in this chapter was more modest. Our exploration of kernels
was centered around the objective of motivating the formulation of neural net-
works. The goal was to demonstrate in an intuitive way that the kernel for-
mulation motivates the passage from linear problems to nonlinear problems,
leading to the neural network formulation.

As we demonstrated in this chapter, kernels can motivate the formulation
of neural networks; see also the lecture notes [[Cha22] for a related discussion
that partially also motivated aspects of the presentation in Sections #.3 and .5,
as well as [Bis06] for a related discussion regarding Section f.4. In Chapter
we introduce one of the main classes of neural networks, that of feed forward
neural networks, which is the building block for many of the deep learning
algorithms.
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Chapter 5

Feed Forward
Neural Networks

5.1. Introduction

Feed forward networks can be thought of as compositions of logistic regres-
sion operators, which themselves are a composition of linear regression and
the logistic function S.

To handle the higher-dimensional framework of feed forward networks,
let’s overload functions by vectorizing them (which numpy naturally does in
Python). If ¢ : R — R, we define

X1 $(x1)
¢ 'XiZ d:ef ¢(X2) ,

xx)) )

i.e., ¢ of a vector is defined as ¢ applied to the elements of the vector. A feed
forward neural network m(x; 6) chains together some parts of the models of
multiclass prediction of Chapter B.

Let’s build what amounts to a feed forward network with two internal lay-
ers of dimensions 3 and 4 with internal activation functions of tanh. Let’s also
use a ReLU for the final layer, where

def
ReLU(x) = max{x, 0}, x €R.
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70 5. Feed Forward Neural Networks

Let’s define
Dy =2,
D, =3,
(5.1) D, =4,
D;=1.

Forn € {1,2,3}and W,, € RP»*Pn-1 (j.e., a matrix of dimensions D,, X D,,_;)
and B, € RP», define the linear mapping L(Hr}?.,Bn : RPn-1 - RPn a5

def
L% 5 (x) = Wypx +B,,  x € RPw,
For a parameter vector

def
6 = (W, B;, W,,B,, W;, B;)

in the parameter space @ = RPPo x RP1 x RP2XD1 x RP2 x RP3*D2 x RD3,
let’s define the feed forward neural network

m(x; 6) < ReLU (L(;%,BS (tanh (L(HZ,)2J32 (tanh(L%,)hB1 (x)))))), x € RE.

To be very specific, if

1 =3\ /-2
6 7 -1|]1
(5.2) 6= (2 4),(0), s 6 —allos (5 -1 1 0),6],
1

-6 0 -1 0 5 3
then
m(x;0)
_61 _72 —01 1 =3 X
=RelU|(5 -1 1 O0)tanh tanh|{| 2 4 1
5 6 =2 6 o/ \*2
0 1 =2
_» ‘1‘
(5.3) +1 0 + s, +6].

In practice we would rarely write out the parameter vector 6; we here hope
that a fully expressed simple example will make things very concrete. We also
remark that this example is a special case of the generic formula ([L.1)) for feed
forward neural networks, which is the composition of layers of linear trans-
formations and nonlinear functions. Oftentimes, it is customary to represent
neural networks schematically, as in Figure p.1.
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5.1. Introduction 71

Figure 5.1. A schematic representation of a feed forward neural network
with two hidden layers

In Figure .1 the vertices on the left represent the input data x;, ..., x5. The
two sets of vertices in the middle represent the two hidden layers, composed
of hidden units. The arrows represent linear transformation of the inputs (ei-
ther input feature data at the beginning or hidden units in what follows). The
vertex on the far right represents the neural network output. Note that in a
feed forward neural network any single input affects all the subsequent hidden
layers.

Given our training data 2, which is a multiset in R? X R, we might want
to define an error function

def
60N = -y), ¥ ER,

for y € R and then define the per-datapoint loss

def
(5.4) Axy)(6) = 6, (m(x;6)),
for (x,y) € D and 6 € O. Finally, we define the average loss function
def 1

AB) = — D Axp®), o6€o.
|D| (x,y)eD

The model (B.3) leads to several natural questions:

(1) How can we improve our choice (b.2) of parameters?
(2) Did we choose the number (2) of internal layers well?
(3) Did we choose the dimensions (3 and 4) of the internal layers well?

(4) Did we choose the internal activation functions (tanh) well?
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72 5. Feed Forward Neural Networks

We can use gradient descent to address the first question; this is typically called
training. The second and third questions are typically thought of as hyperpa-
rameter selection, and it is typically addressed via validation procedures, see
Chapter [L11.

5.2. Truth Tables

Feed forward networks are one of the core architectures of deep neural net-
works. In practice, one selects the number of layers and their internal dimen-
sions (i.e., (5.1)), the activation functions (i.e., tanh and ReLU), and the loss
function (i.e., (5.4)), and then implements these in code.

In this section, we explore a nontrivial neural network without needing to
explicitly compute the neural network. We also show using explicit basic con-
structions that linear combinations of indicators of rectangles can approximate
generic functions. The latter can be viewed as a precursor to the well-developed
universal approximation theory for neural networks that we explore in Chapter
6.

To make sure that we fully understand the basics, let’s see how to imple-
ment two-dimensional truth tables as neural networks.

As an example, let’s consider training data consisting of a Gaussian collec-
tion of points in the (x, y) plane. Let’s assume that the statistics of the x and y
coordinates have independent standard normal distribution. Let’s assume that
the points in the first quadrant (where x and y are both positive) have label 1
and the others have label 0. See Figure p.2. We would like to train a neural
network to recover the rule underlying these labeled data. Namely, we want to
construct an analogue of (5.3) which approximates the labeling map

1 ifx>0andy>0

(5:5) (x.y) = 0 else

= 1[R+><R+(x’y)-

Given that there are four quadrants (see Figure B.3), there are 24 = 16
possible labeling maps depending only on quadrant. Several benefits accrue
from thinking through how to implement a number of these labeling maps in
neural networks.

« It is a generic problem: any function can be approximated by a lin-
ear combination of indicators of rectangles (i.e., and maps, similar to

(B.3)), see [RF1(Q].

« We can use theoretically derived representations of neural networks
as points of comparison for computationally derived representations.

« The labeling map (5.5) is an and map (it assigns label 1 when x > 0
and y > 0). More complicated truth tables can be decomposed into
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Figure 5.2. First quadrant
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Figure 5.3. Quadrants

and, or, and not. More complicated logic should require deeper net-
works.

A basic building block will be an approximation of the step function 1.
For € > 0, define

Xx/€

Se(x) o S (%) ¢ x eR.

T 1tee
Then

1g, (%) & S¢(x)
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Figure 5.5. Degenerate cases

for (almost) x € R as € \, 0; see Figure 5.4. We can also write

1p_(x) = Se(—x)

1g_(x) = 1—S(x)
for (almost) all x € R as ¢ \, 0. Thus, it should not surprise us that various
representations will not be unique.

Let’s start with some degenerate cases. Let’s assume that all ground-truth
datapoints are labeled 0; see Figure 5.3. We might write

Ly(x, y) = Se(=1)

for all (x,y) € R? as ¢ \, 0; i.e., the underlying labeling map generating the
data is approximated by S;(—1). In fact, € \y 0, S¢(z) = 0 for all z < 0; for
simplicity, let us take z = —1. Alternately, if all ground-truth points are labeled
1, we might write

Ip2(x,y) = Se(1)
for all (x,y) € R?ase \ 0.

We might next consider half-planes. Assume that all ground-truth data-
points (x,y) € R? with x > 0 (i.e., the right half-plane) are labeled 1, and all
ground-truth points (x, y) € R? with x < 0 (the left half-plane); see Figure 5.6.
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Figure 5.6. Half-planes

Let’s here write
I, xr(X,y) & Sg(x)
as € \, 0. Similarly, we can write
Ip_xr(x,y) = Se(x),
Lpxr, (X, ) = Se()),
IIRXIR_(x’y) R Sz(_y)-
Let’s now dive into a more interesting ground-truth set. Let’s assume that
all ground-truth datapoints (x, y) in the first quadrant R, X R, are labeled 1,
and the rest are labeled 0 (see Figure B.2). Ignoring points on the axes, and
assuming that € < 1, let’s calculate that
(5.6)
2 if(x,y) € R, X R, (1st quadrant)
Se(x)+S:(y) = {1 if(x,y) € (R, X R_)U(R_ X R, ) (2nd, 4th quadrants)
0 if(x,y) € R_ x R_ (3rd quadrant).
We can then single out the first quadrant as the collection of points (x, y)

where S.(x) + S.(¥) > 3/ (and actually we could replace 3/2 with any number
in (1,2)). Let us implement applying a shift z — S, (z — 3/2) of S;. Namely,

1 if(x,y) € R, X R, (the first quadrant)
0 else

Se (Se(x) + Se(y) —32) = {

(5.7) ~ g, (X))

Returning to (B.6), we note that we can replace 3/ with any shift z € (1,2),
as least in the regime where € \, 0. Specific values of z and ¢ naturally come
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Figure 5.7. The first quadrant

from minimizing a loss function which matches the model to training data. In
a certain regime, this loss function should thus be (asymptotically and locally)
independent of z. Without delving into a more precise formulation, this nev-
ertheless suggests that loss functions in deep neural networks may in practice
be approximately constant along lower-dimensional submanifolds.

Let’s next assume that the points (x, y) in our ground-truth dataset are la-
beled 1 only in the fourth quadrant R, X R_; see Figure 5.§. We can reflect the
above calculations for the first quadrant across the x axis to get

(5.8) Ig, sr_(X, 1) & Se (Se(x) + Se(—y) —3h2).
Using the symmetry of S, we of course also have that

(5.9) g xr_ (X%, ¥) & Sc (Se(x) + {1 = Sc(P)} = 32) = S¢ (Se(x) = Se(y) — 12).
This reflects the analogue of (B.6):

1-1 if(x,y) € Ry X R, (Ist quadrant)

0-1 if(x,y) € R, xR, (2nd quadrant)
0—-0 if(x,y) € R_x R_ (3rd quadrant)
1-0 if(x,y) € R, X R_ (4th quadrant)

Ss(x) - Ss(y) ~

0 if(x,y) € (Ry XxR,)U(R_ xR_) (1st and 3rd quadrants)
=1-1 if(x,y) € Ry X R, (2nd quadrant)
1 if(x,y) € R, X R_ (4th quadrant).

Here, the shifted logistic map z — S;(z — !/2) allows us to single out the
fourth quadrant.
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Figure 5.8. The fourth quadrant

Remark 5.1. A fairly profound consequence follows. Deep neural networks
(as almost all other machine learning procedures) depend upon minimizing a
loss function to best match coefficients to training data. We should not expect
this loss function to have a unique minimum. In our example here of selecting
a quadrant in R? (a logical and), the loss function should have (at least) two
minima, corresponding to (5.8) and (5.9).

We can of course easily generalize to the second and third quadrants:

1[R_><R+(x’ Y) ~ Se (Se(=x) + Se(¥) — 32) = Sg (=Se(x) + Se(y) — 1)
Ig_sr_(%,¥) & Sg (Se(—x) + Se(—=y) — 32) = Sg (—Se(x) — Se(=y) +1/2).
We can of course take complements. Let’s assume that all ground-truth

datapoints (x, y) in the first quadrant R, X R are labeled 0, and the rest are
labeled 1 (see Figure B.9). Naturally,

1RZ\(R+><[F{{+)(-)C’ y)~1- 1R+><R+(xa Y) =1 =8 (Se(x) + S(y) —32).

To be parallel to our other representations (where the last layer is S;), let’s
again use the symmetry of S; to write

IRZ\(R+XR+)(X’y) R Se (=Se(x) = Se(¥) + 3/2).
Similarly,
Lo\(r, xr_) (X, ¥) & Sg (=Sg(x) = Se(—=y) +32) = S (=S:(x) + Se(y) + 1/2),
Lpo\(r_xr, ) (X ¥) R Sg (=Se(=X) = Se(¥) +32) = S¢ (Se(x) — S () + 12),
Lp2\@_xw_)(X%: ) & Sg (=Se(—x) — Se(=y) + 3/2)
=S¢ (Se(—x) + Se(—y) — 12).
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Figure 5.9. Complement of the first quadrant

Finally, let’s consider opposing quadrants. Assume that all ground-truth
datapoints (x, y) in either R, X R, or R_ X R_ are labeled 1, and the remaining
points (in R, X R_ and R_ X R,, i.e., the second and fourth quadrants) are
labeled 0; see Figure B.11. We can then write

Lk, xr, u®_xr_)(X%Y) * 1g gz, (%, ¥) + 1g_xp_(X,Y)
(5-10) ~ Ss (Sa(x) + Ss(y) - 3/2) + Ss (SE(_x) + Ss(_y) - 3/2) .

We are approximating 1, g, jur_xr_) @ the sum of two functions which take
values in (0, 1). We have no assurance that this sum will take values in (0, 1),
particularly in the transition region near the origin (0,0). We would also like
the output of our approximate labeling map to be in (0, 1). Consider the map

(5.11) z S (z—1h).

This function approximates the identity map on {0, 1}, and takes values in
(0,1) (i.e., it clips values greater than 1). Let’s replace (5.10) with

1(R+XR+)U(R_XR_)(X’ y) ~ Ss (SE (Ss(x) + Sz(y) - 3/2)
(5.12) +8S¢ (Se(—x) + Sc(—y) —3/2) — 1/2).

We can of course similarly write

1(R+><IR_)U([R_XR+)(x’y) R Sg (8¢ (Se(x) + Se(=y) —32)
(5.13) +S: (Se(—x) + Se(y) — 32) — 1/2).

The representations (5.12) and (5.13) have three layers of compositions of
S.. Using (B.11)), we can of course rewrite all of our representations with three
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Figure 5.11. The first and third quadrants

layers. Collecting everything together, we have (for ¢ <« 1)
Ly(x, y) = Se (S (Se(—1) —12) = 112),
Iga(X, y) = Se (S (Se(1) —12) —112),
g, (X, y) & S¢ (Se (Sc(x) — 1) — 1),
I (X, y) & S¢ (Se (Se(—x) —12) —112),
Ipxw, (X, ¥) & S (Se (S(y) — 1/2) — 12),
Ipur (X, ) & S (Se (Se(=y) —12) — 12),
(5.14) g, sr, (X, 1) & Se (Se (Se(x) + Se(y) — 32) — 12),
Ig, sr_(X,9) & Se (Se (Se(x) + Se(—y) — 3/2) — 1)
= S (Sg (Se(x) = Se(y) — 12) = 12),
1g_wg, (%, ¥) & S¢ (Se (Se(—x) + Se(y) —3/2) — 12)
= Se (Se (—Se(x) + Se(y) — 12) — 112,
1g_sr_(%,¥) & S (S (Se(—x) + Se(=y) — 32) — 1)
= Se (Se (—Se(x) — Se(=y) +12) — 112).
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This allows us to represent two-dimensional truth tables as compositions
of affine transformations and scaled logistic functions.

Define
D, =2,
D; =2,
D, =2,
D; =1.

For n € {1,2,3} and W, € RP»*Pr-1 and B,, € RP~, define
def
L% 5 X)= WX +B,, X €RPm,
For a parameter vector

def
0 = (W1, By, W,, B, Wi, B)

in the parameter space @ = RPPo x RP1 x RP2XD1 x RP2 x RP3*D2 x RD3,
define for (x,y) € R?

X def 3 2 1 X
((5):0) % (s s (o (s (2 (C)))
Let’s start to go through the representations of (5.14), starting with 1,4 and
1g.. Let’s take
00 *1
1 — @), —
s(oo) (3

Wz_(o 1)/5’ B =)/ ®

w® = (1/2 1/2) /e, B®) = 1/,

Ther; (W(1)(;>+B(D’i>: (( )(;‘)ﬁu(ﬂ))_(EiB)

S (W<2)s (W(U (i) + B(”) B(Z)) S (( ) ( EE:B) (12»
_ E(+1) =12
- (( S(x1) - l/z) E)
_ (SE (Se(+1) - 1/2))
B Sa (Ss(il) - 1/2) ’
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5.2. Truth Tables 81

and
s (wws (W(2>s (Ww (x) . B(1)> . B<2>) ; B(3))
y

Se (Sg(£1) — 12
ws{om (EEED=)
=S¢ (S (Se(+1) — 12) — 12)
N 1p2(x,y) ifinputis +1
- {1¢(x,y) if input is —1.
The choice (5.13) of parameters directly implemented the first two lines of
(6.14). We might also set

(5.16) Ww® =0 0)/e and B® =-1p
and we can then take W, B®, W@ and B@ to be any elements of R*¥!,
R?, R¥2 and R?, respectively. This of course implies both a degenerate loss

function (which does not depend on (W, BM, W@, or B® as long as (5.16)
holds), and which has multiple global minima (at (5.13) and (5.16)).

Let’s next consider the truth table which differentiates between the right-
and left-hand planes. Let’s consider 1y ,p, and take

0 —\o
w@ = ((1) g) / e, B@=- <1(/)2> / €,

w® = (1 0)/e, B® = —1p.

(o)) =s((6 5)C)+ (o)

()= (56)
s(res(wo()es0)+52)=5((5 ) (565)-(5)

((57) /4

_ Ss s(x)_l/z)
= NONEA
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82 5. Feed Forward Neural Networks

and
S (W(3)S (W(2>S (W(l) (x) + B(1)> + B(2>) + B(3))
y
Se (Se(x) =12
=S <(1/s 0)( ( ,é?g) /)) — 1/25)
= Sg (Se (Se(x) —12) = 12) » 1R+><R(xs »).

Similar representations hold for the indicators of the upper, left, and lower
half-planes.

Thirdly, we can represent the indicator of the first quadrant. Let’s consider

1p, «r, and take
1 0 0
™ = m =
oo 9 /e =(o)

W = ((1) é) / e, B®=_ (3(/)2) / 6,

w® =(1 0)/e, B®) = —1/,

S )om)-s((E E(0)-s(()-(52)

o
s(res(wo()esv)em)=s((y o)(60)-(5)
s((F9+ 507 /)

_ (Sa (Se(x) + Se(y) = 3/2))
- S(0) ’

and
S <W<3>S <W<2>s (W(D (x) + B(l)) + B(2>) + B(3)>
y

_s(on o0 LS0-0) )

= Ss (Ss (Ss(x) + Ss(y) - 3/2) - 1/2) ~ 1R+XR+(X’ y)

Similar calculations hold for representations of indicators of other quad-
rants. Let’s next represent the indicator of the complement of a single quadrant.
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To approximate 1g2\(r_xr, let’s take

Then

((:

(( y/s>>_( i )y?)
s(res(we(G)es0)esv)=s((5 5)(5)- (7))

<<5( x)+ss( y) - 1/2) /E)

=(Se <x>+s< —y) - 1/2))
S(0) ’

and
S <W<3>S <W<2>S (W(l) <x> + B(1)> + B(Z)) + B(3))
y

_s(0n oG8N ) )

= S¢ (Se (Se(=x) + S(—=y) — 12) — 1)
~ IRZ\(R+><R+)(X’y)'

Finally, let’s consider opposing quadrants. To approximate 1(g, xr,)u®r_xr_)s

let’s take
1 0 0
) — @ —
wo=(o 1) /o m0=(g)
1 1 =3/
2) _ 2) _
we=(4 L) [ w02 (3 /5

w® =1 1)/, B® = -1/,
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84 5. Feed Forward Neural Networks

Then, we have

s(ro)eee)=sllo 2)G)+ ) =(6) - ()
— 32

s(res(wo G)es)ene)=s((2 Z)(56)+(4)

(S50 /9

( Se (Se(x) + Se(y) — 3%2) )
Se (=Se(x) = Se(y) + 1))

and

S (W<3>S (W<2)S <W(1> (x) + B<1>) + B<2>> + B<3>)
y
_ Se (Sa(x) + Ss(y) —3/%)
=9 ((l/a 1/5) ( _Sa(x) _ Sg(y) _ 1/2 ) - 1/25)
= Se(Se (Sex) + Se(9) = 32) + 8¢ (=Sc(x) = S(v) + 1) — 1)
~ 1(R+XR+)U([R_><R_)(x,y)-

While we might have been a bit too thorough in writing out all of these
cases, hopefully we have driven home the point that (sufficiently) deep neural
networks can implement all logic.

5.3. Numerical Exploration

Some controlled computational experiments might help even more. The code
for these examples can be found at https://mathdl.github.io/.

5.3.1. Half-space. We simulate some labeled data representing 1 ,p (see
Figure B.6) and then use PyTorch to train a two-layer neural network. We get

w — (7 380 0174) (6.6 o)

5.809 0.165) ~ \6.6 0
—0.283\ _ (0
(5.17) B = (—0.311) ~ (0)’
w® = (8.187 5.993),
B®@ = —6.287.

Let’s see how this compares to our theoretical representations. The first
column of W) seems to be significantly larger than the second, and both ele-
ments of the first column are the same order of magnitude. Building upon this,
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BW is also small. The first layer of the neural network corresponding to (5.17)
is then about

s(wo () +5)=s(((0 6)C) /<)o)
=s((3)/9)= ()

1 . .
1_ 7.380 + 5.809 ~ 6.595.
€ 2

with

The second layer is approximately
S (8.187S.(x) + 5.9935.(y) — 6.287) = S (S¢(x) — 0.443),
where
5 = 8.187 4+ 5.993 ~ 14.180.

We thus approximately have that
(5.18) S (W<2>s (W<1) (;‘) + B<1>) + 3(2)) ~ Su (S.(x) —0.5),

which makes sense from our theoretical development.
Let’s continue with this example, but start with a different initial condition.

We here get
W _ (~4730 =046\ (=63 0
7.795 0.169 63 0/’
g _ ((0:099) (0
—0.136 0/’
W® = (-5.676 9.608),
B® = _1.754.
Then
) X @\ ~ -1 0\/x 0 _ —X
s(ro ()} Q)6)+ )= +((5
=(Ss(_x)>
Se(x) )’
where

1 7.380+ 5.809

— =~ 6.595.
€ 2
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86 5. Feed Forward Neural Networks

The second layer is approximately

S (—5.6765:(—x) + 9.608S.(x) — 1.754)
~ S(—5.676 + 5.6765.(x) + 9.608S.(x) — 1.754)
~ S (15.284S.(x) — 7.43)
~ S (Sg(x) — 0.486),
where

5 — —5.676 + 9.608 ~ 15.284.

We again approximately have (5.1§).

5.3.2. Quadrant. Let’s do another example. We simulate some labeled data
representing 1g g, (see Figure b.2), and we then use PyTorch to train a two-
layer neural network. Here we get

W — 0.096 —7.474\ (0 =75
~\7514 0063 ) \75 o )

B _ (0-237\ _ (0

0.054 0/’
W® =(-9.638 9.194),
B@ = —4.422.

Here W is approximately a large off-diagonal matrix, and W is is ap-
proximately a scaled version of a vector of 1’s. Then

(o )-(53)

~ 7.2.

o | =

The second layer is approximately

S (—9.638S.(—) + 9.194S.(x) — 4.422)
~ S (—9.638 + 9.638S.(y) + 9.194S(x) — 4.422)
~ S (9.6385.(x) + 9.194S,(x) — 14.06)
~ Ser (Se(x) + Se(y) — 1.493)
with
1 —9.638 +9.194

— = """ ~0941l6.
e’ 2

This exactly agrees with (5.7).
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Figure 5.12. Logistic function

5.4. Activation Functions

Thus far, we have focused on logistic function nonlinearities. There are a num-
ber of other commonly used activation functions. Informally, activation func-
tions have a linear regime, outside of which they saturate (see Figure 5.12).
Composing activation functions with linear layers, we can represent local lin-
ear transformations; this is strongly reminiscent of a first-order Taylor expan-
sion.

The hyperbolic tangent function

eX —e™X

tanh (X) = m .

X ER,

is often used in internal layers. It is linear near the origin and saturates at +1;
see Figure p.13.

Of course the tanh and logistic function S are related:

ex eX/Zex/Z
S(x) = =
1 + ex ex/2 (ex/z + e—x/Z)
B ex/2 3 1 (ex/2 + e—x/2) + (ex/2 _ e—x/2)
T eX2 ye—x2 2 eX/2 4 g—X/2

% {1 + tanh (x/2)}.

This means that the set of compositions of linear layers and logistic func-
tions is equivalent to the set of compositions of linear layers and tanh functions:

55(6x +8) +7 = 10(% {1 + tanh<6x2+ 8)}) +2
= 10tanh(3x + 4) + 2.
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1 -
0.
1 J
-1 0 1
X

= tanh == : saturated linear response

Figure 5.13. Tangent function

/2 A o =
/
O<
/
—[2 ] - - ———
-n/2 0 n/2

X

= grctan == 1 saturated linear response

Figure 5.14. Arctangent function

The arctangent (inverse of tangent) function arctan can play a similar role
as the tanh function, except that it saturates at /2. Since both arctan and

- . 2
tanh have derivative /4 at the origin, we can compare arctan to x — % tanh (—x).
T
See Figure 5.15.

The RelLU (rectified linear unit) function
X — max{x, 0}

is linear for positive argument, but is zero for negative values; see Figure 5.18.
Note that the derivative of the ReLU function is the Heaviside function 1g_.
Gradient descent methods for finding the optimal scaling and shifting of mod-
els involving ReLUs can thus get stuck in dead zones where the derivative is
zZero.
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TT/2' ’———
/
O.
—r[/2- - e - —/
-n/2 0 m/2
X

= grctan == 1 X b (17/2)tanh(2x/m)

Figure 5.15. arctan and scaled tanh
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Figure 5.16. ReLU function
1.
0.
-1 0 1
X

Figure 5.17. Heaviside function
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2.
1.
0.
-2 -1 0 1 2
X
== RelU W Softplus; Softpluss

Figure 5.18. Softplus; activation functions

The Softplus function Softplus is a (parametrized) approximation of the
ReLU function; see also Exercise p.1. For § > 0,

def 1
Softplus (x) = 3 In(1 + %), x € R.

For x > 1/g (typically § > 1), Softplusﬁ(x) ~ X, while for x <« —1/3,
Softplusg(x) ~ 0. See Figure 5.18. The derivative of Softplusg is

X

' e
Softplusﬁ(x) = T3 ohx = S(Bx),

i.e., a scaled logistic function (which is strictly positive).

5.5. Brief Concluding Remarks

In this chapter we introduced, probably, the most basic (but not trivial) neural
network architecture, i.e., feed forward neural networks. Part of the success
of deep learning is due to the fact that neural networks are universal approx-
imators. This means that they can approximate any reasonable function. In
Chapter [L§ of Part 2 of the book, we present the basic and fundamental results
on universal approximation theory.

In Chapters 9 and RQ of Part 2 of the book, we study scaling limits of
feed forward neural networks, namely the neural tangent kernel (oftentimes
called the linear regime) and mean field scaling (oftentimes called the nonlin-
ear regime). As we shall see there, such results bring more light into how, why,
and when deep learning algorithms work in practice.

Now, the next step after defining feed forward neural networks is to train
them so that we can estimate their parameter & € © based on observed data.
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To do so, we need to be able to quickly compute derivatives of the loss function
A(6) with respect to 8. This leads to the backpropagation algorithm, which is
studied in Chapter [, and to some extent is the backbone of all deep learning
algorithms. The actual training is done via the various versions of the different
gradient descent type of algorithms, studied in Chapters [j and § of Part 1 from
a practical perspective and in Chapters [[7 and [[§ of Part 2 of the book from a
theoretical perspective.

5.6. Exercises

Exercise 5.1. Let 8 > 0 and consider the function f# : RY — R such that for
X =(Xg,...,%q),

hal Xd
fﬁ(x)=ﬁln<eﬁ’ +---+e/3).
Prove that for a given x € Rd,
lim 8(x) = max{xy,..., x4}
lim /(x) = max{x,, ... Xq}

What does this result imply for the approximation of ReLU activation func-
tions by smooth functions?

Exercise 5.2. Consider the logistic activation function S(x;c) = Prove

that for ¢ > 0 and for all x € R we have 0 < S'(x;¢) < E.

14e-ox’

Exercise 5.3. Construct a two-layer neural network with a sigmoid activation
function which gives

e Class1,if0 < y < 2x + 3.

» Class 0, otherwise.

Exercise 5.4. Construct a two-layer neural network with a sigmoid activation
function which gives

e Class1,ify < 2x +3and x > 0.
« Class 0, otherwise.
Exercise 5.5. Consider the function
0, x <0,
f(x)=1x, 0<x<1,
2x—1, x>1.
Write the function f(x) in the form
f(x) = WOReLUWDx + BD) + B@),
for some W, B e 21 w2 e R1*2 and B® e R.
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Exercise 5.6. Consider the function
—-2Xx, x <0,
Jf(x) =40, 0<x<1,
3(x—1), x>1.
Write the function f(x) in the form
f(x) = WAReLUW D x + BD) 4+ B®

for some W(l)’B(l) I= RZXI’ w® = RIXZ’ and B® € R.
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Chapter 6

Backpropagation

6.1. Introduction

Neural networks are trained by updating their weights using (stochastic) gra-
dient descent on a desired loss function A(6),

Ok+1 = Ok —nVA(Oy),

where we denote by 7 the learning rate (which oftentimes depends on the iter-
ation k as well).

Backpropagation is an algorithm that allows us to compute VA(6y) in an
efficient way. It is essentially the chain rule done in an intelligent way. Back-
propagation is a form of an automatic differentiation algorithm. In Chapter 24
we shall discuss automatic differentiation in more detail, while in this chapter
we focus on backpropagation.

0F1,)(0)

Let us assume that we want to compute the derivative of a function

Fy : R% — RM that is the composition of L differentiable functions,
F1)(8) = 01, (01-1 (612 (-~ 61(00(6)) --))) ,

where 0y(6) = 6,0, : R% » RK, g, : RK » RK for¢ = 2,...,L — 1 and

o, : RK — RM, Let us denote the differential operator D¢ = 9% Then,
O¢1

using the chain rule, we can write informally

0F(1,(6)
a0

Computing the chain rule from inside to outside (that is, first we
compute D! followed by D?, etc.) is usually referred to as the forward mode
of differentiation and, in the case presented here, it has a cost of the order of
O (K?dg + (L — 2)K*dg + MKdy).

— DLDL—IDL—Z Dl
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94 6. Backpropagation

Computing the chain rule from outside to inside (that is, first we compute

DE followed by DE~1, etc.) to obtain 611;;(9) is usually referred to as the reverse

mode of differentiation which, in the case presented here, has a cost of the order
of O (K?dg + (L — 2)K*M + MKdy).

By comparing the two costs, we see that

« Forward mode is better if M > dj.

« Reverse mode is better if M < dj.

In deep learning, the dimension of the parameter space is typically much
larger than the dimension of the output space. Hence, reverse mode differ-
entiation is preferable. As a matter of fact, backpropagation is an example of
reverse mode differentiation.

In this chapter, we derive the backpropagation formula for calculating the
gradient of a loss function with respect to the model parameters. We start with
an example of a neural network with one hidden layer that has one neuron (the
simplest possible case!) in Section p.2. Section .3 has a slightly more general
case of a feed forward neural network with two layers and a two-dimensional
input. Backpropagation for general feed forward neural networks is presented
in Section p.4. Then, in Section p.3 we present backpropagation in the context
of learning. A common issue in training neural network models is the van-
ishing gradient problem that we describe in the setting of backpropagation in
Section p.6. We will visit backpropagation again in Chapters [ and § when we
formally discuss stochastic gradient descent for shallow and deep neural net-
works, respectively, as well as in Chapter [3 when we discuss recurrent neural
networks.

6.2. Introductory Example

Let us consider first the simplest possible case: one hidden layer with one neu-
ron. Let 6 = (c,w)" and A(B) = %(y — co(w - x))?, where o is some sufficiently
smooth activation function. By the chain rule, the derivatives of the loss func-
tion with respect to the unknown parameters are

%_/2 =(y—co(w - x))(—o(w - x))
g_/u: = (y — co(w - x))(—co’(w - x))x.

Let us define Z = w - x and H = o(Z). The idea of backpropagation (see
[RHWS6 | for one of the first related applications to learning neural networks)
is the following:
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(1) The quantities Z and (y — cH) are computed many times, so storing
them and reusing them is a good idea. For instance, in the computa-
tion above, the same quantities appear in both derivatives. Hence we
can compute them once, store them, and reuse them.

(2) Quantities like (y — cH), H = o(Z), and Z can be viewed as outputs of
consecutive layers. We need to be good with bookkeeping!

(3) There are two general steps: forward computation and backward com-
putation. Activations are computed forward, sensitivities, i.e., deriva-
tives, are computed backward.

Forward computation is where activations are computed from inside to out-

side.
Z=w-Xx,
H = a(2),
m=c-H,
A= -m)
2

Backward computation is where sensitivities are computed from outside to
inside. We shall write z—/Z\ = § to denote the derivative (sensitivity) of the loss

function with respect to a given layer. Sometimes in the literature, the & sensi-
tivities will be defined to be derivatives with respect to H = o(Z) (see Chapters
f] and g for related examples) instead of being with respect to Z. However, both
formulations are essentially equivalent, given that one is a direct function of
the other one.

Even though the concept of §-sensitivities is not very important in this sim-
ple case, its importance will become much clearer in Section b.3.

OA  OAIdA
ﬁ_G_Aﬁ_(_(y_m))’

JA JAdm
%—%g—(—(}’—m))'H,

OAN OJAOm
a—H—%a—H—(—(}’—m))'C,

0N OAOH o
37 = ahaz - CO-m)-0d'@) =3,
oA _OMZ _

w_ ozow O

It is interesting to note that in the above calculation each line uses the out-
put of the previous line. Objects like (y — m), m =c-H,0'(Z),and Z = w - x
need only be computed once and are then simply reused.
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6.3. Backpropagation in a More General Case

In the previous section we investigated the case of one hidden layer with one
neuron. Let us now look into a slightly more general case. Let us consider
a feed forward neural network with two layers and a two-dimensional input
x € R?,

m(x;6) = o (WH)To(WHT - x + BY) + B?),

where we assume that x € R? and 6 = (W2, W!, B2, B!). To make it a little bit
more interesting, we will assume that W1 € R**? is a 2 x 2 matrix, W2, B! € R?
are two-dimensional vectors and B> € R. We have also made the convention
that o applied to a vector acts componentwise on its components.

We use the convention that superscripts correspond to the layer number,
and subscripts correspond to the vector/matrix element. We emphasize that
superscripts do not indicate powers; they indicate layer number.

Let us see now what backpropagation looks like in this case. As we shall
see, just increasing the number of layers from one to two already makes things
interesting and shows the importance of good bookkeeping. Let us define the
output of the inner layer to be

Zl — (WI)T . xO + Bl

1 1 0 1

_ (W1 Wi\ (X1 by

=\{. 1 1 o]t bl
Wy Wi/ \X3 2

_ (whx‘f + Wiy x5 + b%)
- 1,0 1 ,.0 1
Wi,yX] + WyyX5 + by

So, we have

Then, we have for the outer layer
Zi = (W' - x! + B?
1
2 2\ [*1
= (wll w21) (xl) + B2
2
= w? x? + w3, x3 + B2

Let us now see what the derivatives of our loss function A with respect to
the weights look like. We will use the d-notation for sensitivities with respect

to output of the different layers, namely we will set a—Aj = 5{ . As we shall now
BYA,

i
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show, the &'s of the inner and the outer layer are related. We have, using the
chain rule,

L OA _ 0A3Z} _5252%

L™ 571 7 572371 7 “logl
= &twt 0" (Z)).

In a similar way we obtain

L 0N _ OAdZ]
= AT e
2 1 2

81 — 52 wi;0'(Z1)
53 "\wio'(2))
What about §2? We compute
OA _ OAdm _ AA

_ oA _oAom OA 2
“az  omoz  om° AV

- St o@D,

Thus, we can write

o7

If, for example, we choose the loss function A(6) = %(y — m(x;0))?, then
we shall have Z—A = (y — m(x; 0)).
m

The last displays demonstrate that the ’s of the inner layer are given in
terms of the J’s of the outer layer.

Now that we demonstrated that the §'s of the different layers are related to
each other, let us show that they can also determine the derivatives of the loss
function A with respect to the parameters of interest 8 = (W2, W', B2, B'). In
fact, by the chain rule again, we have

oA 0N dZ} 52
a2 azzapr -1
ob3 373 b3
0N 0N 8ZF o 1
lowt, ~ ozZowd 1
11 1 11
AA _6_A6Z%_52.x1
w2, ~ 9z2ow?, L 7%
21 1 21
(0N 0N 6Z] 51
. azlapt 1
db; dZj ob}
] oA _6_A62%_51.x0
gwl,  aztawl ~ 1 T
1 1 1
oA _6_A6Z%_61.x0
Gwy,  — oztowl, b T
21 1 21
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98 6. Backpropagation

(OA 9N 3Z) 5l
sl azlgpl | 2
bl a7} ab}
0N 9N 8z} 51
15,1 =51 - 927X
dwy, 0Z; dwi,
0N 0N 3Zy o1 0
T T s 927X
\ dwy, 075 dwsy,

So, with € = 1,2 we can summarize the previous calculations as

oA

€
abé’ 5] ’
aA 56’ —1
awl j

which then allows us to write the stochastic gradient descent algorithm (more
of this in Chapters [] and f) in terms of the sensitivities &¢, as follows

3 4 € 1
Wi k+1 _w — 18 Xk

£ _ £
bi k1 = bk = ’751'-

6.4. Backpropagation for Multilayer Feed Forward Neural
Networks

Let us consider now the case of a feed forward neural network of arbitrary depth
L < oo of the form

N,
€ _ ¢ 176—1 € —
H! —G(E;wini +bj), ¢=1,...,L.

i=1

Here ¢ denotes the layer index and Hf is the output of the corresponding
jth neuron. The input variable is H° = x and H? = x; is its ith component.
The network’s output, i.e., the model is m(x;6) = H- = (HY,...,Hy, ), with

{(w], J) j=1,...,N,i=1,...,N,, € = 1,...,L}. The loss function is

1 &
A@) =5 D — m;(x;6))%
=

We use the same convention as before in that superscripts correspond to
the layer number and subscripts to the vector/matrix element. We emphasize
that, here, superscripts do not indicate powers, they indicate layer number.
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6.5. Backpropagation Applied to a Deep Learning Example 99

Following the same process as in the previous section, we obtain that the
sensitivities 5;7 among the different layers are related as follows

8f = (Hy = y)o'(Z}), for j = 1,....NL,
S5 <)
— ' - ¢
57 =a'(Z{™h) X 5] ),
]

while the derivatives of the loss function with respect to the parameters of the
neural network can be written as

oA
— =67
£ J’
abf
oA Crré—1
awr, ~ i

It is interesting to note that the formulas above are generalizations of the
formulas for the two-layer neural network in Section .3.

In matrix notation, the neural network can be written as
H¢ = O.((We)THe—l + B"),
and the relation of the §’s among the different layers is compactly given by
6t =H"-y) 0 o'(Z"),
56’—1 — (W€5€) @ O.I(Z€—1)’

where @ is the elementwise product operation, and the derivatives of the loss
function with respect to the network parameters take the form

oA o,
age = °
o =He1(5)

Remark 6.1. Note that one more use of the backpropagation formula is that
if we change the objective function, the only thing that would change in the
formulas above would be the formula for &%.

6.5. Backpropagation Applied to a Deep Learning Example

Let us consider in this section a simple example of learning with backpropa-
gation. We will see more complex examples in Chapter §. Suppose that the
feature x label space is R3 x R and that we want to train a three-layer neural
network on the dataset

D =1{((1,2,3),4),((5,6,7),8),...}.
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100 6. Backpropagation

In particular, let the parameter be
6 = (W', w2, w3,B!, B2, B3,
and consider the model
m(x;0) = o3 (W30, (W?0,(W'x + B') + B?) + B3),

where 0y, 0,, and o3 are given differentiable activation functions and the fea-
tures x € R3. We consider the loss function

where

A(x,y)(e) = gy(m(X; 0))

compares y and m(x; 0) in some differentiable way.
Gradient descent for the loss function gives us iterations for

ek = (W/kla ‘/I/kzy I/I/]?’B]lca Bi9B]3;)7
where

Wy = W - aW, 5770

Bk+1 j naBJ (©x)s

with > 0 the learning rate. Backpropagation deals with the computation of
the derivatives %(ek) and %(Gk). The forward step computes

Zy = Wlx + By,

Zz = Weo(Zy) + Bk

Z3 = Wo,(Z3) + B3.

The backward computation (sensitivities) is

0 /
5 = 5.-6,(m(x:60) © 03 ((ZD))
57 = W2 © 03 ((Z)7)
5t =W oo (Z)7).
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101

Therefore, we have the following explicit formulas for the derivatives involved

in the gradient descent step:

oA 1 T

W(ek) = ﬁ( Z) (83) o2 ((ZD)7),
X,Y)ED

oA 1 T

=53 6K) = 0= (8) >

i =] 2 G

oA 1 T

W(ekhﬁ(Z) (&%) o (@)
X,Y)ED

oA 1 T

= (6) = T (&%)

B2 |D| (x,yz)eD k

oA 1 T

W(ek) = |D| Z (5116) xT’
(x,y)eD

oA 1 T

5= 2 (1)
(x,y)eD

Note that there are many transposes to compute in the last expression. A
more efficient implementation of this algorithm would first convert the dataset
D into feature and label arrays

1 2 3 4
5 6 7)and|8],

and then work with transposes of the original calculations. In particular, we

would have
-
iT iT oA
WL = W = n(s00)
-
i\T iT oA
Bro =By -7 (@(ek)) ,

with 7 > 0 the learning rate.
Then, we would define

Zy = xTWET + BT
2,T 1,T 2,T 2,T
Zk = Gl(Zk )% + Bk

3,T 2,T 3,T 3,T
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The backward computation (sensitivities) becomes
d '
83 = %@(m(x; 6x) @ o3 ((Z)7),

O = ;W © 93 ((ZD)7).
5, = SR © of (Zh)7).

Finally, we have the following explicit formulas for the derivatives involved

in the gradient descent step:

(3775@0) = 2 @,
(2 60) = X &
(5 (ek>)T -5 2 a@s
(2 60) = 5 Xz &
(Fen) -1, 3,

.
(7)) = 2,

Notice that what makes the last computation more efficient is the fact that
there are fewer transpose matrices to compute in the actual gradient descent.

6.6. Vanishing Gradient Problem

In this section we briefly describe an issue that is common across many deep
neural network architectures, that of the vanishing gradient problem. We will

revisit this issue in more detail in Section B.4 as well as in
we study recurrent neural networks.

Chapter 13, where

Let us assume that the activation function o(z) is the logistic function S(z).
Then we will have that S’(z) = S(z)(1—S(z)). In that case the backpropagation

algorithm yields

N,
St =Sz (1 - 8(zEh) Y 8w
j
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6.7. Brief Concluding Remarks 103

Some remarks are now in order.

« If Z{~1 is large in absolute value, then the logistic function is close to
either zero or one. So 6/ ! would saturate to zero.

« By Exercise 5.2, we immediately see that S'(z) = S(z)(1 — S(z)) <
This suggests that we get a reduction of §¢ ! by a factor of 4.

1
4

« We also have
oA

—— = st
owf;
a_A = 5¢

abj I

Thus, if we propagate through several layers, the resulting gradient
will eventually become very small. This phenomenon is called the
vanishing gradient problem.

These suggest that 6 — A(0) has flat regions, which of course is not good
for stochastic gradient descent. In those cases momentum stochastic gradient
descent studied in Chapters[I7 and [[§ may sometimes help. Using an activation
function that would not saturate, like ReLU for instance, would also help; see
also Chapter [[3.

6.7. Brief Concluding Remarks

The backpropagation algorithm is the backbone of deep learning algorithms
because it can lead to quick computation of the gradient of the loss function
A(6) with respect to 8. Backpropagation is part of the automatic differentia-
tion algorithms that we discuss in Chapter P4. We do remark here though for
completeness that automatic differentiation algorithms may not always be op-
timal, see for example [Nau0§].

As we mentioned in the Introduction, the paper on backpropagation by
Rumelhart, Hornik, and Williams in 1986 [RHWS86] led to a considerable
resurgence of interest in the field of neural network based artificial intelligence
in a period where it was not clear how to efficiently train multilayer neural net-
works. An interesting mathematical framework for studying backpropagation
from the lens of a Lagrangian formalism can be found in [Lec88].

Backpropagation is one of the main ingredients needed for the practical im-
plementation and scaling to high-dimensional problems of the stochastic gra-
dient descent algorithm. We explore the stochastic gradient descent algorithm
in Chapters [] and B for shallow and multi-layer neural networks, respectively.
In Chapters [[7 and [[§ of Part 2 we discuss theoretical convergence properties
of gradient descent and stochastic gradient descent.
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104 6. Backpropagation

6.8. Exercises

Exercise 6.1. Develop the backpropagation algorithm for the regular cross-
entropy objective function when the activation function of the last layer is the
logistic function.

Exercise 6.2. Assume that in a feed forward neural network the activation

function in the #th layer is linear. Assume further that the weights and the in-

puts are independent random variables. Prove that 5;’ and Wi@ are independent

2
random variables.

Exercise 6.3. Consider the neural network
m(x; 0) = h(o3(w30,(w,01 (Wi x + by) + by) + by)),

where 6 = (by, by, b3, w;, w,, w3) € R® and oy, 0,, 73, h are sufficiently smooth
activation functions. We consider quadratic error loss, i.e.,

M
A©) = 22 3} O = M3 )2
m=1

Then,

(1) Write down the forward propagation step in terms of the three differ-
ent layers, Z!, Z2, Z3.

(2) Compute the sensitivities §/ = % for j = 1,2,3, in terms of Z/’s.

(3) Compute the derivatives % and % fori=1,2,3.

wl i

(4) Compare your results with Section p.4|.

Exercise 6.4. Define g,(x) = cos(2"x) with x € R and n € {1,2,3}. Define
the function f(x, wy, w,, w;) = €703 (Ws02(W01(W1x+b1)+b2)+bs) Write down the
backpropagation algorithm to compute

af aof o

dw; ’ ow, ’ Ows

of of o
@ (G 730
1 2 3

Exercise 6.5. Define g,(x) = cos(2"x) with x € R and n € {1, 2}. Define the

function f(x,w;, w,) = |oy(w,07(wyx)) — 3|2. Write down the backpropaga-

tion algorithm to compute (i, i).
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Chapter 7

Basics of Stochastic
Gradient Descent

7.1. Introduction

Stochastic gradient descent is the method of choice for training deep learn-
ing models. While the standard gradient descent algorithm uses all available
data at each iteration of the algorithm, stochastic gradient descent uses only a
randomly sampled subset (typically of small size) of the data each time. Even
though the gradient descent algorithm can be thought to be more accurate,
it becomes computationally prohibitive for large datasets. Stochastic gradient
descent, despite not using all available information at each iteration, has been
demonstrated to be both computationally efficient and accurate.

This chapter presents the mechanics of the standard stochastic gradient de-
scent algorithm. In Chapter [[7] we present convergence theory for the gradient
descent algorithm, whereas in Chapter [L§ we present the convergence theory
for the stochastic gradient descent algorithm. As we shall see in Chapter [[§ the
extra randomness coming from the random choice of a subset of the data to be
used at each iteration of the algorithm poses unique mathematical challenges.

In addition, besides the standard stochastic gradient descent algorithm pre-
sented in this chapter, there are many other variants (e.g., stochastic gradient
descent with momentum, AdaGrad, RMSprop, ADAM, AdaMax) which we will
cover in detail in Chapter [[§.

In this chapter we focus on the application of the stochastic gradient al-
gorithm to shallow neural networks. In Chapter § we apply the algorithm to
multi-layer neural networks. Both chapters include implementation examples
in Python.

105
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106 7. Basics of Stochastic Gradient Descent

7.2. The basic setup

Let us briefly review the basic setup. Machine learning estimates a statistical
model for the relationship between an input X and an output Y. Formally,
suppose thereisdata (X,Y) € R9x Y and a statistical model m(x;0) : R > Y,
where 6 € O are the parameters in the model and must be estimated using the
available data. The choice of the space ¥ depends on the problem at hand.
It could for example be a Euclidean space R’ for some J € N in a regression
problem or a space of possible labels in a classification problem. We wish to
find a model m(x; 6) such that m(X; 6) is an accurate prediction for Y.

To make this statement precise, for a given y € Y, recall that the function
€y(z) : Y —» R measures how close a prediction z € ¥ is to the actual observed
outcome y € Y. Then, we recall the definition of the objective function

1
(7.1) A(@):W D7 Ay (0), where Ay 1,)(8) = 6,(m(x; 0)).
(x,y)eD

The objective function (7.1) is a natural objective function for estimating
the parameter 6. The quantity £,(m(x; 6)) measures the error being made when
the model m(x; 0) is used to predict the value y. The error is then averaged over
the distribution Py, of the data . The goal is to find a parameter 6 such that
the average error that the model m(x; 8) makes when predicting the outcome
y is small.

The best model, within the class of models {m(x;0)}gcq, is the model
m(x; 6*), where 6* satisfies
(7.2) 0* = argmin A(O).

6cO

For some simple models, (7.2) can be calculated exactly. However, for more
complicated models such as neural networks, it cannot be exactly calculated.
Instead, numerical methods are used to minimize the objective function ([7.1)).
When ([7.1)) is convex, these numerical methods may converge to the exact so-
lution (7.2). However, when ([7.1]) is nonconvex, the numerical methods are
not guaranteed to converge to the exact solution of (7.2). Neural networks are
nonconvex. In the nonconvex case, numerical methods are only guaranteed
to converge to a point which satisfies certain optimization properties. We will
discuss these important mathematical points later. The most widely used nu-
merical method for minimizing (7.1]) is stochastic gradient descent, which is
the topic of this chapter.

Example 7.1. Consider a logistic regression model for classification where ¥ =
{L,,L,...,1;}, where lj represents the jth label for j = 1,2,...,J,and 6 € O,
where ® = R7*4. Note that we do not list the labels via enumeration, as in
many cases it can mistakenly suggest that ordering of labels corresponds to
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7.3. Stochastic gradient descent algorithm 107

ordering of feature values. Given an input x € R%, the model m(x; 8) produces
a probability of each possible outcome in ¥:

m(X; 9) = Ssoftmax(ex)’

Ssoftmax(2) = J;(ezl ,efx .., €ZJ>,
j=1€7

where z; is the jth element of the vector z=06x € R’. The function Sgofimax(2) :
R’ — P(Y) is called the softmax function and is frequently used in deep learn-
ing. Here P(Y) is the set of probability measures on Y. Syormax(2) takes a
J-dimensional input and produces a probability distribution function on Y.
That is, the output of Sgofimax(2) is @ vector of probabilities for the events
li,1,...,1;. The softmax function can be thought of as a smooth approxima-
tion to the arg max function since it pushes its smallest inputs towards 0 and
its largest input towards 1.

The objective function is the negative log-likelihood (commonly referred
to in machine learning as the cross-entropy error):

MO =5 % Ay
(x,y)eD

J
EOEEDY 1y, logm;(x; 0),
=1

where m;(x; 6) is the jth element of the vector m(x; 6) and 1,_ ;18 the indicator

function
== 10 I
) y ?é j*
As we discussed in Section B.7, the labels are typically encoded as one-hot
vectors; one entry is 1 and the others are 0. Our ground-truth data D is then

a collection of points (x,y) in R x R/, where the y’s are one-hot probability
vectors.

7.3. Stochastic gradient descent algorithm

The objective function (7.1]) can be minimized via the well-known method of
gradient descent:

(7.3) Ok+1 = Ok — Nk Ve A(By).

Gradient descent repeatedly takes steps in the direction of steepest descent.
The negative gradient of the objective function A(6) is the direction of steep-
est descent. The negative gradient is the direction in which A(0) is decreasing.
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108 7. Basics of Stochastic Gradient Descent

Gradient descent repeatedly takes small steps in the direction of the steepest de-
scent. The magnitude of these steps is governed by the learning rate ., which
is a positive scalar which may depend upon the iteration number k.

We can show that if the learning rate 7, is sufficiently small, the kth step
of the gradient descent algorithm ([7.3) is guaranteed to decrease the objective
function. Assuming 6 € R!®l and using a Taylor expansion,

ABk11) — ABr) = VoABr)(Okt1 — Ok) + %(ekﬂ — k) Voo A(6)(Ok 41 — Ek)
T 2
= —77k<VeA(9k)) Vo A(By) + %(Uk) VoA(Bx) " Voo A(Bx) Vo A(Bk),

where 6 is a point on the line segment connecting 6;,; and 6;. As long as
we are not already at a stationary point VoA(6;) = 0, there is a choice of 7,
such that the objective function will decrease, i.e., A(6y41) — A(6) < 0. It is
also clear that if 7, is too large, the objective function may increase due to the
second-order term. In practice, a careful choice of the learning rate is very im-
portant. The gradient descent algorithm uses only the first derivative VoA(6)
to update the parameter 6. If the algorithm takes too-large steps, the first de-
rivative no longer accurately describes the change in the objective function.

Gradient descent requires computing the gradient Vo A(6},), which can be
computationally costly since it involves a summation over (potentially) many
points (x, y):

1

1
VaA(6k) = Vem( Z) Ax,) (k) = W( Z) Vol (x,y)(Ok)-
x,y)eD X, y)eD

Stochastic gradient descent is a computationally efficient scheme for min-
imizing (7.1)). It follows a noisy (but unbiased) descent direction:

(7.4) Ok+1 = Ok — M Vol (x,,y0) (Br)s

where (xi, i) are independent and identically distributed (i.i.d.) samples from
the distribution P(x y). In particular, note that the average descent direction in
(7-4) equals the descent direction in ([7.3) since

| Voceen) @00k | = Eo| Tolox. (@06 | = Vor@p.

Stochastic gradient descent is computationally efficient since it only re-
quires the gradient of the loss from a single data sample. It can therefore per-
form many more iterations than gradient descent, given the same amount of
time. In practice, stochastic gradient descent ([7.4) typically converges much
more rapidly than gradient descent ([7.3).
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7.3. Stochastic gradient descent algorithm 109

Data samples {(X,,, y)M_,} are available from the distribution Px,v)-
Then, (7.1]) can be written as

1 M
(7.5) A®) =37 21 Axmym) (©)-
m=1

The gradient descent algorithm for (7.5) is

M
1
(7.6) Ocer = O = ey 25 VoG Eh)-
m=1

The stochastic gradient descent algorithm for ([7.3):

« Randomly initialize the parameter 6().

e« Fork=0,1,...,K:
- Select a data sample (xy, yy) at random from the dataset {(X,,, ) }4_;.
- Calculate the gradient for the loss from the data sample (xy, yi),

Gr = Vol(x,,y)(Or)-
- Update the parameters
(7.7) Ok+1 = Ok — NG
where 7, is the learning rate.

The gradient descent algorithm ([7.6) converges slowly since in order to
take a single step, it must calculate the gradients for every data sample in the
dataset. In contrast, the stochastic gradient descent algorithm ([7.7) can rapidly
take many steps since each step only requires calculating the gradient for a
single data sample. For this reason, stochastic gradient descent is typically su-
perior to gradient descent in practice. Stochastic gradient descent is especially
advantageous when the size of the dataset M is large.

The gradient Gy in ([7.7) determines the direction of the step. The learn-
ing rate 7, determines the size of the step. In order for (7.4) to converge, the
learning rate must decay as k — oo. The decaying learning rate is required to
average out the noise in the stochastic gradient descent step.

In fact, the learning rate must satisfy the following conditions in order for
(7.4) to converge (see Theorem [7.3):

Z Nk = 0,
k=0
(7.8) 3 ()’ < .
k=0
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110 7. Basics of Stochastic Gradient Descent

In Chapter 1§ we will justify the need for these choices and explain why the
learning rate needs to decay. A learning rate which satisfies these conditions is

__ %
= o+ k
where C, and C; are positive constants.
Example 7.2. We will derive the stochastic gradient descent algorithm for the

logistic regression model stated in Example [7.1. The logistic regression model
m(x; 0) is estimated from the dataset (X, Y )M, Where (X, V) ~ Px.y-

The gradient of the loss function for a generic data sample (x, y) is
V6/1(X,Y)(e) =—-Vp 10g Ssoftmax,y(ex)’

where Sgoftmax,j(2) is the jth element of the vector output of the function
Ssoftmax(2)- Let 6; . be the jth row of the matrix O. If for the jth label y # [},

1 (6x) %% e X
Vo.  10g Ssoftma JOX) = — X
s X Ssoftmaxyy(e)(f) ( z;zl e@j,:x)Z
eGj,:x
=X
Z‘;:l eej’:x
(7.9) = _Ssoftmax,j(ex)x'
If for the jth label y = [},
e%,:% e9i,: %
VGJ-’; 10g Ssoftmax,y(ex) =X- 2%

Ssoftmax,y(ex) ( ijl eej,:x)
(7.10) =X—- Ssoftmax,j(ex)x'
Combining equations (7.9) and (7.10), we have that, for any j,

Vej,; log Ssoftmax,y(ex) = (1y=1j - Ssoftmax’j(eX))x.

Therefore,

s 108 Sqotimany(65) = (€0) = Sporimax(@0)).
where
(7.11) e) = (Ly=ps---n 1y=y,),

represents the one-hot encoding vector. The stochastic gradient descent algo-
rithm is:

« Select a data sample (xy, yx) at random from the dataset {(x,,,, Vi) ;.

« Calculate the gradient for the loss from the data sample (xy, yi):

Gk = —(e(J’k) - Ssoftmax(ekxk)>(xk)T~
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« Update the parameters:
Ok+1 = Ok — Nk G-

7.3.1. Learning rates in practice. Although the conditions ([7.8) are math-
ematically required for convergence, it is often sufficient in practice to simply
use a piecewise learning rate schedule for k = 0,1, ..., C4 such as

Co k<C

0.1C, Ci<k<G

0.01C, C,<k<Cs

0.001C, C; <k <C,.

Nk =

If the learning rate is too small, convergence may be very slow. However, if
the learning rate is too large, the algorithm may oscillate and make no progress.
Stochastic gradient descent takes unbiased but noisy steps. Therefore, too large
of a learning rate may amplify this noise and cause oscillations. The larger the
noise, the smaller the learning rate that is required. For this reason, gradient
descent can use a larger learning rate than stochastic gradient descent. We
will partially address this later by developing minibatch stochastic gradient de-
scent in Section which uses small batches of random samples to reduce
the noise. In the end, the optimal learning rate heavily depends upon the spe-
cific problem and dataset.

7.3.2. Convergence. There is a large literature on the mathematical analy-
sis of gradient descent as well as stochastic gradient descent. As a matter of
fact we will go over the main convergence results in Chapters [ and [I§ for
gradient descent and stochastic gradient descent, respectively. Nevertheless,
this literature does not address many of the challenges of neural networks. To
demonstrate, we present one of the strongest theorems regarding convergence
for the stochastic gradient descent algorithm (7.4):

Theorem 7.3. Suppose that Vo A(0) is globally Lipschitz and bounded. Further-
more, assume that the condition ([7.§) holds and A(6) is bounded. Then,

(7.12) P| lim |VABp)l; = 0| = 1.

The proof of Theorem [7.3 and of other related results for stochastic gradient
descent are discussed in Chapter [18.

Theorem [7.3 states that, provided certain technical conditions are present,
the parameter estimate 6, will converge to a stationary point of the objective
function A(6). Theorem [7.3 is powerful since it covers nonconvex objective
functions. The type of convergence in (7.12) is called almost sure convergence
since with probability 1 the convergence occurs. For example, this is a stronger
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type of convergence than convergence in probability (see Appendix [ for the
definition of different modes of convergence).

Let us now examine the conditions necessary for Theorem [7.3 to hold. Re-
call that the function VyA(9) is globally Lipschitz if

IVeA(E) — VoA(E), < L[I6 - €',

for any 6,6’ € ©. Although there exist many models which satisfy this global
Lipschitz condition, neural network models typically do not satisfy it. In fact,
the gradient of a fully connected neural network with a single hidden layer
will not be globally Lipschitz. It will also not be globally bounded. Therefore,
Theorem [7.3 does not cover neural networks.

This discussion demonstrates some of the mathematical challenges of neu-
ral networks. The analysis of stochastic gradient descent algorithms for neural
network models remains an interesting problem. We will visit related conver-
gence results in Chapters [[9 and 0. Stochastic gradient descent has proven
very effective in practice and is the fundamental building block of nearly all
approaches for training deep learning models.

7.3.3. Local Minima. Stochastic gradient descent is not guaranteed to con-
verge to the global minimum of the objective function A(8) if the model m(x; 8)
is a neural network. In fact, it is very unlikely to do so. A global minimum is a
parameter 6* such that

A(6") < A(6),

forany 6 € ©. The global minimum for neural networks is typically not unique
(i.e., there are multiple global minima).

Neural networks typically have many local minima. The point 6 is a local
minimum if there exists a § > 0 such that

A©") > A(6) forevery [0 —0|,<?3.

Stochastic gradient descent may converge to a local minimum and not a
global minimum. This is one of the challenges of nonconvex optimization.
Neural networks are nonconvex and, as a consequence, the objective function
A(0) is also nonconvex. The issues of nonconvexity and existence of local min-
ima for neural networks are presented in Exercises 7.9 and [7.6, respectively.

7.3.4. Minibatch Gradient Descent. The stochastic gradient descent algo-
rithm we presented earlier only uses a single data sample for computing the
update direction. Although the update is unbiased, it may be very noisy (i.e., a
large variance) since there is a large amount of randomness in the single data
sample that is drawn. Very noisy updates can cause oscillations and slow down
convergence.
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The noise in stochastic gradient descent can be easily reduced by comput-
ing the gradient on a small minibatch of data samples instead of just a single
data sample. More data samples reduce the variance in the update. The num-
ber of data samples M in the minibatch is still small compared to the size of
the dataset N though, and therefore minibatch stochastic gradient descent still
converges much more rapidly than gradient descent. Frequently, minibatch
stochastic gradient descent and (one sample) stochastic gradient descent have
the same computational speed since computations can be efficiently vectorized
for moderate sized M (~ 100 — 1,000) .

Since the noise in the updates is reduced, minibatch stochastic gradient de-
scent can use a larger learning rate than stochastic gradient descent. Typically,
the larger the minibatch size M, the larger the learning rate can be.

The minibatch stochastic gradient descent algorithm for ([7.5):

« Randomly initialize the parameter 6.
e Fork=0,1,...,K:
- Select M, data samples {(X(x, m)» J( k,m))%"zl} atrandom from the dataset
(s V)M _1}, where M, < M.
- Calculate the gradient for the loss from the data samples:

M

1 o

Gk = Z Veﬂr(x(k,m)’y(k,m))(ek)'
M, o)

- Update the parameters:

Ok+1 = Ok — NG
where 7, is the learning rate.

The minibatch update Gy is clearly still an unbiased estimate for the gradi-
ent Vo A(6y). Furthermore, it is less noisy than the stochastic gradient descent
update with a single sample, i.e.,

M,
1 M
Var [Gk|9k] = Var [M Z Vel(x(k,m),y(k,m))(ek)|ek]
1

° m=

1
= o Var [ve/l(xk,yk)(ek)‘ek].

The conditional variance of a minibatch update is smaller by a factor of Mi

than stochastic gradient descent with a single sample, where M, is the mini-
batch size.

Although we have differentiated here between minibatch stochastic gradi-
ent descent and stochastic gradient descent, the former is also often referred to
stochastic gradient descent. In practice, the term stochastic gradient descent
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is frequently used with the implicit assumption that it is in fact minibatch sto-
chastic gradient descent. The term batch is also often used interchangeably
with minibatch.

7.4. Applications to Shallow Neural Networks

A fully connected network with a single hidden layer (shallow neural network)
can be written as follows

Z =Wx + b!,
HiZU(Zi), i=0,...,dH—1,
(7.13) m(x;0) = CH + b

The neural network m(x;8) : R — Y takes an input x of size d and

produces an output in ¥ and let’s say ¥ = R’. The parameters are C € R/>9H,
b! € R, b? € R/, and W € R4, These parameters are collected in 6 =
{C,bl,b%, W

Let us examine the architecture of the neural network (7.13). First, a linear
transformation Z = Wx + b! of the input x is taken. Then, an elementwise
nonlinearity o(-) : R — R is applied to each element of the vector Z € R%,
This elementwise transformation of Z produces the hidden layer H € R%.
The number of units in the hidden layer is dg. The final output of the neural
network is a linear transformation CH + b? of the hidden layer.

Typical choices for the nonlinearities o(z) are:

« tanh(z),
« Sigmoidal units: < ,
1+e?

« Rectified linear units (ReLU): max(z, 0).

In particular, ReLUs have proven very successful for multi-layer neural net-
works, and we will discuss them in more detail later.

The neural network model can be used to predict an outcome Y € R’ given
an input X € R?. This is a regression problem, and the parameters 8 must be
chosen to minimize the error between the model prediction m(X;6) and the
actual outcome Y (e.g., the error here could be the squared Euclidean distance
&)(2) = |lz— ylli). Then, the goal is to select parameters 6 that minimize the
objective function

1

(7.14) MO =z D Iy -mex ol
(CAYIS]
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A global minimum of the objective function (7.14) is

0* € argmin A(O).
6O

The neural network (7.13) with a single hidden layer is the simplest neural
network architecture. However, even in this basic setup, the objective function
(7:14) is nonconvex. Therefore, it is not guaranteed that stochastic gradient
descent will converge to the global minimum.

The neural network (7.13) is a nonlinear model due to the hidden layer H
which involves the application of the elementwise nonlinearities o(-). The ap-
proximation power of the neural network increases with the number of hidden
units. First, we will make this statement mathematically precise. Then, we will
discuss the practical implications.

Assume now that we would like to learn a model m(x; 8) for the relation-
ship y = m(x) by observing data samples (X, Y). Under mild technical condi-
tions (see Chapter [ on the universal approximation theorems and [HSW9(])
for any € > 0, there exists a neural network with dy hidden units such that

(7.15) Exy[IY = mCGe9)[3] <e

This result indicates that the neural network m(x; 6) can approximate the tar-
get function m(x) arbitrarily well if it has a sufficiently large number of hidden
units.

It is important to understand that the result (7.13) does not necessarily
mean that a neural network trained in practice will accurately approximate
the target function m(x). Inequality (7.13) achieves the approximation error €
at a global minimum. However, numerically solving for the global minimum
is intractable in practice. Instead, the objective function A(6) is minimized
using stochastic gradient descent, which may converge to a local minimum.
Nonetheless, (7.13) implies that greater accuracy can be achieved by increas-
ing the number of hidden units. In practice, increasing the number of hidden
units will frequently increase the accuracy (as long as the neural network does
not begin to overfit).

7.4.1. Classification with Neural Networks. The example ([7.14) considers
a regression problem where a model is trained to predict a real-valued output
given an input. Neural networks can also be used for classification problems
where a model is trained to predict a categorical outcome given an input. In
this case, the outcome is one of a set of discrete values ¥ = {l;,1,, ..., 17}, where
l; represents the jth label for j = 1,2,...,J. The output of the model will be a
vector of probabilities for these potential outcomes.
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In order to perform classification, a softmax layer is added to the neural
network. The neural network architecture becomes

Z = Wx + bl,
Hi=O'(Zi), i=0,...,dH—1,
U = CH + b?,

m(x; 0) = Ssoftmax(U)-
The dimensions of the W, C, b!, and b? remain the same as in (7.13).

With the addition of the softmax layer, the neural network now maps the
input x to a probability distribution on Y, i.e., m(x; 6) : R — P(Y). The ob-
jective function is the negative log-likelihood (commonly also called the cross-
entropy error):

AO) == 3 Ay (©),

l (x,y)eD

J
Axy)(6) = = 2 1y, log m(x; 6).
Jj=1

The neural network produces a vector of probabilities for all potential out-
comes in Y. In many typical applications, a single prediction is required for the
most likely outcome. The most likely outcome is

argmax;_, , = ; m;(x; 0),

where m;(x; 0) is the jth element of the output of the model m(x; 6).

7.4.2. Backpropagation Algorithm. In Chapter § we went over the basics
of the backpropagation algorithm. We will now revisit this topic and derive the
backpropagation formula for the classification problem in the previous subsec-
tion.

The stochastic gradient descent algorithm requires calculating the gradient
of 1 1= A¢x,y)(6) with respect to the parameters 6 = {C, b, b*, W}. We will
calculate this gradient using the chain rule.

First, similar to our calculations for logistic regression,

g_?] = —(e(Y) - m(X; 9)>,

e(y) = (1y=11’ cees 1y=lj)'

Then, we immediately have the gradient with respect to b%:

oL _ oL ou_ ol
b2 = 90U ~ db2  dU’
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Recall that x © y denotes the elementwise multiplication of x and y. For ex-
ample, if x,y € RYand z = x © y, then z € R? and z; = x;y;. Similarly, if
X,y € Rledz, thenz € Rledz and Zi,j = xi,jyi’j.

Next, we consider the gradient with respect to C.

01 _ 5 9L 90U oh
0Ciq 4 0U;0Cq  OU 7

where C; 4 is the element of the matrix C corresponding to the ith row and the
qth column. In matrix notation,

o _ ol
oC = dU
Define
.04
5'_8_2'

We have by the chain rule that
oA 9U; 6H;

oU; dH; 0Z;

j,in’(Zi)

z

a
-~ U’
where C. ; is the ith column of the matrix C.

p

C.i0'(Zy),

In matrix notation,
oA
=C'== 0d(2),
5 30 ©° 2)
where, with a slight abuse of notation, ¢’(Z) is understood as the elementwise
application of ¢’(+), i.e.,

7@ = (2T @)1 )

Then, we immediately have the gradient with respect to b! in terms of &:
o
ob!

Next, let’s consider the gradient with respect to W, which can also be writ-

ten in terms of &:

=0.

oA

m = 51'X€.
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Therefore,
oA

G4 sxT
W oX'.

Collecting our results, the stochastic gradient descent algorithm for updat-
ing 0 is:
« Randomly select a new data sample (X, Y).
« Compute the forward step Z, H, U, m(X; 0), and 1(x,y)(6).
Calculate the partial derivative

oA
2= —(e(Y) — m(x; e)).
« Calculate the partial derivatives
a_a
ob2  dU’
7~
ac=au't

92
§= cTw O d(2).

Calculate the partial derivatives

o1

o =%
Y-
W—ax .

« Update the parameters 8 = {C, b?, W, b'} with a stochastic gradient
descent step

o
Ci+1=Ck — UkWHT’

oA
b1 = b — USTia

biyr = by — S,
Wir1 = Wi = 60X T,
where 7)j, is the learning rate.

Remark 7.4. We remark here that oftentimes an alternative definition is given
. . ol - .

in the literature for §, namely § := —. The two definitions are equivalent. In
the latter case, one would instead arrive at the equations

_ o1 oT oA

°=31-C
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A ,
W—aG)U(Z),

o o N
a—W—(5®O'(Z)>X ,

and the parameters 6 = {C, b?, W, b'} are updated with a stochastic gradient
descent step

oA
Ck41=Cr — UkWHT,

oA
bi+1 = bi - Ukﬁ,

bllc+1 = bllc - © 0'(2),
Wk+1 =W, — 7’)k(5 © O"(Z))XT.

Both formulations are equivalent. The difference in the case of a shallow
neural network model is only whether ¢’(Z) appears in the formula for § or in
the subsequent formulas which are used to update the parameters via stochas-
tic gradient descent. In the multilayer case that we study in Chapter § we will
present this latter point of view instead, for completeness.

As we have already discussed, the stochastic gradient descent algorithm
described above is frequently referred to as the backpropagation algorithm. It
is composed of a forward step and a backward step. In the forward step, the
output m(X; 6) and the intermediary network values (Z, H, and U) are calcu-
lated. In the backward step, the gradient of the loss function with respect to the
parameter 6 is calculated. The backward step relies upon the values calculated
in the forward step.

The backward step is constructed in an efficient manner. For example,
when calculating the gradient with respect to W, it reuses some of the cal-
culations from the gradients for C and b!. Essentially, a large number of the
steps in the chain rule are shared across the different parameters, which avoids
costly recalculations. In particular, the calculation for gradients of parameters
in lower layers reuses portions of the chain rule which have already been eval-
uated for parameters in higher layers. We will discuss this again in more detail
when multi-layer neural networks are presented.

A numerical implementation of the backpropagation algorithm can be ver-
ified by using finite differences. That is, for A > 0 small enough, one can nu-
merically estimate the gradient

om m(x; 91- + A, G#i) - m(x; Gi - A, Qj#)
_(x, 61,6‘}#1) ~ TN ,

and compare this against the result from the backpropagation algorithm.
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The neural network architecture requires selecting a number of hyperpa-
rameters such as the number of hidden units, the type of activation function
or the parameter initialization. Frequently, different choices of hyperparame-
ters have to be tested in order to find the most optimal configuration (i.e., the
network architecture which has the best performance); see Chapter [L1.

The neural network becomes a more complex model as the number of hid-
den units is increased. That is, its approximation power will increase and it
will be able to fit more complex relationships. However, the model will also
become more likely to overfit as the number of hidden units increases.

7.5. Implementation Examples

In the previous section we went over the formulation of the stochastic gradi-
ent descent algorithm and the basics of neural networks and the backpropaga-
tion algorithm. In this section, we present a few coding examples in Python to
demonstrate how the algorithm is implemented in practice.

7.5.1. PyTorch and TensorFlow. PyTorch and TensorFlow are software libra-
ries which can perform automatic differentiation of deep learning models. In
summary, these libraries will automatically calculate the backpropagation al-
gorithm, even for complex models. This can significantly accelerate the devel-
opment and testing of deep learning models.

PyTorch has a define-by-run framework while TensorFlow is a define-and-
run framework. The define-by-run framework in PyTorch has certain mod-
eling advantages and, in general, PyTorch is more seamlessly integrated with
Python than TensorFlow. Both frameworks are widely used. Google developed
TensorFlow, while Facebook is the main developer behind PyTorch.

TensorFlow specifies the model and the computational graph before train-
ing begins. (The computational graph is the forward and backward chain of
relationships in the backpropagation algorithm.) Hence, it is called a define-
and-run framework. The model is static and cannot be easily changed during
training. By using a static model, in principle, TensorFlow can achieve certain
computational efficiencies by a priori optimizing some of the procedures. Since
the model does not change during training, the backpropagation algorithm also
remains the same throughout training. In practice, certain workarounds can be
used to modify the model during training; however, these are not necessarily
straightforward to implement.

PyTorch allows the model and loss function to dynamically change dur-
ing training and testing. PyTorch builds the computational graph on the fly.
Hence, it is called a define-by-run framework. Thus, changes to the model
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which in turn cause changes to the backpropagation algorithm can be effort-
lessly handled, even when they occur during the training process. This pro-
duces a highly flexible computational framework for training and testing deep
learning models. PyTorch’s seamless integration with Python is also not to be
underestimated. Typical applications will use Python for data preprocessing
purposes, and better integration with the deep learning framework allows for
a faster (and easier) development process.

Section presents an example of PyTorch code for training a neural net-
work on the MNIST dataset [LBBH98|. The MNIST dataset is a standard image
recognition dataset of handwritten numbers (more details follow below) and is
available from https://yann.lecun.com/exdb/mnist/. For the code examples in
this chapter as well as in Chapters § and B3, the original dataset was down-
loaded and stored in an hdf5 file. The input data was normalized by the maxi-
mum value of a pixel (255). Section provides an example to demonstrate
the flexibility of PyTorch’s define-by-run framework.

7.5.2. PyTorch Implementation for a Neural Network on the MNIST
Dataset. PyTorch code is provided below for training a one-layer neural net-
work on the MNIST dataset [LBBH98|. The MNIST dataset contains images
of handwritten numbers 0, 1,...,9. Each data sample is a pair (X,Y) where
X € R7%* (the image is 28 x 28, and therefore there are 784 pixels which are
inputs to the model) and Y € ¥ = {0, 1,...,9} (typically modeled through a
one-hot vector encoding). The goal is to train a model m(x; 6) to correctly clas-
sify an image given only the pixel data X.

Note that the training is divided into a sequence of epochs, where in each
epoch the model is trained on the data from the entire training set. At the
beginning of each epoch, the dataset is randomly shuffled so that the model is
trained on a sequence of i.i.d. data samples.

Load the data:

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

from torch.autograd import Variable

import h5py
import time

#load MNIST data

MNIST_data = h5py. File ('MNISTdata.hdf5"', 'r')

x_train = np.float32 (MNIST_data['x_train'][:] )

y_train = np.int32(np.array (MNIST_data['y_train'][:,0]))
x_test = np.float32( MNIST_data|'x_test'][:] )

y_test = np.int32( np.array( MNIST_data['y_test'][:,0] ) )

MNIST_data.close ()
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Define the model:

#number of hidden units
N = 100

#Model architecture
class MnistModel (nn.Module):
def __init__(self):
super(MnistModel, self).__init__ ()
# input is 28x28
#These variables store the model parameters.

self.fcl nn.Linear (2828, N)
self.fc2 = nn.Linear (N, 10)

def forward(self, x):
#Here is where the network is specified.

X = F.tanh(self.fcl( x ))
X self.fc2( x )

return F.log_softmax(x, dim=1)

model = MnistModel ()

Define the optimization algorithm and training:

#Stochastic gradient descent optimizer
optimizer = optim.SGD(model.parameters(), lr=0.1)

batch_size 100
num_epochs = 100

L_Y_train = len(y_train)
model. train ()
train_loss = []

#Train Model
for epoch in range(num_epochs):

#Randomly shuffle data every epoch

I_permutation = np.random.permutation(L_Y_train)
X_train = x_train[I_permutation,:]

y_train = y_train[l_permutation]

train_accu = []

for i in range(0, L_Y_train, batch_size):
x_train_batch = torch.FloatTensor( x_train[i:i+batch_size,:] )
y_train_batch = torch.LongTensor( y_train[i:i+batch_size] )
data, target = Variable(x_train_batch), Variable(y_train_batch)

#PyTorch "accumulates gradients", so we need to set the stored
#gradients to zero when there's a new batch of data.
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optimizer.zero_grad ()

#Forward propagation of the model, i.e. calculate the hidden
#units and the output.

output = model(data)

#The objective function is the negative log-likelihood function.
loss = F.nll_loss (output, target)

#This calculates the gradients (via backpropagation)
loss . backward ()
train_loss.append(loss.data)

#The model parameters are updated using SGD.
optimizer.step ()

#Calculate accuracy on the training set.
prediction = output.data.max(1)[1] # first column has actual
prob.
accuracy = ( float( prediction.eq(target.data).sum() )
/float (batch_size) )*100.0
train_accu.append(accuracy)
accuracy_epoch = np.mean(train_accu)
print (epoch, accuracy_epoch)

Accuracy of the trained model:

#Calculate accuracy of trained model on the Test Set
model.eval ()

test_accu = []

for i in range(0, len(y_test), batch_size):
x_test_batch = torch.FloatTensor( x_test[i:i+batch_size,:] )
y_test_batch = torch.LongTensor( y_test[i:i+batch_size] )

data, target = Variable(x_test_batch), Variable(y_test_batch)
optimizer.zero_grad ()

output = model(data)

loss = F.nll_loss (output, target)

prediction = output.data.max(1)[1] # first column has actual prob.
accuracy = (float( prediction.eq(target.data).sum()) /float(batch_size
))*100.0

test_accu.append(accuracy)
accuracy_test = np.mean(test_accu)
print(accuracy_test)

7.5.3. An Example Illustrating PyTorch’s Define-by-Run Framework.

PyTorch’s define-by-run framework allows significant flexibility when training
models. The model architecture and data input can be dynamically changed
during training. A simple example is provided below to illustrate this. The
number of layers in the neural network is increased during training if certain
criterion, which are only known during training, are satisfied.
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Load the dataset:

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

#from torchvision import datasets, transforms
from torch.autograd import Variable

import h5py
import time

#load MNIST data
MNIST_data = h5py. File ('MNISTdata.hdf5', 'r')

x_train = np.float32 (MNIST_data['x_train'][:] )
y_train = np.int32(np.array (MNIST_data['y_train'][:,0]))
Xx_test = np.float32( MNIST_data['x_test'][:] )

y_test = np.int32( np.array( MNIST_data['y_test'][:,0] ) )

MNIST_data.close ()

Define the model:
#number of hidden units
H = 50

batch_size 100

num_epochs = 100

L_Y_train = len(y_train)
epoch_accuracy_list = []
epoch_accuracy_list.append(0.0)

#learning rate
LRO = 0.1

W_Llist = []
W0 = torch.autograd.Variable(torch.randn((H,28%28)), requires_grad=True)
W_list.append (WO0)

C = torch.autograd.Variable(torch.randn((10,H)), requires_grad=True)

Number_of_layers = 1
Max_Number_of_Layers = 3

Train the model:

#Train Model
for epoch in range(num_epochs):

LR = LRO/float(Number_of_layers)
#Set gradients to zero
#W0.grad [:] = WO.grad[:]*0.0

#Randomly shuffle data every epoch
I_permutation = np.random.permutation(L_Y_train)
x_train = x_train[l_permutation,:]
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y_train = y_train[l_permutation]
train_accu = []

for i in range(0, L_Y_train, batch_size):
x_train_batch = torch.FloatTensor( x_train[i:i+batch_size,:] )
y_train_batch = torch.LongTensor( y_train[i:i+batch_size] )
#data, target = Variable(x_train_batch).cuda(),
Variable (y_train_batch).cuda()
data, target = Variable(x_train_batch), Variable(y_train_batch)

Z = torch.t( data )

for i in range(len(W_list)):
Z = torch.tanh( torch.mm(W_list[i], Z ) )

V = torch.nm( C , Z)

output = F.log_softmax( torch.t( V) , dim=1)
loss = F.nll_loss (output, target)

loss.backward () # calculate gradients

with torch.no_grad () :
for i in range(len(W_list)):
W_list[i] -= LR * W_list[i].grad
C -= LR * C.grad

# Set the gradients to zero
for i in range(len(W_list)):
W_Llist[i].grad.zero_()

C.grad.zero_()

Calculate accuracy:

#calculate accuracy
prediction = output.data.max(1)[1] # first column has actual
prob.
accuracy = ( float( prediction.eq(target.data).sum() )
/float (batch_size) )*100.0
train_accu.append(accuracy)
accuracy_epoch = np.mean(train_accu)

epoch_accuracy_list.append(accuracy_epoch)

Increase the number of layers if need be on the fly:

#lncrease the number of layers in the neural network model
#if certain criteria are satisfied.

if ((epoch > 1) & (epoch_accuracy_list[-1]<epoch_accuracy_list[-2]+0.1
)
& (Number_of_layers < Max_Number_of_Layers) & (epoch > 20) ):
W_list.append(torch.autograd.Variable(torch.randn ((H,H)),
requires_grad=True))
Number_of_layers = len(W_list)

print (epoch, accuracy_epoch, Number_of_layers)
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7.5.4. Accelerating Computations on Graphics Processing Units. The
backpropagation algorithm for training neural networks is composed of a series
of (large) matrix multiplications that can be efficiently parallelized on graph-
ics processing units (GPUs). GPUs have thousands of cores which allows for
highly parallelized computations. A drawback is that GPUs have significantly
lower memory than CPUs. They can also be slower for sequential tasks. GPUs
can provide up to a 10X speedup versus CPUs for deep learning, although per-
formance can of course vary.

Itis straightforward to train models on GPUs with PyTorch. It only requires
a couple of modifications of the code from Section as we observe below.

Load the data:

model = MnistModel ()
@model.cuda ()@

optimizer = optim.SGD(model.parameters(), lr=0.1)

batch_size = 100
num_epochs = 100
L_Y_train = len(y_train)
model. train ()

train_loss = []

Train the model:

#Train Model
for epoch in range(num_epochs):

I_permutation = np.random.permutation(L_Y_train)
Xx_train = x_train[I_permutation,:]

y_train = y_train[l_permutation]

train_accu = []

for i in range(0, L_Y_train, batch_size):
x_train_batch = torch.FloatTensor( x_train[i:i+batch_size,:] )
y_train_batch = torch.LongTensor( y_train[i:i+batch_size] )
@data, target = Variable(x_train_batch).cuda(),
Variable (y_train_batch).cuda()@
optimizer.zero_grad ()
output = model(data)

loss = F.nll_loss (output, target)

loss . backward ()
train_loss.append(loss.data[0])

optimizer.step ()
prediction = output.data.max(1)[1]

accuracy = ( float( prediction.eq(target.data).sum() )/float(
batch_size))*100.0
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train_accu.append(accuracy)

accuracy_epoch = np.mean(train_accu)
print (epoch, accuracy_epoch)

7.6. Brief Concluding Remarks

In the chapter we investigated aspects of the stochastic gradient descent algo-
rithm and the associated backpropagation with an eye towards shallow neural
networks. In Chapter § we generalize our investigations to cover multi-layer
neural networks and we also discuss the vanishing gradient problem.

Condition ([7.§) on the learning rate was introduced in the stochastic ap-
proximation algorithm of [RM51] in 1951 and oftentimes it goes by the name
of the Robins-Monroe condition. Soon thereafter [KW52] proposed a similar
stochastic approximation algorithm for estimating the maximum of a function.
It was later proven by [BT00] in 2000 that under this condition and certain as-
sumptions on the loss function, the SGD algorithm ([7.4) converges to a critical
point of the loss function. The paper [BCN18] contains related results as well.
The book [KY03] has a detailed exposition on stochastic approximation theory.

Convergence theory results for gradient descent will be presented in Chap-
ter [[7 and for the stochastic gradient descent algorithm (7.4) in Chapter [§. In
Chapter [[§ we will also study some of the more advanced variants of the clas-
sical stochastic gradient descent algorithms, such as SGD with momentum,
AdaGrad, RMSprop, ADAM, and AdaMax.

7.7. Exercises

Exercise 7.1. Consider a dataset {(x,,, y)M_,} where x € R% and y € R.
Recall the least-squares objective function A(6) = ﬁ Y1 Ym—6" xp)? for the

linear model m(x; 6) = 67 x. Derive the stochastic gradient descent algorithm
for this linear regression model.

Exercise 7.2. Consider a nonlinear model m(x; 6) = g(8" x) with an objective
function

1 M
A6) = M Z |ym _g(eTxm)l’
m=1

where g is a nonlinear but sufficiently smooth function. Derive the stochastic
gradient descent algorithm for this model.

Exercise 7.3. Derive the minibatch stochastic gradient descent algorithm for
the logistic regression model.
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Exercise 7.4. Use minibatch stochastic gradient descent to train a logistic re-
gression model for classification of the MNIST dataset [LBBH98]. Analyze the
effect of different learning rates and different minibatch sizes.

Exercise 7.5. Show that the global minimum of a neural network is not unique.

Exercise 7.6. Construct an example of a one-layer neural network which has
many local minima that are not global minima.

Exercise 7.7. Consider the shallow neural network
Z =Wx + b},
H;,=0(Z;), i=0,...,dg—1,
m(x;0) = CH + b?,
with the activation function o(z) being the clipped ReLU unit
0(z) = min ( max(z,0),t),
where ¢ is a hyperparameter. Consider the dataset D = {(xm, ym)%zl} where

X,, € R% and y,, € RK. The loss function is

1
A(B) = D] D0 Ay(©),  where A(x)(6) = [y — m(x; ).
(x,y)eD
Derive the backpropagation algorithm and the stochastic gradient descent al-
gorithm to minimize this loss function for a neural network with clipped ReLU
units.

Exercise 7.8. Show that the gradient (with respect to the parameters 6 € ©)
of the objective function for a one-layer neural network with £,(z) = (y — z)?
is not necessarily globally Lipschitz.

Exercise 7.9. Show that neural networks m(x; 6) are nonconvex functions of
the unknown parameters 6 € ©.

Exercise 7.10. Prove that there exists a constant learning rate # > 0 such that
gradient descent always decreases the loss function A(8) : R¢ — R at every
iteration if the second derivatives of A(6) are uniformly bounded.
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Chapter 8

Stochastic Gradient
Descent for Multi-layer
Networks

8.1. Introduction

In this chapter we consider a multi-layer feed forward neural network, see (B.1)).
As in Chapter [}, we develop the backpropagation stochastic gradient descent
algorithm for this case. In addition, we revisit the vanishing gradient descent
problem (which can become more profound in the case of multiple layers). We
include an implementation example in PyTorch demonstrating the similarity
to the shallow neural network case presented in Chapter [j.

8.2. Multi-layer Neural Networks

A fully connected, multi-layer neural network has multiple layers, where in
each layer an elementwise nonlinearity is applied to the linear combination of
the output from the previous layer.

Z'= Wlx + bl

H' = o(ZY),

Z6 =WPH " + b4, ¢=2,..,L,

H! =0(Z%), ¢=2,...,L,

U = WL+1HL + bL+1’

(8.1) m(x; 6) = Ssoftmax(U)-

129
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130 8. Stochastic Gradient Descent for Multi-layer Networks

The neural network has L hidden layers followed by a softmax function.
Each layer of the neural network has dg hidden units. The ¢th hidden layer
is HY € R% . H’ is produced by applying an elementwise nonlinearity to the
input Z¢ € R, Using a slight abuse of notation,

o(Z%) = (a(Zg), a(Z9),..., a(ZéH_l)).

The parameters are 8 = {W1,..., WL+l bl ... bL*1}. The input is x € R4
and the input layer has parameters W! € R% >4 and b' € R4, The parameters
in the layers ¢ = 2,..., L have dimensions W¢ € R%#*d1 and b’ € R, The
softmax layer has parameters WX+! € RK*du and pi+1 € RK.

Similar to the situation studied in Chapter [j, the error (sometimes called
the loss) for a data sample (x, y) is given by

J
Axy(6) = — Z 1, log (m(x; 6))j.
=1
Let A 1= A(x,y)(©) and define
oA
¢ ._ 94
8¢ .= 30

Note that here we have defined §¢ = aa_; instead of §¢ = ;—; that we
essentially did in Chapter [7; see also Remark B.1.
By the chain rule, for¢ =1,...,L — 1,

dH '€+1
J
56’ — Z 5€+1
l J £
j=1 a‘I_Il
dy

_ C+1 1 £+1 £+1
= 2,05 0 (ZTOW;

Jj
, T
— (5€+1 @ o (Zé’+1)) W:”i+1.
Therefore, for¢ =1,...,L —1
§¢ = (W€+1>T(5€+1 © o'(Z/+Y).
Consequently, for¢ =1,...,L — 1,

b

o1
557 =8 @@,
o1
577 = (8° 00 @),

where H? : = x.
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Finally, we have that

L _ (yyL+1\" 94
ot = (W) au’
and
o oA
dbL+1 — JU’
o AA T
awit ~ au ) -

Collecting our results, the stochastic gradient descent algorithm for updat-
ing 0 is:
« Randomly select a new data sample (X, Y).
« Compute the forward step Z',H,...,Z5, H:, U, m(X;0), and 1 :=
Ax,v)(0)-
« Calculate the partial derivative

& =~(en - mexio).

where e(Y') represents the one-hot encoding vector as in (7.11)).

9 and &L

« Calculate the partial derivatives , ,
abL+l aWL+1

e Foré=L-1,...,1:
- Calculate 8¢ via the formula

50 = (W€+1)T(5€+1 © o'(Z¢+Y).

- Calculate the partial derivatives with respect to W¢ and b’.

« Update the parameters 6 with a stochastic gradient descent step.

The backpropagation algorithm is computationally efficient since it does
not recompute the chain rule for the parameters in different layers. Instead,
layer ¢ reuses the gradient computed in the previous layer € + 1 via the variable
§¢*!. Furthermore, only §¢ and §*! need to be retained in memory in order
to calculate the gradients for the parameters in layer €.

Remark 8.1. Comparing to the backpropagation formulas that we derived in
the shallow neural network case of Chapter 4, we note that we chose for com-

o . o1 .
pleteness here to define §¢ := Pyt instead of §¢ := —. As we remarked in
Remark [7.4, both formulations are equivalent. We shall visit the formulation

. s or . .
with the definition 6% := 5 Exercise B.3.
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8.3. Computational Cost

The computational cost of the backpropagation algorithm for multi-layer neu-
ral networks depends upon a number of factors, including the number of layers
L, the number of units in each layer dy, the size of the input d, and the number
of classes J. The number of arithmetic operations required for the forward step
(i.e., make a prediction) for the multi-layer neural network (8.1) is

2(L —1)(d% +dpy) +2dg(1 +d +J) + 2J.

The cost increases linearly in the number of layers L and quadratically in the
number of hidden units dg. The number of arithmetic operations required
for the backward step (i.e., a stochastic gradient descent step on a single data
sample) is

(L—1)(3d% +dy) +dy(dy +d + 37 + 1) + 2J.

The backpropagation step is more costly than the forward step. Note that in
the cost estimate for the backpropagation step, we assume that we have stored
all of the relevant values from the forward step. The number of arithmetic
operations includes all addition, multiplication, and algebraic operations. If
one is using minibatch stochastic gradient descent with a batchsize of M,, each
backpropagation step has

M,[(L—1)(3df; + di) + dg2dy +d + 3T + 1) + 2J]

arithmetic operations.

There is also a memory cost for the parameters 6. Large neural network
models can require significant amounts of memory. The memory required to
store the parameters for the multi-layer network (B.1) is

(L—1)(d%4 +dy) +dg(d+J) +J.

The backpropagation algorithm also requires 6¢ and §*1, which has size
2M,dy; if the batchsize is M,. Therefore, the total memory required for back-
propagation is

(L—1)(d%4 +dy) +dg(d +T) +J + 2M,dy.

As an example, consider a neural network with five layers, 500 units per
layer, 100 classes, an input vector of size 1,000, and a batchsize of 1,000. Each
parameter is stored as a 32-bit floating point number. The memory required for
such a neural network is approximately 0.08 GB, which is relatively small for
neural networks. More sophisticated models (such as convolution networks)
can require more memory. Since GPUs have smaller memory than CPUs, it
can become a challenge to train large models with large batchsizes on the GPU.
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8.4. Vanishing Gradient Problem 133

The batchsize can be reduced to address this. Alternatively, there are also ap-
proaches for distributing the storage of the model across multiple GPUs or ma-
chines.

8.4. Vanishing Gradient Problem

The neural network model (B.T) becomes more complex as more layers are in-
cluded. In principle, this means that the neural network can more accurately fit
more complex nonlinear relationships. However, the numerical estimation of
the neural network with stochastic gradient descent suffers a limitation called
the vanishing gradient problem as the number of layers is increased.

As the number of layers L increases, the magnitude of the gradient with re-
spect to the parameters in the lower layers becomes small (e.g., % for¢ < L).

This leads to the (stochastic) gradient descent algorithm converging extremely
slowly. Essentially, the lower layers take an impractically long amount of time
to train.

For a fixed k, the magnitude of the gradient aa_u/}e will decrease as the to-

tal number of layers L increases. Thus, although increasing L leads to a more
complex model, the numerical estimation of this model in practice becomes
increasingly difficult. Deep learning is interested in models and methods with
large numbers of layers L, i.e., very complex models, and has developed several
approaches for overcoming the challenge of the vanishing gradient problem.

Example 8.2. Let us consider a simple case where we can analytically study
the vanishing gradient problem. Consider the multi-layer network

Z'=Wlx +b!,
H' = o(ZY),
Z=WH T +bY, e=2,... L,
H =o(Z%, ¢=2,..,L,
m(x;6) = WLt HL 4 pL+1,
where each hidden layer has a single unit (i.e., dg = 1) and o(-) is a sigmoid

function. Let’s initialize b’ = 0 and W* = ~. The input dimension d = 1 and
the output is also one dimensional. Assume x = 1 and let the loss function be

6(2) = (y — 2)*.
H = a(%Hg‘l) where we define H° = x = 1. Since o(-) is a sigmoid

function, 0 < éH‘g < é foré =0,...,L —1. Therefore, foré¢ =1,...,L,

0<H€§a(%)<1,
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134 8. Stochastic Gradient Descent for Multi-layer Networks

since o(-) is a monotonically increasing function. Then, for1 < ¢ < L,

oA
¢ — O _ SL41_s¢pL+1ypyL+l
6 = o = g (ZH W
L
==2(y — m(; )W T o' @)Hwi.
j=k+1

The derivative of a sigmoid function is ¢’ (z) = o(z)(1—0(z)), which implies
that |o’(z)| < 1. Therefore, we have that

16%] < |(y — m(x; 0))| x 279,

The gradient with respect to the parameter W is

o1 da oH?
oW?¢ — OH? oW?
Consequently, since 0 < H! <1,

(8.2) !

= &0’ (ZO)H! .

oA
< 5€ < C2—(L—€)’
swe| <101 <
where C is a positive constant which may depend upon (x, y).

The bound (B.2) shows that the gradient with respect to the parameters in
the ¢£th layer decreases in magnitude as the total number of layers L increases.
In fact, in this simple case, the magnitude decreases at an exponential rate in
the total number of layers L. For large L, the gradient is so small that the lower
layers in the network take an impractically long amount of time to train.

The vanishing gradient problem can also occur due to saturation. Satura-
tion occurs when the inputs to the hidden units have very large magnitudes.
For example, recall that if o(-) is a sigmoidal function, then its derivative is

o'(z) = o(z)(1 — o(2)).

Since lim o(z) — O,

llzll=e0

lim o'(z) =0.

llzl|—co

Therefore, if the magnitudes of the inputs to the nonlinearities o(-) are very
large, the backpropagation rule will lead to very small gradients for parameters
in the lower layers.

8.5. Implementation Example

Let’s see now an implementation example for multi-layer neural networks. In
fact, a multi-layer network is easily implemented in PyTorch. It only requires
modifying the definition of the model in the code in Section [.5.2.
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We implement a multilayer neural network for the MNIST dataset; see
[LBBH98]. In Chapter [§ we also worked with the MNIST dataset, but we im-
plemented a shallow neural network instead.

#Multi -layer model architecture
#N is the number of units in each hidden layer
class MnistModel(nn.Module) :
def __init__(self):
super(MnistModel, self).__init__ ()
# input is 28x28
#These variables store the model parameters.

self.fcl = nn.Linear(28*28, N)
self.fc2 = nn.Linear (N, N)
self.fc3 = nn.Linear (N, N)
self.fc4 = nn.Linear (N, N)

self.fc5 = nn.Linear (N, 10)
def forward(self, x):
#Here is where the network is specified.

self.fcl

.relu (
self.fc2(
(
(

.relu
.relu
.relu

self.fc3
self.fc4

xX X X X
o onou
m T T m

xX X X X

x = self.fc5( x )

return F.log_softmax(x, dim=1)

The remainder of the code remains exactly the same as in the MNIST exam-
ple of Chapter [4. That is, PyTorch is set up at a high level of abstraction where
the user only needs to define (a) the network architecture and (b) the objec-
tive function. Once these are defined, PyTorch will automatically calculate the
backpropagation rule and train the model.

8.6. Brief Concluding Remarks

In Chapters[]and § we have explored the stochastic gradient descent algorithm
for shallow and multi-layer neural networks, respectively. In Chapters [[7 and
[[§ of Part 2 we will discuss theoretical convergence properties of gradient de-
scent and stochastic gradient descent.

In Chapter P3 of Part 2, we elaborate on distributed training and on syn-
chronous and asynchronous training, which allows us to scale stochastic gra-
dient descent to high-dimensional problems and large datasets.

Overfitting is an important practical challenge that sometimes must be ad-
dreessed when implementing deep learning algorithms. One method to reduce
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overfitting is to include regularization. We discuss two popular regularization
methods, regularization by penalty terms and dropout, in Chapter g

8.7. Exercises

Exercise 8.1. Prove that the gradient (with respect to the unknown parameters
0 € O) of a multi-layer neural network is not globally Lipschitz and is not
bounded.

Exercise 8.2. Implement the backpropagation algorithm for a multi-layer neu-
ral network on the MNIST dataset [LBBH98] from scratch in Python.

Exercise 8.3. Derive the SGD formulas of Section B.2 using the definition

an . a1
§¢ := —Z instead of 6¢ := )
az¢ oH¢

Exercise 8.4. Construct an example of a multi-layer neural network which has
local minima that are not global minima.
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Chapter 9

Regularization
and Dropout

9.1. Introduction

In this chapter we present two of the main regularization techniques used in
deep learning: regularization by penalty functions in Section P.2 and dropout
in Section P.3. Regularization by penalty functions is a classical regulariza-
tion method in statistics, and many classical textbooks cover this topic exten-
sively, see for example [HTF10] and [BD19]. In Section P.2 we will mainly pro-
vide definitions and go over some of the properties of regularization by penalty
terms that are more closely related to deep learning. In Section P.3 we describe
in a greater detail dropout which is a regularization technique that is specific to
deep neural networks. In Sections P.4 and P.3 we present details on the imple-
mentation of dropout in the case of shallow and of multi-layer neural networks,
respectively. Dropout is very popular in deep learning due to its simplicity and
general effectiveness.

Regularization is used in practice to reduce overfitting and model complex-
ity. Both regularization methods that we will discuss (i.e., regularization by
adding penalty terms to the error function and dropout) have been shown to
generally lead to a reduction in overfitting.

9.2. Regularization by Penalty Terms

Let’s think of the situation where we fit a complex model and we do not know if
the variance is going to be large. As we discussed in the bias-variance tradeoff
Section [..6, one way to bring down the variance of a model is to collect more

137
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138 9. Regularization and Dropout

data. An alternative way is to potentially modify the loss function to encourage
(said otherwise, to gear) training to simplify complexity. One way of doing so,
is to redefine our loss function to be
A= AOB) + Q)
Initial loss ~ Regularization

The simplest regularization to add is weight decay, which amounts to
choosing

C
Q) = 1613,

and is called the &, regularization, where if 8 = (py, ..., pg) € RY, then ||8]3 =

Z?zl |pi|%. Essentially, this regularized loss function penalizes for large values
of ||8]|, but has small effect on A for not-too-large ||6|,. We note that we have
already explored this point in some detail in the logistic regression case, Sec-
tion B.6. There we showed that for perfect data, logistic regression diverges but
will be regularized if a penalty term is included. The penalty size C is a hyper-
parameter that has to be tuned. The gradient of the penalized loss becomes

VA(6) = VA(O) + C6,
and the stochastic gradient descent algorithm becomes
Ok+1 = Ok — 1 (VA(6x) + COk)
= (1 =nC) — nVA(BK).
Thus, the effect of the ¢, regularization is to make the weights smaller in
magnitude.

Example 9.1. Asan example, consider the classical linear regression problem
augmented by the regularization term. Let

N 1 C
A@©) =3Iy - X - 6> + S [613.
This is called ridge regression and the estimator minimizing A(8) can be
shown (see Exercise P.1) to be
6*(C) = (X"X + CI) XY.
Thus, the presence of C makes the inverse smaller which subsequently

makes 6*(C) smaller when compared to the case of 8*(0) which in turn cor-
responds to ordinary least squares.

Another popular regularization is the ¢, regularization Q(8) = C|0|;,

where if 8 = (py,...,pq) € RY, then |8]; = Z;:i:l |pil. The gradient of the
penalized loss becomes

VA(B) = VA(B) + C sign(6),

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



9.2. Regularization by Penalty Terms 139

where sign(6) acts componentwise on the vector 8 = (py,...,pq) € RY, re-
turning the sign of each component of the vector 6.

The effect of the ¢; regularization is to create sparsity in the weights and
as such this type of regularization is typical in signal processing for example.
It has also been used for feature selection purposes, because it leads to some of
the weights being zero or almost close to zero, suggesting that the correspond-
ing features are not as vital. We do mention here that in regards to regulariza-
tion by penalty terms, the ¢, regularization is somewhat more common in deep
learning than the ¢, regularization.

9.2.1. Comparison Between the ¢, and the ¢, Regularization. As we
mentioned earlier, the effect of the ¢, regularization is to make the magnitude
of the weights smaller, whereas the effect of the #; regularization is to create
sparsity. Let us now demonstrate why this is the case. The argument presented
below is largely heuristic, but it is indicative of how one can think about the
effect of regularization on the learned optimal parameter.

Let us assume that the objective function A(6) is convex and smooth
enough that we can apply a second-order Taylor expansion around the global
minimum 6*. Since VA(6*) = 0, we shall have for 6 sufficiently close to 6*,

A6) ~ A(B*) + %(e — 0XYTH(6*)(6 — 6%),

where ~ is there because we have not written the error term, and H(6*) is the
Hessian of A(9), i.e., the matrix with the second-order partial derivatives of
NA(D), evaluated at 6 = 6*.

Differentiating this formula with respect to 6 gives
VA(B) =~ H(6*)(6 — 6™).
Let us now bring in the regularization effects. Let 6 be the optimal param-

eter for the regularized loss function (the &, loss) A(6) = A(8) + %ll@ll%. Let us

now further assume that 8 is in the range of 6* so that the approximate formula
above still makes sense. Then, by manipulating the equation above (still ignor-
ing the error terms from the Taylor expansion), we will have approximately

H©*)(@ -6*)+Céd=~o0,
yielding
& ~ (H(6%) + CI) " H(6%)6*.
Hence, if H(6*) is positive definite, then 6* # 0 implies 6 # 0. This heuris-
tic argument then immediately suggests that €, regularization does not induce

sparsity in the parameters, but it does induce weight decay as measured by the
coefficient C > 0.
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On the other hand, the ¢; regularization, similarly gives the condition
H(6*)(6 — 6*) + Csign(6) =~ 0.
If, for simplification, we assume that H(6*) is a diagonal matrix with posi-
tive diagonal elements (i.e., H(6*) =diag(H;,(6*), ..., Hy4(6*)) with H;;(6*) >

0), then we can solve this equation yielding (recall the notation in this section
6 = (py,---»pa) € RY)

C
A ~ * G Al
pl pl Hu(e*) Slgn(pl)

for the optimal parameter for the new regularized loss function A(8) = A(8) +

Sle 1- Now letting p} have the same sign as p;, we can rewrite this equation
> g Pi g
as

C C
5~ pX — —— sien(p*) = sien () [ |p*| — ,
bi = p; Hil_(e*)SIgn(pl) SIgn(pl)<|pl| Hii(e*)>

Still, keeping in mind the hypothesis that p} have the same sign as the p;’s,
if we multiply both sides with sign(p;), we get

C
- —=__)x|p| >0
(lpl| Hii(e*)) |pl| —0

This heuristic argument immediately shows that if C is large enough, then
the ¢; regularization can induce sparsity.

For completeness, we mention that one can also consider other type of reg-
ularizations. An example is affine additive combinations of the ¢; and the ¢,
regularization, leading to what is called in the literature the elastic net regular-
ization, and there are others too. We do not expand more on this topic here as
there are many excellent resources in the literature discussing it in depth, such
as [HTF10, BD19].

9.2.2. Effect of Overparametrization on Regularization. Let us now
briefly discuss the effect of the dimensionality of the vector 6 € ©, and let
us set d = dim(®). Let us denote by n the dimension of Y. In deep learning
typically the dimension of 6 is very large, oftentimes larger than the number of
datapoints.

Let us focus for the moment on the linear regression setting, Example P.1l.
In the setting of linear regression, X is a matrix of dimension n X d. When there
is no regularization, i.e., when C = 0, then the ordinary least squares take the
form

0*(0) = (X"X) ' XY,

which is an unbiased estimator of 6 and has small variance when n > d. How-
ever, when d > n, then XX becomes poorly conditioned which ultimately
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leads to overfitting. Introducing the ¢, regularization or otherwise doing ridge
regression ([HK?70, Tik63]) leads to reduction of the error.

However, this does not necessarily mean that large models with little reg-
ularization do not generalize well, see [KLS2(]. As a matter of fact as demon-
strated in [KLS20], when d > n, the limit C — 0 can have good generalization
properties, and explicit ridge regression with C > 0 can fail to provide further
improvements. This observation has also been pointed out (empirically) in the
case of deep neural networks, see [ZSBRV21)] for more details.

9.3. Dropout and its Relation to Regularization

Dropout is another regularization method that is very specific to deep learning.
Dropout was initially developed in [SHK*14] and has been extensively used
since then. Deep neural networks (with many connections) can end up be-
ing unnecessarily complicated (sometimes leading to overfitting). Importantly,
dropout takes the input features and zeros out a random subset of those. Drop-
out can be viewed as an implicit regularization method that manages to aver-
age among many approximate models without actually training many models
separately.

Let us be more specific now on how dropout works. Let us set

1, with probability p

=,.-.»Ya), Withyg =
Y= Ya) Yk {0, with probability 1 — p,

where p € (0,1). Next, we define the dropout operator
(9.1) Dh)=yQOh,

where we recall that © is an elementwise operation. Then for a given datapoint
x in the dataset, the prediction using dropout for a shallow neural network
looks as follows:

N
P= c"D(e(w" - x + b)),
n=1

and analogously for a deep neural network. Dropout is a form of regularization
as it reduces the model complexity; see Section P.4 for a detailed example.

A schematic representation of dropout implemented on a feed forward neu-
ral network is shown in Figure P.1. Notice that some of vertices (correspond-
ing to input features or subsequent hidden units) and related connections have
been dropped from further consideration and they do not affect the neural
network’s output anymore. At each implementation of the algorithm the ver-
tices (input features or subsequent hidden units) are randomly selected to be
dropped with probability p. Running the algorithm again would result in a
different set of vertices being dropped from the network.
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(a) Fully connected feed forward neural (b) An instance of the feed forward net-
network work on the left with dropout

Figure 9.1. Left: A fully connected feed forward neural network with two
hidden layers. Right: An instance of the feed forward neural network on the
left with dropout implemented. The missing vertices (corresponding to input
features or hidden units) have been randomly selected to be dropped. Their
connections have been automatically dropped as well.

Remark 9.2. In practice a typical value is p = 0.5, and as a matter of fact this
is the default value for PyTorch. This means that on average for a given input
point x, half of the activations are set to be zero. Of course, one typically exper-
iments a little bit to figure out what the best value for p is in a given problem.

9.3.1. Dropout for Linear Regression. Let us now see how dropout works
in the simple case of linear regression. In fact as we shall see below, in the case
of linear regression, dropout effectively acts as ¢, regularization that we visited
in Section P.2.

Define m(x; 6) = D(x) - 6. Then, denoting [, to be the expectation under
the random variable y, we consider the problem

min A(6) = min E, |Y ~ (y © X)01°.

Since each entry of the vector y = (y4,...,74) is a Bernoulli(p) random
variable, direct calculations show that

[Ey(y © X) = pX,
PP (XTX),,, fori#

E x)7 X)). . =
(P OX)T(r0X); p(XTX), ;. fori=j.

Expanding the square and plugging in the formulas above, yield the follow-
ing expression for the loss function:

E, |Y - (y @ X)8|* = |Y — pX6|* + p(1 — p)6” diag(XTX)6.
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If we now set 8 = p@ and Q(6) = I_TpéT diag(XTX), then we get

E, Y —(y oxe =v —Xé'2 +Q(6).

Thus indeed in the setting of linear regression, dropout acts as an ¢, regu-
larization and if a particular (X' X); j is large, then dropout forces its weight to
be small.

9.4. A Neural Network Example with Dropout Implemented

Let us now implement by hand dropout on a simple neural network. As we
mentioned in the beginning of Section P.3 deep networks with many connec-
tions can end up being unnecessarily complicated (sometimes leading to over-
fitting). Suppose (perhaps in some intermediate layer) we are trying to write a
map (x;, x,) — y in terms of the features

X1, X, X1+ 0.1x2.

It is clear that the third feature has redundant information. As a matter of
fact linear maps of x;, x,, and x; + 0.1x, can be simplified:

X 1 0 X
114 X, =wl0 1 (xl).
x; + 0.1x, 1 0.1/ 1\

As we discussed earlier in Section P.3 the main idea of dropout is to ran-
domly remove (achieved by multiplying variables by zero) connections before
doing gradient descent.

Suppose that we want to use a three-layer neural network to predict a bi-
nary label based on R?-valued features. Denoting by S(-) the usual logistic func-
tion, we have the model

m(x; 6) = S(WOS (WS (WX + BV) + B?) + B®)
with the parameters being
6= (WO, w® w®, W B@ BB) e R?? x R?? x R x R? x R? x R
We note that the ideas below work equally well with any of the usual acti-
vation functions in place of the logistic function.
To train this model on a finite dataset D C R? x {0, 1}, we define
Ax,)(6) = Hy, m(x;6)) with (x,y) € R* x {0,1},

where H(y, m) is a per-datapoint error function of our choice. Then our goal is
to minimize the loss function

AO) == S Auy(®.

D] (x,y)eD
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Gradient descent with learning rate 7 for entire batch would be

6k+1 =06k — Z V/1(x y)(ek)
|ﬂ| (x,y)eD

Let us now add dropout to the second and third layers. Let us set
2) (2 3) B3
y= (A7), (n75”)) e [0.17 x [0, 1%

Let us define the matrices
(2) 3)
0 0
D, = (h (2)> and D5 = (7/1 (3))
0 )2 0 V2
and then define the model
m(x;0,7) = S(WOD;S (WPD,S (WX + BW) + B?) + B®),
with the parameters being as before, i.e,
6= (WO, w®, w®, W B? B e R?? x R?? x R x R? x R? x R
Going now into the training phase, let us fix some p € (0, 1) (typical choice

is p = 0.5) and choose the elements of y as Bernoulli(p). For instance, if it turns
out that y = ((1,1), (0, 1)), then we shall have that

10 0 0
DZ:(O 1) and D3:<0 1).

For z € R?, we then have the dropout matrices

po(2)=(2) e nu(2)=(2)

Note that D, keeps both inputs, whereas D; keeps only the second input.
Depending on the choice of elements of y, matrices D, and D; mask inputs to
the second and third layers in the model m(x; 6, y).

In the training phase, with per-datapoint loss

A () = H(y, m(x; 6,7)),

we consider the minimization problem

d
Adropout(e) [Ey~Bernoulli(p) [/1(;?5;):1;(9)]

| | (x,y)eD
1
= ﬁ Z [Ey~Bernoulli(p) [H(y’ m(X; o, 7/))]
(x,y)eD

~—— Y Houm(x:6.7)

lel (x,y)eD,1<j<T

which is an average over all subneural networks to find the best parameter 6*.
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In the evaluation (testing) phase, we predict with
x = m(x; 6%, [Ey~Bernoulli(p) [¥D-
In the case of the example above, we have

[Ey~Bernoulli(p) [v]=((p, p). (P, D)),

which means that in the testing phase we replace the randomly chosen matri-
ces D, and D5 with their averages

[Ey~Bernoulli(p) [D;]=pL, and IE)/~Bernoulli(p) [Ds] = pL,

where,

_(p O _(p O
p12—<0 p) and p12—<0 p)'

This means that the model takes the form

m(X; 0%, [Ey~Bernoulli(p) [Y]))
=S (W(3)’* pL(S (W(Z),* pL,S (W(l)’*X + B(l)’*) + B(Z),*) + B(3)’*) .

To become even more detailed, let us investigate now the different possible
outcomes. For this purpose, let us define

(1) (1) (1)
1) _ (W1 W y _ (b1

Wy 1 wz 2
2) 2) (2)
W = (w%él) w(z)) and B = (b%z))’
W1 Wy, b;

with different matrices D, and Ds.
We shall have that

HET.(0) = HO: S (WODLS (WD, (WX + 50) + 5 + 5O,
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In the gradient descent step, —Vl?;??zs)t,y(e) is gradient descent in 6 for
minimizing
(D ©) €]
(9.2) aMD:umu+Bm:(wuh+wmh+bl)
wgl)xl + wg}%xz + bgl)

aP @ = w@p,S(aPV) + B®
2 2 ,(1 2 2 ,(1 2
_ (wE,M ’s<a‘f§ )+ wByS >s<a§§ ) + b ))
- 2 2 ,(1 1 2 ,(1 2 ’
wy?S@ M) + wiy?s@s ™) + b
aP®) = wGDp,§(aP @) + BO) = w§3)y§3)5(a§)’(2)) + wg3)y§3)5(a§’(2)) + b3,
d
AL (6) = H(y, S(aP®)).

Then, depending on the choice for y and the corresponding matrices D,
and Dj;, different scenarios emerge. In particular, here are some possibilities

. Ify = ((1,1),(0, 1)), then

1 0 0 0

Then in the model (9.2), w§3), wﬁ) , w§22) , bi” are unused. Namely, the
gradients of A?;?f’;:)t’y(e) in those quantities vanish. The dimension of

the network is effectively R> - R? - R! — R!.
« Ify =((1,1),(1,0)), then

1 0 1 0

Then in the model (9.2), w§3), wg21) , wgzg bgz) are unused. Namely, the
gradients of /1?2‘,’;3’),(6) in those quantities vanish. The dimension of
the network is effectively R*> - R? — R! — R!.

« Ify =((1,1),(1,1)), then

1 0 1 0

Then in the model (B.2), all parameters are being used, i.e., the original
A is being used. The dimension of the network is effectively R?> —
R? - R?* - R

« Ify =((1,1),(0,0)), then

1 0 0 0
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Then in the model (P.2), the final feature-label map does not depend
at all on any of the entries of W, W@, w3, BD or B®. Namely,
the gradients of /1?;?‘” ;j)t,y(e) in those quantities vanish. In this case we
have a degenerate situation where a”® = p®,

« Ify =((1,0),(1,1)), then

1 0 1 0

Then in the model (9.2), wglf wglg bgl) are unused. Namely, the gra-
dients of ’1?;?},);3,7(9) in those quantities vanish. The dimension of the
network is effectively R? - R! - R? — R!.

. Ify = ((0,0),(1,1)), then

00 1 0
D2=(0 0) and D3=<0 1).

Then in the model (9.2), all the entries of W, B, and W® are un-

used. Namely, the gradients of A?;‘if’;j)t,y(e) in those quantities vanish.
2

This means that a?®? = (Z%Z)) does not depend on the input x at all.
2

« Ify =((1,0),(0,1)), then

1 0 0 0
D2 = (0 0) and D3 = (0 1) .

Then in the model (P.2), wglf , wglg, bV, w%’ , w?g, b, and wg3) are
' ' dropout . i
(xl’xz)ay
ish. The dimension of the network is effectively R?> — R! - R! — R

We essentially have

unused. Namely, the gradients of 1 (0) in those quantities van-

p,(1) p:(2)

(x1,%3) = " = ab' = aP®) = label.

9.5. Dropout on General Multi-layer Neural Networks
In this section, we redo Section P.4 in a more general manner. A general multi-
layer neural network with dropout can be realized as follows:

Z' = Wlx + b,

Z0=WH T +bY, e=1,... L,

H =y ©o(Z%, ¢=1,...,L,

U = WL+1HL + bL+1’

(9:3) m(x; 0) = Ssoftmax(U)-
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148 9. Regularization and Dropout

The neural network has L hidden layers followed by a softmax function.
Each layer of the neural network has dg hidden units. The ¢th hidden layer
is HY € R% . H’ is produced by applying an elementwise nonlinearity to the
input Z¢ € R% ., Here y* is a vector of independent Bernoulli random variables
with parameter p.

Let us denote T' = (¥',...,y%). Here T is typically called a mask. The role
of T is to remove random subset of the hidden units in layer € from the model.
Hence, as we noted in Section P.3, this is a form of regularization as it makes
the model simpler.

At each update, say at step k, a random data sample (xy, t;) is drawn and a
mask T' is generated. Recalling the notation

d
Aot 1(61) = Hyg, m(xi; 81, T)),

stochastic gradient descent with learning rate ), for step k would be
(94) Ok+1 = Ok — Nk Vo H(yi, m(xy; Ok, Tk)),

where T is a realization of T" at the kth iteration.
The dropout algorithm seeks to minimize the objective function

1

d
AB) = Z [EF~Bernoulli(p) [A(;?f;g):lrf(e)]

| (x,y)eD

Z [EI‘~Bernoulli(p) [H(y’ m(x; 9, F))] >
(x,y)eD

S

Sl

and similar to (x, y), the samples of " are i.i.d. as well. Therefore, under suitable
conditions, one expects convergence as in Theorem [7.3.

However, it is important to keep in mind that dropout minimizes the aver-
age loss from a collection of models. Combined with the observation that the
number of models grows exponentially with the total number of the hidden
units L X yg, we soon realize that optimizing

1 dropout
ﬁ ( Z) ” [EF~Bern0ulli(p) [A(x,y)}(e)]
X,y)€E

is not really feasible. Instead, in practice we apply stochastic gradient descent
to the collection of models. Namely, we sample one specific model at each
training step, hence the SGD (P.4) appears.

The next question we need to answer is what model to use for predictions,
i.e., for the test dataset. In practice, the random variable y? in (9.3) is replaced
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by E(¥*) = (p, ..., p). Namely, we have
Z' = Wlx + bl
Z¢H = WH? +b¢, ¢=1,...,L—1,
H =p-o(Z%, ¢=2,..,L,
U =WLHL + bE,
(9.5) m(x; 6) = Ssoftmax(U)-
However, this is a heuristic, since it is equivalent to interchanging an expec-

tation and a nonlinear function. Thus, the prediction rule (9.5) we are actually
using corresponds to a different loss function:

1
Aprediction(e) = D E : H(y, m(x; 6, E[T])).
D] »
(x.y)e

Of course, neural networks are nonlinear functions, $0 Apyediction(6) # A(6).
Nonetheless, the prediction network (P.3) has been proven effective in practice
for many applications.

Remark 9.3. In our current definition of dropout, we have set HY = y? ®
a(Z%), ¢ = 1,...,L, during training in (0.3) and H® = p - 0(Z%), ¢ = 2,...,L,
during the testing phase. An alternative and equivalent formulation (which is
how PyTorch actually implements dropout) is to set HY = %ye O oz, ¢ =
1,...,L, during training in (9.3) and H = o(Z%), ¢ = 2,...,L, during the
testing phase.

9.6. Brief Concluding Remarks

In this chapter we introduced the idea of regularization by penalty terms, cov-
ered in many other excellent textbooks such as [HTF10, BD19] for example.
We also discussed dropout, which is a particularly successful regularization
method in deep learning that was introduced in [SHK*14].

In many real data applications apart from including regularization, we also
normalize by centering with the mean and scaling by the standard deviation.
We discuss the essence of batch normalization in Chapter [I0.

9.7. Exercises

Exercise 9.1. Prove that in the setting of ridge regression of Example P.1, the
minimiser of the loss function A(6) is indeed given by the formula

-1
6*(C)=(X"X+CI) XY.
Exercise 9.2. Prove that in the setting of ridge regression of Example p.J and

in the case p > n that limc_, 6*(C) = 6*(0).
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150 9. Regularization and Dropout

Exercise 9.3. In the context of the specific dropout example associated with
(B.2) study which connections are being dropped and what is the final model
in the cases of y = ((0,1),(1,1)), y = ((0,1),(1,0)), ¥y = ((0,0),(1,0)), y =
((0,0),(0,1)), and y = ((0,0), (0,0)).

Exercise 9.4. Consider a fully connected feed forward neural network map-

ping R? — (0, 1) consisting of two internal three-dimensional layers. Introduce
dropout matrices into the internal (second) and last (third) layer of the form

100 100
D,=(0 0 0| and D;=[0 0 0].
00 1 000

Consider the dropout model (with logistic S activation function)
m(x; 6,D,,D;) = S(WED;S (WPD,S (WX + BW) + B?) + B®),
and the corresponding per-datapoint loss

d
Aoy, () = H(y, m(x; 6, Dy, Dy)),

with

6=w® w® wh B3 B@ By e RIS x B33 x R3*2 x R x R? x R3.
For which elements of 0 is the gradient of 4, ) p, p, zero? Namely, which are
the elements of W) and BY) that are dropped out with this choice for D, and
D3?

Exercise 9.5. Derive the stochastic gradient descent algorithm for a single-
layer fully connected neural network with dropout

Z'=W'x +b',

H; =y, 0 0(Z}),

Z* = W?H + b?,
PLY = m] = "
M=z ren

where x € R4, W! € R4, pt € RE, A € RL, W2 € R¥L, b2 € R%, 22 € R?,
Y € {0,1}, and ¢ : R — R. The loss function is cross-entropy loss (i.e., the
negative log-likelihood) and y; is a Bernoulli random variable.
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Chapter 10

Batch Normalization

10.1. Introduction

Let’s return to some ideas from Chapters P and B. In both of those chapters,
we normalized the feature data by centering (by the mean) and scaling (by the
standard deviation). This helped us in several ways:

« Generically, the inputs to each nonlinearity were likely to be where
the nonlinearity has most effect (see Figure [10.1)).

« It helped us to easily identify outlier training data.

« Generically, the optimal various weights and coefficients in the model
m were of order 1. This in particular suggested that we start our gra-
dient descent algorithms to optimize coefficients in a neighborhood
of the origin of size 1.

« Generically, the loss function was better behaved (see in particular

Figures B.7 vs. B.11l.

“Generically” here means (imprecisely) in a “typical” problem. We would like
to adapt normalization to the inputs to each layer, hopefully allowing us to reap
similar benefits in the internal layers [[S15al].

Batch normalization, initially proposed in [IS15b], adapts these ideas to in-
puts for the internal layers. Similar to dropout, studied in Chapter @ the training
and evaluation algorithms for batch normalization are distinct. The mean and
standard deviation of the internal layers are computed in the training layer.
The evaluation step uses these in predicting the output of the model m for a
new (out of sample) datapoint.

151
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= Sigmoid ~ =esm Tagnh =~ = Rell

Figure 10.1. Graphical representation of typical nonlinearities

10.2. Batch Normalization Through an Example
To explain things, let’s consider a simple example. Let’s assume

o {#(-,6M)}50 is a collection of maps from from feature space RF to R?,
« 9 is a fixed map from R? to label space R.

Our original model is the composition of 1 and ¢(-, 61)’s which map RF into
R;i.e.,

.6
rFP TR Y

>

or alternately

m(x; 60) = 9 ( (x,61)).

We have a finite training dataset  C RF x R and an error function {¢,;y’ € R}
which quantifies error between true and predicted labels. We want to select
6™ which minimizes

1

def
A®) =
(x

> 6, (m(x;6W)).

V)ED
Let’s work through to batch normalize the input to the second layer, i.e.,

to ¢. This will help us understand how to normalize inputs to an activation
function when these inputs are themselves outputs of a prior layer.
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Let’s (momentarily) fix p = (uq, 43, 01,03) € R X R X (0, ) X (0, 00), and
consider a collection {T,(-, 6@)}o of parametrized maps from R? — R?

Wy <>”c1;,u1> + bl . 31

101 LEen=| o x:(;)e@= 02,
w ( 2 #2>+b 2 1
2 (op) 2 b2

and insert T, (-, 6®@) : R2 - R2 between the ¢(-, 6D)’s and ; i.e.,

.6 T,(-,6®)
RF #0020 pe ¥

Namely, consider the model

. oD
(10.2)  1iy(x;0) = P (T ($(x,6D),69)), xemﬂe=Q@)
with corresponding loss function

M® = |2>|(xZ & (Mp(x;0)) = |D|<x2 (&, (@ (T, (¢(x, 6),6™))))

»)ED YED

= Y (609) (B (#(x.69),69)), 6= (eﬂ))
1D Yy P ) , , = (m)-

D (x,y)eD

The parameter vector 6 could in principle be subsumed into any linear
transformation of the inputs of ). We also note that straightforward normaliza-
tion of the input to 3 would be given by setting the w;’s to 1 and the b;’s to 0. The
definition ({L0.T)) of T, gives extra degrees of freedom which contribute to nu-
merical stability. In the literature the success of batch normalization has been
explained from different angles, some examples of which are that (a) it often
leads to reduced internal covariate shift (see [IS15b]) and (b) that it results to
smoother gradients (see [STIM18]).

Let’s understand gradient descent in 6. We will then combine this with
choosing p to reflect actual means and variances.

Let’s start by differentiating the second expression of ([L0.2) with respect to

6. We get
1/0' 0
_ 1 » M)y, 6@ 1
2 (x,6)
| 22 (x, 0
FES
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Varying the w;’s and then the b;’s, we get

’

<@> @ Y, D(6o9) (T, (¢(x,60),6@))
(x

$1(x, 9(1)) —H1 )
VED

| (x,y)eD

(e) 5 2 D(€y°¢)(7}a(¢(x,6(”),9(2))(¢<xe<2>> Mz)a

dA
a—bf@:ﬁ T Do) (T (#0000 80) o)
(x,y)e
( )= |p|( 2, D(=9) (5 (90x:60.67) ((1’)
X,y)E

Let’s now let p be the desired means and variances of the image
$(D,0M) E (4(x,60); (x,y) € D} € R?

of D through ¢(-,6(). For any § C R?, define (with small regularization pa-
rameter ¢ (PyTorch sets ¢ = 107°) as its default value)

def 1
lul(S) | | Z X1,
(xl xz)GS
def 1
MZ(S) | | Z X2,
(xl xz)GS
1/2
1 2
015(8) {| S| Z (x1 — u1(S)) +€} )
(x1,x3)€8

1/2
025(3) Lll D (x 2‘#2(3))24'5} ;
(x1,x3)€8
B(S) = (12(8), 142(8), 01.(8), 52.(8)) .

Informally, we would like to optimize the model

(10.3) Y (Tp,(g(m 6 ($(x, 6D),6)),
where D is our training data. Let’s now define a loss function. Set
def 1

A(6) = D] DI (1/’ (sz(¢(9,9(1))) ((x, 6D, 9(2))))
(x,

V)ED

1
- 2] Z (gy °¥) (TPs(d’(ﬂ,G(l))) (¢(x, e, @(2)))’
(x,y)eD

which should correspond to ([0.3). We note here that 8 now appears in P..
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Let’s compute the derivatives of A. Derivatives with respect to the w;’s and
b;’s (i.e., the components of 6®@) are similar to those of before. We have

(e) ﬁ Y (6 09)(Tr,pro.00y ($(x,61),6@))
(x,y)eD
$1(,6D) =y ($(D,61))
X 01,:(¢(D,6(D)) ,
0
5, = 7 2 (&9 (T (40, 6,07)
(x,y)eD

0
X (¢z(x,9(1))—ﬂz(¢(ﬂ,9(”))) )

02,6($(D,61))
oA 1 1
—(0) = — £, o T, x,G(l),e(z) (),
3, O =11 2, (&9 (Trgweny (¢ 60.60)) g
oA 1 0
a0, ® =] L (4 © %) (Tr.p.0my) ($(x. 61), 6@)) <1)
2 (x.y)eD
Fori € {1, 2},
def 1
H(@D.6) = 5 D) ilx 60,
(x,y)eD

1/2
0.:($(D, 61)) dff[ﬁ 3 (qsi(x,e(”)—ui(cﬁ(ﬂ,e“))))z+s} ,
(x

V)ED

SO

Ou($(D, 6D aer 1 v Ii(x, 60)
661(.1) |D| (x,y)eD ae}(l)
—-1/2
00, ($(D,6M)) aet | 1 2
Epwomm D] 2 (@i 6D) — (@D, 6M) +e
aej (x,y)eI)
x {L 5 (aqsi(x, om) 6ﬂi(¢(ﬂ9“))))}
Dl en\ a6 965"
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Su(@(D.6M)) et 1 Iy(x,60)
GGJO) D] (x,y)eD aej('l) ’
-1/2
00, :(P(D,6M)) aer | 1 1) DY)
T =D 2 G 0D) —u(@(D.60)) +e
aej (x,y)eD
X {L (a¢i(x’ 6m) 5ﬂi(¢(ﬂ’9(l))))}
|D| D 661(.1) 661(.1)
Explicitly,

My_ (¢))
(¢1(x,e )~ ($(D,6 ))) + b,

01 (P(D,60)))
T wy) ($(x, M), 6@) = : ’
FAED (¢( ) ) w $2(x,60)— 11 ($(2,61))) +b
2 2 ($(D,61)) 2
o)
941 (x,0(1) 8y (¢(0,6(1)))
59§1) - 59§1)
oT, oMy, g2 W1 01:(P(D,6M))
P (g0 ($(x, 61),0%))
o 392056 aup(#(2,6D))
59](1) 25959 _%u 69151)
w2 52 (B(D,60))
$1(6,6)—, ($(D,61)) | 80, ($(2,61))
o1 a? (¢(D,6)) 36D
—_ 1,6 El K
$206,60) 11, ($(2,60)) | 80, ($(2,61))
w2 2 1 [©)
03.£($(2,61)) 36’
and thus

dRO) 1
300 D] 2 D& o) (Tr. s omy (#(x.61),69))
j (x.y)eD

0¢105,6)) _ apy (9(0,6(0))

a6V e
w d J
1
01, ($(D,60))
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This gives us gradient descent for batch normalization.
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10.3. Batch Normalization and Minibatches

Finally, let’s connect our algorithm with minibatches. Directly, this would
mean iterating on B, (¢ (2’, 6V)) for a sampled subset D’ of D. Recall from the
stochastic gradient Chapter [] that we would in fact like to use sampled subsets
of our training data to update various quantities, rather than recompute them
entirely.

Let’s fix a momentum parameter 3 € (0,1) (PyTorch takes § = 0.1 and
Keras takes 8 = 0.01 (but with a reversed definition of momentum)). For each
k, select a subset D, of D and use stochastic gradient descent on D,, to update
Ok to Oy, and define

et {(1 — PP + BR($(Dy, 607 ik > 1

Pleet =1 b (D5, 62)) ifk = 0.

After N steps, let’s predict using the model
3 (T, (606,60, 69)).

« Training involves large (mini) batches, giving a sequence ((eg),eg)))
2

k=1
of values which decrease A (perhaps minibatching is involved). 8, ’ and
953) should tend to alimit, so B.(¢(D, 9,(3))) should tend to a limit (perhaps
D is a minibatch).

+ Evaluation involves using the model to predict a label for several (one
or few) new datapoints. Our goal is to estimate the limiting value of

R($(D, 6.
10.4. Brief Concluding Remarks

Batch normalization has become a standard method to transform and normal-
ize datasets in deep learning and was initially proposed in [IS15b]; see also
[STIM18]. After we have formulated our dataset appropriately and defined our
model, the next step is to train the model and validate it. This usually happens
in three phases. In the training phase, we train the model. In the validation
phase we validate the model and choose the best hyperparameters and in the
test phase we see how well we are doing. We investigate these issues in Chapter

.
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Chapter 11

Training, Validation,
and Testing

11.1. Introduction

At this point, we have a fairly good understanding of how to optimize param-
eters via (stochastic) gradient descent. Next, we need to understand how to
handle the dataset we seek to analyze. Some motivation here comes from clas-
sical statistics. As we discussed in Section [.6, the bias-variance tradeoff is an
important phenomenon in statistics, but in order to quantify it, we would need
to consider multiple datasets. However, in many situations, we only have a
single dataset. The typical strategy is then to split the given dataset into three
parts

D = training set + validation set + test set.

+ Training: minimizing parameters via (stochastic) gradient descent.

« Validation: optimizing over hyperparameters which characterize dif-
ferent architectures. The validation’s set purpose is to compare differ-
ent models.

« Testing: reporting the results (of the search for the best deep learning
model). In order to avoid overfitting we test final accuracy on a test
set.

Some practical insights of this decomposition are as follows:

« If we have low training error but high validation error, then we have
high variance. In this case, we should use a simpler model and/or
collect more data.

159
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15.01
12.51
10.01
7.51 .
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Figure 11.1. Sample (training) data

« If we have large train and test errors, then we have large bias. In this
case, we can fit a more complex model.

Since the complexities of deep neural networks oftentimes do not yield the-
oretical guarantees of performance, well thought out training, testing, and val-
idation steps are crucial to defensible claims about deep learning.

11.2. Polynomials

To understand the basic issues, let’s consider a problem which is simple (in fact
a linear regression problem) but which forces us to think through most of the
relevant ideas. Let’s learn (i.e., train) a polynomial model,

y=co+c1x+cx?+ - +cpxP

on a finite training set D" C R X R (R X R is the collection of (x, y)-pairs) of
training data given in Figure [1.1. In this case, the machine learning part is
easy; polynomials are particularly simple models for data, and we can get the
cg’s by regressing the label on (engineered) feature set

(11.1) 1, x,x%-- xP}.

This allows us to focus on concepts of training, validation, and testing. We
can think of the degree D as a model complexity hyperparameter. Furthermore,
the data in Figure looks quadratic (and was so constructed); the optimum
D should be 2. This allows us a simple check on a number of conclusions.

11.3. Training

For each non-negative integer D, let

D
def
Pp=1x Z cgx? 1 (co,cy - cp) € RPH
d=0
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15+
degree=0
degree=1
degree=2
degree=3
—— degree=7

101

Figure 11.2. Polynomial approximations of training data. Low degrees
(blue) underfit and high degrees (red) overfit. Intermediate degrees (green)
show good approximation

be the collection of D-dimensional polynomials in x. We can use regression to
find coefficients; for each D € {0, 1...}, let’s compute the polynomial

500 Largmin] L S (3 Px))’
D

PE.’PD y)EDtr
which best fits the data D". Rewriting this in more standard notation, we want
to equivalently compute the coefficients
2

D
#,(D . 1
(11.2) (cd( ))ﬁ?:o = argmin Do Z (y - Z cdxd) ,
(x,y)eDu d=0

minimizing the mean square error. We note that the minimization problem
([1.2) is linear in the c4’s. Implicitly, we are trying to minimize a quadratic loss
function. We also note that

« If D is too small (i.e., 0 or 1), it underfits the data and doesn’t capture
variation.

« If Distoo large (larger than 2), it overfits the known data, but may not
fit new data.

See Figure [[1.2.

11.4. Validation

Let’s assume that we have a new validation dataset D¥* (which is statistically
similar to the training dataset D) of feature-label examples. This should be
able to help us find the best hyperparameter (degree) D. See Figure [1.3. In
our case (which reflects what might generically happen), the validation data
DV fills in gaps in the training data DY. Comparing our trained models (for
different hyperparameters) on these trained models allows us to optimize over
hyperparmeters.
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Figure 11.3. Scatter plot of training and validation data.

In carrying out validation, let’s use the absolute value (not the square er-
ror) as a metric to compare predicted and ground-truth labels. Namely, let’s
minimize

1 *
|Dva| Z Iy_PD(x)|
(x,y)eD

over D; our best hyperparameter is

* def : 1 * .
D* = argmin D] Z | ly — P5(x)| : D eN¢.
(x.y)eD

In our sample data, D* = 3; the best model is in fact cubic, although qua-
dratic and quartic curves also show low validation errors.

A validation curve as in Figure captures bias-variance tradeoftfs. If our
model is too simple (in our case, D is too small), we can’t capture the impor-
tant structure (in this case, quadratic dependence) of the training data; i.e., we
underfit. If our model is too complex (in our case, D is too large), we can fit the
training data, but the structure of our model (in this case, polynomials) forces
our trained models to do poorly on new data. This is mathematically natural
in our case; given N (x, y) points, where no two x’s are the same, we can find
an at most N — 1 degree polynomial [HJ20] which passes through these points.
This high-degree polynomial may, however, suffer significant oscillations else-
where.

Since the validation is over a discrete set of hyperparameters (degree D of a
polynomial), we use discrete minimization, allowing us to use more meaning-
ful and non-differential metrics (i.e., the absolute value function | - | as opposed
to the square error (-)?) (see also the discussion of metrics in linear and logistic

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



11.4. Validation 163
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Figure 11.4. Validation curve

regression). By comparison, the loss function is used in training to minimize
over parameters.

Once we have found the optimum D*, we can retrain our model

P*argmin{ ———
t
pery. |1 DU DV )

>, ly=PX)

ePpryPpva

with the entire training and validation dataset D™ U D"?; see Figure [[1.5. For
our example data, we get

(11.3) P*(x) = 0.01x3 + 0.23x% — 4.67x + 19.54.

Our validation step suggested that we use a cubic polynomial. The result is a
polynomial with in fact a small coefficient in the cubic terms. Roughly, this
agrees with our intuition that our data is quadratic. Recall that our goal is a
good approximation of the dependence of label on feature; the exact degree is
relatively unimportant.

How do we report the performance of our algorithm? Suppose that we have
a third (finite) test (holdout) dataset D* C R X R; see Figure [1.6. Let’s again
use the metric to compare predicted and ground-truth labels. The performance
of our polynomial approximation is then

1 .
D% D ly=P*)l.
(x,y)eDte

The performance in this case is

(11.4) performance = 1.69.
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Figure 11.5. Retrained model using optimal hyperparameters and training
and validation data. Training data gave us coefficients of polynomials. Vali-
dation data gave us degree of polynomial.
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Figure 11.6. Test data

11.5. Cross-Validation

We were admittedly a bit careful in constructing our above datasets. Our x
values (the features) were sampled from a standard Gaussian distribution with
mean 0 and standard deviation 10. The y values (labels) were constructed by
additive perturbing

(11.5) Pirye(x) = 0.5x% — 6x + 20
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with points sample from a standard Gaussian distribution. The fitted polyno-
mial ([1.3) is reasonably close to ([[1.5). Polynomial regression is in fact statis-
tically more complicated than linear regression. We tried to adapt ideas from
linear regression to the engineered features of ([L1.1), but we should have added
some corrections to account for biases in higher powers of Gaussian noise.
However, there is similarly no firm statistical ground for multilevel feed for-
ward networks as in Chapter[5. The complex feature-label relations which deep
neural networks try to model are often beyond what pure statistical theory can
address.

In constructing our training set, we were also a bit careful in selecting a
seed (for the randomization algorithm) which led to a gap in feature space near
x = 2; that gap highlighted the need for a new (validation) dataset. Similarly,
our training dataset consisted of only 15 points; a larger sample size would have
started to fill in the gap near x = 2.

In fact, our above example was built upon a remarkably small collection
of ground-truth datapoints; see Table [1.2. Our test dataset (Figure [[1.6) was
in particular very small; it consisted of only five points. A commonly accepted
ratio of sizes of training, validation, and testing sets is 70-15-15; see Table [[1.1l.
The breakdown in our example is in Table [1.2.

Table 11.1. Training, validation, and testing breakdown

Training | 70%
Validation | 15%
Testing 15%

Table 11.2. Dataset sizes

Count Percent

Role

Training 15 60
Validation 5 20
Testing 5 20

Suppose that we are given a ground-truth dataset 2. Building upon our
understanding of training, validation, and testing, let’s reverse our above dis-
cussion. Let’s first randomly select the test (holdout) dataset D' used to report
our final performance. We want to use the remaining data,

Dtr&va d:ef D \ @te’

for selecting parameters (training) and hyperparameters (validation); i.e, for
optimal model building. To make our training and validation steps as robust
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Figure 11.7. Three-fold cross validation curves, training, and validation data

as possible, let’s average over ways to subselect training and validation sets. In
K-fold cross validation, let’s partition the non-testing data into K folds (subsets)
{Tk}lk{:l. Let’s take K = 3 in our example problem; see Figure [1.7. Let’s then
write

K
Pir&va — U }Vk-
=1

For each k, we can then train on

Pir&va \ ?k — U -Tk’

1<k’<K
k'+#k
and find
(k), def . 1 2
P = argmin{ ——————— (y—P(x)) ;.
D ey | Dtr&va \ | (x’y)eg&w\fk
Then let’s construct a validation function
def k),*
mPD)= — Y |y-Py"x| DeN,
|fk| (X,.V)efk

for each fold, and then minimize the average metric

def

K
1
D¥ to1d = argmin T Z m®(D) : D € N¢,
k=1

over all hyperparameters D. Again, we get underfitting for low D and overfit-
ting for high D (see Figure [[1.§), and in our example, we get D ., = 2 With
best polynomial

(11.6) P*(x) = 0.43x? — 5.51x + 20.5.
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Validation Curves
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Figure 11.8. Three-fold cross validation curves

As before, once we have the best hyperparameter Dy ¢4, We can retrain
our model using all of the available data D3,

def ) 1 2
p* = argmin W Z (y — P(X)) .
Pe:PDf(—fo]d (x’y)eljtr&va

Again, we can measure performance using the metric on the test dataset
ﬂte’

1 .
D% D ly—P*)l.
(x,y)eDrte

In our example, we get

(11.7) performance = 0.72.

In our example, we get better performance ([[1.7) with three-fold validation
than we did in our original analysis (I1.4). Similarly, the estimated polynomial
(L1.6) from using four-fold validation is closer to the true polynomial (1.5)
than the original estimated polynomial (L1.3). Averaging over the folds lessens
the effect of idiosyncrasies in training and validating over only one selection of
DY and DV2.

11.6. Brief Concluding Remarks

In this chapter we saw that well thought out training, testing, and validation
steps are crucial to the development of robust and meaningful deep learning
algorithms.

In the next chapter we study feature importance. The usefulness of deep
learning is that it allows us to represent high-dimensional data. On the other
hand, the high-dimensionality of the data makes clearer the need to rank the
importance of the various features of the model. Hence, feature importance
becomes practically relevant. This is the content of Chapter [[2.
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Chapter 12

Feature Importance

12.1. Introduction

The appeal of deep neural networks is that they can easily represent high-
dimensional datasets. Given a deep neural network, we can explore feature
importance to rank how important various features are.

Let’s work through a problem we can easily understand and visualize. As-
sume that we have a collection of (x, y) points in feature space R? with labels
¢ € {0, 1} which, roughly, are

« labeled 1 above the x-axis,

« labeled 0 below the x-axis.
In a real problem,

« the boundary will not be exactly horizontal.

« there may be some noisy observations near the boundary.

Table and Figure shows a simulation of such points.

Table 12.1. Sample points

X y label

1.76  0.40 0

098 224 1

1.87 —0.98 0

0.95 -0.15 0

—-0.10 041 0
169
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Figure 12.1. Scatter plot of labeled points

Nevertheless, since the boundary is horizontal-ish,

the y-feature is more important than the x-feature.

How can we quantify this?

We usually look at feature importance within the framework of some algo-
rithm that we have trained on some dataset D C R? x {0, 1}. Let’s use logistic
regression in (x, y) to construct a model m from feature space R? to label space
{0, 1}. For our dataset,

choose1l ify > 0.37x +0.28
choose 0 else.

Dividing by the coefficient of y (and retaining the direction of the inequal-
ities, since this coefficient is positive), we can simplify this as

def |1 ify > 0.37x + 0.28
—e

0 else.

(In fact, we constructed the points of Figure by sampling N = 100 points
{(Xp, V), from a standard two-dimensional Gaussian distribution, and then

labeling the points 1 if and only if y,, > 0.3x, + 0.2 + %nn, where the 7,, are
samples of a standard Gaussian distribution independent of the (x,,, y,)’s.)

The starting point of analyses of feature importance is typically some as-
sessment of performance of an algorithm. Namely if m : R? — {0,1}, let’s
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Figure 12.2. Permutation of x (left) and y (right) data

define the accuracy of the model m applied to the dataset D as

def 1
(12.1) Ap(m) =1 - Dl > mGLy) -,
(Cx,y),6)eD
which, in this case, is the relative number of correct classifications. Computing
the accuracy of our logistic regression model m*, we have

(12.2) Ap(m*) = 92.0%.

We want to think of ([[2.2) as baseline accuracy, and it reflects the feature-
label relationship for some fixed model (e.g., m*). Informally, we want to quan-
tify importance of x vs. y in our data by perturbing x and y in our model, and
seeing how much A deteriorates. From Figure [2.1, we expect that perturbing
y will lead to a greater deterioration in performance than perturbing x; correct
classification depends more on y than x, so y is more important than x.

12.2. Feature Permutation

If x is less important than y, rearrangements of x should have less importance
than rearrangements of y. Namely, if we rearrange x, the accuracy should de-
crease less than if we rearrange y. Permutations in y are more likely to move
points across the decision boundary, causing classification errors. See Figure
12.2.

Let’s define an x-shuffle of D as a copy of D where we have shuffled the x
values. Similarly, a y-shuffle of D is a copy of D where we have shuffled the
y-values. Fix an x-shuffle D, of D and a y-shuffle D, of D; see Tables and
2.3. Let’s then calculate the performance (accuracy) of m (i.e., A5 _(m) and
/lf)y(m)) on each of these test sets. See Table [2.4. As expected, the accuracy
has deteriorated much more on D, than on D,; information about y is more
important than information about x.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



172 12. Feature Importance

Table 12.2. Permutation of x Table 12.3. Permutation of y
X y label X y label
—-0.51 0.40 0 1.76 —1.18 0
0.86 2.24 1 0.98 —-0.65 1
1.87 —-0.98 0 1.87 —0.98 0
1.87 -0.15 0 0.95 0.91 0
—0.07 0.41 0 —0.10 1.71 0

Table 12.4. Accuracy of m* for D and for an x-shuffle and a y-shuffle.

Ap(m*) | 92.0%
Ay (m*) | 80.0%
/l@y(m*) 55.0%

Table 12.5. Accuracy of m* for D and average accuracy for its x-shuffles and
y-shuffles.

Ap(m*) 92.0%

Ay—shufﬂes(m*) 82.9%

Ay—shufﬂes(m*) 54.3%

Of course Table and are only one way of shuffling x and y. There
are in fact N! ways to shuffle x and y. We should actually average over these
ways to shuffle x and y and compute

- def N!
A, m*) = — Az (m*),
xshfes(1) number of x-shuffles D, 2, (")
- o def N! N
Ay-shufﬂes(m ) = A@y(m ),

number of y-shuffles D,

and compare them to A, (m*). As with Table [2.4, the larger the decrease from
A(m*) to Ay ghutites(M*) OF Ay ghutes(M*), the more important the feature. By
Stirling’s formula,
N
N/

NI &7 \22N (g)
is typically very large, so Ay quses(M*) and A, humes(M*) are approximated by
sampling.  Table shows the results in our case (approximating
Ay shutles(M*) and Ay qrusmes(m*) with 100 samples). As with Table [23, y is
more important.

Our specific formula (12.1]) A »(m) of accuracy would have given an accu-
racy of 1 if m* would have been able to perfectly classify 2. More generally,

accuracy of model m on dataset D =constant—error of model m on dataset D.
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Feature importance can thus be quantified as increases in error as various fea-
tures are shuffled.

12.3. Shapley Value

Our second way of understanding feature importance stems from [[LL17], and
it quantifies how much a feature adds to all possible predictions.

Again, we start with our fixed trained model, m*, which maps a pair (x,y) €
R? into a label ¢ € {0,1}, and our ground-truth dataset D C R? x {0,1}. Let’s
build off of ideas of conditional expectation and project m* onto maps from
lower-dimensional sets of features (using D). Namely, let’s define

. def "
mi;(x,y) = m*(x,y),

f
mimE LY meny),
: D]
((x",y"),6)eD

(12.3) def 1 .
ms,l(y) = W Z m (x ’Y)’
(x',y").6)eD

def 1

*

mg o m*(x’, y").

D] ((x",y"),0)eD

The function mj ; is simply m*, and predicts a label based on both features.
At the other extreme, mg , can be thought of as predicting the label based on
neither feature (and is simply the average predicted label). The functions mj
and mg ; (often called partial dependence functions) predict the label based on,
respectively, only x or only y. In our case,

m0,0 = 0.46,

and the plots of mj , and mg; are given in Figure (sometimes called in
the literature partial dependence plot). Visually, for a given x € R, mj , aver-
ages m* over a synthetic dataset of (x, y") where y’ is given by the ground-truth
dataset. As x moves to the right, the dataset in Figure has more points with
label 0, so the average value decreases. This occurs fairly gradually, so the plot
of mj , decreases fairly slowly. Conversely, for a given y € R, mg ; averages m*
over a synthetic dataset of (x’, y), where now x’ is given by the ground-truth
dataset. As y moves up, the dataset in Figure has more points with label
1 so the average value increases. There is a fairly sharp transition for y near 0,
so the plot of mg ; quickly increases near 0.
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1.0
0.7
0.8
0.6
0.5 0.6
0.4 0.4
0.3 0.2
n.z
0.0
-2 -1 0 1 2 -2 -1 0 1 2
X ¥

Figure 12.3. Partial dependence plots: plot of mj , (left) and mg ; (right) data

We want to understand the accuracy of the models of ([2.3) Borrowing
from ideas of computing, let’s now overload the mj ;s to again make them func-
tions of both variables, so that we can apply A of ([2.1)). Let’s define

def
mjo(x,y) = mj (%),
. def
mg (%, y) = mg,(»),
. def
Mg o(x,y) = mg o,

which means that m; ; is being evaluated as m; ; in the used features.
We can now define accuracies based on subsets of feature dimensions. De-

fine
a(fx,y}) = Ap(mi,),
a(x}) = Ap(mi o),
Ay} = Ap(mp,),
(@) = Ap(m ).
‘We have

a({x,y}) = 0.92,
a({x}) = 0.54,
a({y}) = 0.83,

a(@) = 0.50.
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We can now quantify how much each feature adds to various subsets of
feature dimensions (not already containing that feature):

a({x}) — a(@) = 0.54 — 0.50 = 0.04,
al{x,y}) —a({y}) = 0.92 — 0.83 = 0.09,
a({y}) — a(#) = 0.83 — 0.50 = 0.32,
al{x,y}) —a({x}) = 0.92 — 0.54 = 0.38.

In line with our intuition, y adds much more accuracy than x. The Shapley
value in our case averages these over each feature:

S £ 3 Hatx]) - a@} + {adix, ) - ayhl,
5y £ 3 {{atlyd) — @)} + i, yh) - G-

In our case,

1
Sy = 5{0.09+0.04} = 0.07,

1
Sy = 5{0.38+0.32} = 0.35.

Namely, y adds about 35% predictive power, while x adds only about 7%,

Sy > S,
and we quantitatively have that y is a more important feature than x.

Let’s start to convert our notation to problems involving more than N = 2
features. Let’s write

5oL {a({x,y}) oy , axh - a(ﬂ)}

YU G Co)

with N = 2,

()=o)
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With N = 3 predictive variables X, y, and z, the Shapley value would be
defined as

&zgrwmd%mmm+mmm—mm

N ( N-1 N-1
{y,z} (18%]

+mwzn—mvn+mun—wm}
(e Ca)
:1{M&sz—ﬂWJD+MWJD—MWD
3 () ()
+mwzb—m&9+mwn—mm}
() ©)
ety ) -aed)), aluy) - o)
1 2

3
alfx.2) —aliz}) , alx)) - a®)
+ 22 + L2

Generally, if F is the collection of features, |#| = N, and f a feature,

def 1 a(F U {x}) — a(F)
- N N-1
FCA\(f} -

R
Nn=0 N—l)

n

St

2, laFuixh) —al),
FcA\{f}

|F|=n
where the second sum has been organized by |F|; there are (N ;1) ways to choose
a subset of # \ {f} of size n.

Let’s finally note that the Shapley value is bounded by the maximal accu-
racy. If « < & (& = 1 in our calculation),

N-1 N-1

1 1 1 1 N-1 1

Sp< = — a=—=y &=—=N

f=N nzo (Nn 1) Fl%%{f} N ngo (Nn 1)( n ) N
=n

=a.

Qi

12.4. Feature Permutation versus Shapley Value

Let us now discuss how feature permutation, explored in Section 2.2, and
Shapley value, explored in Section [[2.3, compare with each other.
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Both methods measure feature importance. Their main difference is that
while feature permutation relies on the decrease in model performance, Shap-
ley value is based on how much a feature adds to all possible predictions. Fea-
ture permutation does not include a direction, whereas Shapley values can be
positive or negative depending on the influence on the predicted outcome.

Feature permutation is calculated on the entire dataset, whereas Shapley
value shows how much a feature influences the prediction relative to the aver-
age outcome in the dataset.

As a more practical guide, one could use feature permutation to decide
which features to keep and which ones are the most important to the accu-
racy of the model. Feature importance can also guide additional feature engi-
neering. On the other hand, Shapley value can be used to understand which
features influence predictions more, or how different values of a given feature
affect predictions.

12.5. Brief Concluding Remarks

Up to now we have seen the main ingredients in the formulation of a deep
learning algorithm. Namely, we have seen the basic formulation of a feed for-
ward neural network in Chapter [, backpropagation in Chapter [, stochastic
gradient descent algorithm in Chapter [}, and then the main principles in train-
ing, validation, and testing in Chapter [L1], and feature selection in Chapter 2.
Another important component that has contributed tremendously in the suc-
cess of deep learning in practice is the realization that dependent and struc-
tured data require appropriate architectures. As such, in Chapter [3 we study
recurrent neural networks and transformers that are widely used to model time
series and sequential data. In Chapter [4 we study convolution neural net-
works that are widely used in image recognition problems.

12.6. Exercises

Exercise 12.1. Suppose we are building a binary classifier on points in R2.
Consider a test set of three datapoints:

n 1 213
X, 105 =21
Y, 1| 3|5
7 1] 00
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This table means that the first datapoint in the set is (0.5, 1) with label 1. Define
the accuracy of the map m : R? — [0,1] as

3
1
Ap(m) =1= 2 37 [m(Xy, V) = bl
n=1
Suppose we have the classifier

1, ify>x?
0, ify<x2

mo(x,y) = {
In addition define

3
. 1
ml,O(x) = 3 Z my(x,Yy,),
n=1
13
1o, (V) = 3 Z mo(Xp, ),
n=1

3
N 1
Moo = 3 Z mo(Xp, Yy).
n=1

With these definitions at hand do the following:
(1) Compute 1y g, 11y o(x), and iy 1 (y) for each x and y in the available
dataset.
(2) Compute Ayp(1irg ), Ap(iityp), Ap(tig,), and Ap(my).
(3) Compute the Shapley value of x and the Shapley value of y.

Exercise 12.2. Suppose we are building a binary classifier on points in R2.
Consider a test set of three datapoints

n| 1] 23
X, [05][=2]1
Y,| 1| 3]s
6, || 1] of1

This table means that the first datapoint in the set is (0.5, 1) with label 1.
Define the accuracy of the map m : R? — [0,1] as

3
1
Ap(m) =1- 3 Z |m(Xp, Yn) — Gl -

n=1
Suppose we have the classifier

1, ify>x?
0, ify<x2

my(x,y) = {
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In addition define

3
. 1
ml,O(x) = 3 Z mo(x, Yy,),
n=1

3
R 1
mo,l(}’) = 3 Z mo(XpY),
n=1

With these definitions in hand,
(1) Compute 1 o, 1ty (x), and i ;(y) for each x and y in the available
dataset.
(2) Compute Ap(1irg ), Ap(iity ), Ap(1itg,), and Agp(my).
(3) Compute the Shapley value of x and the Shapley value of y.
(4) Compare the results with those of Exercise [[2.1].
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Chapter 13

Recurrent
Neural Networks
for Sequential Data

13.1. Introduction

We next turn to applications of deep neural networks to sequential data. For
example, sequential data may refer to data representing time series, text in lan-
guage, etc. Let us for a moment focus on time series data. We want to predict
a time series {Y;}72, of outputs (similar to labels) on the basis of a time series
{X;}22, of inputs (similar to features). We want to do so with two thoughts in
mind:

« We want to respect time (or generally speaking order in the sequence)
as we cannot use future information in predicting present output.

« Real systems have some sort of internal memory.

Again, let’s use an example dataset to motivate some thoughts. The first
few lines of some sample data (see github) are in Table [[3.1. See also Figure
13.1.

In Section we go over the plant-observer paradigm, which leads to the
basic recurrent neural networks: Jordan networks in Section and Elman
networks in Section [3.4. In Section we discuss how backpropagation
is applied to recurrent neural networks leading to the truncated backpropaga-
tion through time. Stability of recurrent neural networks is studied in Section
where we discuss conditions under which the basic recurrent neural net-
work is stable in the sense that the output does not saturate. This motivates the

181

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



182 13. Recurrent Neural Networks for Sequential Data

Table 13.1. Sample sequential data (an example of a time series)

X Y
t
1 1.025 -0.041
2 0.893 -0.033
3 1.068 —-0.029
4 1.035 -0.026
5 1.028 -0.024

- —0.010
1.2 1

- —0.01%

—0.020

1.0
- =075

o8 -—a.030

0.5 - —.03s

o7 - —0.040

0 20 40 B0 20 100

Figure 13.1. Sample sequential data (a graphical example of a time series)

construction of more advanced recurrent neural network architectures, such
as gated recurrent networks (GRU), long-short term memory models (LSTM),
and bidirectional recurrent neural networks, Section [3.7. Implementation de-
tails for recurrent neural networks (RNNs), such as dropout, batch normaliza-
tion, and layer normalization, are discussed in Section [[3.§. In Section [3.9 we
change gears slightly and discuss the attention mechanism and the basic trans-
former architecture that has been very successful in sequential data related to
large language models, and we discuss how it relates to the more advanced
recurrent neural networks such as the LSTM.

13.2. The Plant-Observer Paradigm

We can organize our discussion by the plant-observer paradigm of systems the-
ory. Suppose that the inputs drive a dynamical plant

(13.1) Zy = f(Zi-1,Xy).
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The observations are assumed to be some function of the state of the plant
Y, = g(Zy).

The plant Z may be very high-dimensional, reflecting the evolution of a
large amount of hidden (or latent) information. If the plant dynamics (13.1)
are linear, Z becomes an autoregressive process. The function g collapses all of
this information to the observed values.

13.3. Jordan Networks

Let’s assume that g is the identity map. Then Y; = Z, and the plant-observer
model reduces to

Y = f(Yio1, Xp).

Explicitly, we are representing the current output as a combination of the
prior output and the current input:

(feature;, label;) = (X;,Y;_1), Y;).
This becomes a standard deep learning problem with label Y; and feature
(Y;_1,X;); see Table [[3.2. We note in Table that Y_; does not exist, so we

do not have a ground-truth pair ((X,, Y_;), ¥y) in our ground-truth dataset.

Table 13.2. Feature-label data for Jordan networks

Feature Label

X laggedY Y
t
1 1.025 nan -—0.041
2 0.893 —0.041 —-0.033
3 1.068 —0.033 —0.029
4 1.035 —0.029 -0.026
5 1.028 —0.026 -0.024

As a point of comparison for more complicated models, let’s write out a
one-layer model for a Jordan network. We might consider

def
(132) m(Xt, Yt—l; 6) :e tanh(let + szt_l + b) ,
where 6 € R X R X R is the parameter vector

9 = (wl,wZ,b) .
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Figure 13.2. Jordan network

In Figure we present schematically a Jordan network. Given (X;, Y;_;),
m(X;, Y;_;) would be our prediction of Y;. We can use the mean-square error

T
def 1
AO) = 73 (- mX, Y 1:0)°, 6= (wwyb),
t=1
to find the best such model. More layers can easily be added.

13.4. Elman Networks

Elman networks implement the full plant-observer paradigm. Let’s think
through the analogue of (3.7). Let’s consider models of the form

Ztm(e) = tanh(wziXt + wzzZtm—l(e) + bz)

(13.3) Y™(6) = tanh (w, Z"(6) + b,) €2}
where

ez(wzi Wzz bz Wy bO)
isin R>.

In Figure we present schematically an Elman network.
Let’s assume that

(13.4) ZM0) = 0.1

to start the plant process Z™ at a specific nonzero value. Let’s also take T' = 3
as our time horizon; that will allow us to exactly write out several calculations.

Figure 13.3. Elman network
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Our loss function will be
def 1 T 2
(13.5) A(B) = T Z YO -Y)".
t=1

As usual, we want to use gradient descent to minimize ([[3.5) over all 8’s in
R5. Let’s think through how this would work with a concrete example. Con-
sider

Wzi Wzz bz Wo bo
(13.6) 6= (020 -025 030 010 —0.15);

and let’s compute VA(6). A concrete example may help us keep track of what
is known and what needs to be calculated.

First, knowing the initial condition ([3.4) and the parameters (L3.6), we
can reconstruct the plant Z using w,;, w,,, and b, for t € {1, 2,3}

ZM(6) = tanh (w,;X; + w,,Z™ 1(8) + b,) = tanh (0.2X, — 0.25Z™ 1(6) + 0.3)
ZI(0) = 0.1.

Explicitly, we may compute

Zy'(6) =0.1,

Z™(6) ~ tanh((—0.25) X 0.1 + 0.2 X 1.025 + 0.3) ~ tanh(0.48) ~ 0.446,
Y{"(6) ~ tanh (0.1 X 0.446 — 0.15) ~ tanh(—0.105) ~ —0.105,

ZM(6) ~ tanh((—0.25) X 0.446 + 0.2 X 0.893 + 0.3) ~ tanh(0.367) ~ 0.351,
Y;"(6) ~ tanh (0.1 X 0.351 — 0.15) =~ tanh(—0.115) ~ —0.114,

ZM(6) ~ tanh((—0.25) X 0.351 + 0.2 X 1.068 + 0.3) & tanh(0.426) =~ 0.402,
Y;"(6) ~ tanh(0.1 x 0.402 — 0.15) & tanh(—0.11) ~ —0.109.

See Table [3.3. As a point of reference, we then have, to three significant
digits, that

A(©)% 7 {(~0.041 + 0.105) +(~0.033 + 0.114) +(~0.029 + 0.109)*} 0.006.

W =

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



186 13. Recurrent Neural Networks for Sequential Data

Table 13.3. Given and constructed values

Ground Truth Model
X Y Z7(6) Y™(O)

t
0 nan nan 0.100 nan

1 1.025 -0.041 0.446 -0.105
2 0893 —-0.033 0.351 -0.114
3 1.068 —0.029 0.402 -0.109

Differentiating with respect to w, and b,, we then have

T

oA 2 m ay"
) I
== Z (Y™ — Y,) tanh’ (w,Z™ + b,) Z™,

t=1
oA 2 & oym
—_— —_ — m o _ t
3b, ©) T Z Y™ -Y) 3bg

‘-,
Il
—

(Y™ — Y,) tanh’ (o Z}" + by).

Il
Sl
M~

‘-,
1l
—_

Explicitly,
oA 1 ,
5@~ 3 {(=0.041 + 0.105) tanh (0.1 X 0.446 — 0.15) X 0.446
o
+(—0.033 + 0.114) tanh’ (0.1 X 0.351 — 0.15) X 0.351
+(—0.029 + 0.109) tanh’ (0.1 x 0.402 — 0.15) X 0.402}
1
~ 310.028 +0.028 +0.032},
~ 0.029,
oA 1 ,
5 O ~3 {(=0.041 + 0.105) tanh’ (0.1 X 0.446 — 0.15)
o

+(—0.033 + 0.114) tanh’ (0.1 X 0.351 — 0.15)
+(—0.029 + 0.109) tanh’ (0.1 X 0.402 — 0.15)}

1
~ 7 {0.063 +0.08 +0.079}
~ 0.074.
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How do we take derivatives of A with respect to wy;, w,,, and b;? Again
differentiating, we have

dYm

s ®" Bt

( m

=

—-Y)

wIN
M=

_.
1l
o

6w21

ozm

(th - Yt) tanh’ (woztm + bo) wOW’
zi

Il
wIiN
M=

..
1l
o

T
2 ay™
6wzz( ) 3 tzzo( t t) awzz
T
_ E m_ ’ m aZ;n
=3 E)(Yt Yo tanh’ (WoZ" + bo) wo 3
© =230 -1
3b 340 T db,
= %zT: (Y™ — Y;) tanh’ (w,Z™ + b,) w oz
3 t=0 t t o o770 db,
In turn,
azm oz,
athI = tanh (leXt + wzzZt 1+ bz) {wzz ow +Xt}
azm 5Zm
awt tanh (leXt + wZZZt 1 + bZ) {wzz a + Zt 1}
zzZ
dzm : 52'“
6th = tanh (W, X; + Wy, Z, + by) {wzz ob, + 1}

which can be organized as a matrix evolution

OZE“/awzi 52?‘-1/awzi Xt
0z} fow,, | = tanh’ (W, X; + Wy Z™ 1 + by) Wy, | 928 /ow,, | + [ 21 |},
0Z" [ab, 0Z,/3b, 1

aZTl/awzi 0
aZTl/@wzz =|0]).
9z [ab, 0
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Explicitly,
aZ{“/awzi
9z} f3w,, | ~ tanh (0.2 X 1.025 + (—0.25) X 0.1 + 0.3)
971 [ab,
0.000 1.025
x {10.000 | x (=0.25) + [ 0.100
0.000 1.000
1.025
~ tanh(0.48) ( 0.100
1.000
0.821
~ | 0.080 |,
0.801
aZi"/awzi
923 Jsw,, | ~ tanh(0.2 X 0.893 + (—0.25) X 0.446 + 0.3)
8Z% [ab,
0.821 0.893
x {10.080 | x (—=0.25) + | 0.446
0.801 1.000
0.893
~ tanh(0.367) | 0.446
1.000
0.783
~10.391],
0.877
aZ;“/ale
975 fow,, | ~ tanh (0.2 X 1.068 + (—0.25) X 0.351 + 0.3)

8Z3' fop,
0.783 1.068
X {10.391 | x (—0.25) + | 0.351
0.877 1.000

1.068
~ tanh(0.426) | 0.351

1.000
0.896
~(0.295],
0.839
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which then gives us

oA
ow,,

1 )
©)~3 {(—0.041 + 0.105) tanh’ (0.1 X 0.446 — 0.15) X 0.1 X 0.08

+(—0.033 + 0.114) tanh’ (0.1 x 0.351 — 0.15) X 0.1 X 0.391
+(—0.029 + 0.109) tanh’ (0.1 X 0.402 — 0.15) X 0.1 X 0.295}

1
~ 3 {0.001 + 0.003 + 0.002}

~ 0.002,

oA
awzi

1 :
(6) ~ 3 {(~0.041 +0.105) tanh’ (0.1 x 0.446 — 0.15) X 0.1 X 0.821

+(=0.033 + 0.114) tanh’ (0.1 X 0.351 — 0.15) x 0.1 X 0.783
+(—0.029 + 0.109) tanh’ (0.1 X 0.402 — 0.15) X 0.1 X 0.896}

1
R 3 {0.005 + 0.006 + 0.007}
~ 0.006,

A 1 ,
37(6) ~ 7{(=0.041 +0.105) tanh’ (0.1 x 0.446 — 0.15) X 0.1 X 0.801
z

+(—0.033 4+ 0.114) tanh’ (0.1 X 0.351 — 0.15) X 0.1 X 0.877
+(=0.029 + 0.109) tanh’ (0.1 X 0.402 — 0.15) x 0.1 X 0.839}

Q

1 ,
5 10.064 tanh’ (=0.105) x 0.1 x 0.801

40.081 tanh’ (=0.115) X 0.1 X 0.877
+0.08 tanh (—0.11) x 0.1 X 0.839}

1
~ 3 {0.005 + 0.007 + 0.007}
~ 0.006.

13.5. Training and Backpropagation for Recurrent Neural
Networks

Let us recall the generic mean-square loss function introduced in (3.5). In Sec-
tion we investigated in a concrete example how the derivatives of the loss
function A with respect to how the parameters in 6 look for the standard Elman
network. The goal of this section is to go over the idea behind the implemen-
tation of backpropagation for a generic recurrent neural network. Instead of
considering the specific model (3.3), let us generalize this slightly and instead
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consider

Z{" =myz (X4, Z"1;0)

13.7
(13.7) Y = my (X, Z10)

te{l,2,...,T}

We first note that the parameters that are included in the vector 6 are com-
mon across all times ¢ € {1,2, ..., T}. Aswe shall now demonstrate, a recurrent
neural network such as ([[3.7) can be realized as a very deep neural network
with number of layers being T. Indeed, let us rewrite ([[3.7) in the form

Z8" =my (X, Z2156,),
(13.8) " =my (X;, 21" 6,),
o 2
A6y,...,0r) = Z Y=Y,
t=1
et:e, tE{1,2,...,T}.

Note that (I3.§) is a multi-layer neural network, where 6, is the parameter
vector for the tth layer. By the chain rule we have

VoA(6) = Vo Z(Yt Y;)

1 ~
7 2 VaA@....0n)

IIMH

(13.9)

HI*—‘

T —
am X, Z{";6,) 1 ~ oz
= 3 20 - PRI TZ[vz;nMel,.. 6n°2

Using the standard § notation in backpropagation, if we now set
8¢ = VznA(6y, ..., 07),

we shall have for t = 1,..., T — 1, again by the chain rule, that

- dmy (Xt+1’Ztn—1+1;6t+l) dmy (Xt+1’Zt“-l|-1;6t+l)
8t = 2(Yt+1 - Yt+1) 9Zm + 9Zm St41s

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



13.5. Training and Backpropagation for Recurrent Neural Networks 191

with 87 = 0. Note also that using the & notation, (I3.9) can be written as

%M@=%épo¢—nﬂm“&z“@] 2@?3
_ %2[2(16 %) amy(xt,zt 16) ] Z 5t6mZ(Xt,Zt 16,
-1 (2 (v — ) 0 (X;"ﬁ;eﬂ)
(13.10) + z (2 " -Y) omy ()gt,ezg"; %) 4 atamz ();"QZ?I; et))] .

Formula ([3.10) gives the essence of the backpropagation algorithm in the
case of a recurrent neural network; see also Exercise [[3.3. One can see that the
computational cost of this backpropagation algorithm, called backpropagation
through time (BPTT), is of the order of T. This computational cost can be too
costly to bear. For this reason, in typical applications the truncated backpropa-
gation through time (tBPTT) algorithm is used instead of the BPTT algorithm,
see Section [[3.5.1].

13.5.1. Truncated backpropagation through time. As we just demonstra-
ted, typical computational cost of the backpropagation algorithm based on
(L3.3) would be of order T, but if the sequence is long, then the computational
cost would be too large to afford. In practice, the algorithm being used is the
so-called truncated backpropagation through time, or tBPTT for short.

In particular, consider a truncation length 7 < T (many times in practice
7 = 1) and set the objective function at the kth iteration to be

tk

ICAEEIED MR C L

t=1(k—-1)+1
where the normalization with % is many times omitted in practice (as it is also

the case for the % normalization in (I3.3)). The update equations take the form

Z" = my (X, Zi%1; 6k)

-1 1,...
Y= my (Gzpe) ST DA LT

and we remark that Z7, |y = 6)_,. Then, the SGD update for the model (13.3)
becomes

Ok+1 = Ok — M VAK(Ek).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.
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Compared to traditional SGD, the computational cost is now of order r.
Even though tBPTT based SGD is biased, it has proven to work well in practice.
Then, backpropagation is done similarly to (13.10) but bases the calculations
on Ay, rather than on A, which was the case for (13.10).

Next, we present the tBPTT algorithm, in pseudocode, in the case of trun-
cation length 7 = 1, see Algorithm [I. Let us also consider the simplest case of
an Elman network with a shallow neural network, a generic activation func-
tion o for the memory and affine activation function for the output, i.e., going
back to ([3.3), we have the recurrent neural network model

Z;n = O-(wzi)(t + wzzZ;n—l + bz)

tel,2,...}.
YY" =w,-Z" + b, { }

Note that in general, X € R is a vector, w,; € RN*?, w,, € RN*N would
be matrices, Z™, b,, w, € RN would be vectors, and Y™, b, would be one di-
mensional. Here, the vector of parameters is 6 = (w,, Wy, W,5, by, b,). Let us
assume that we initialize the parameters based on some distribution 4, i.e., at
iteration k = 0 we have that 6, ~ 4.

Algorithm 1 Online SGD with tBPTT for truncation length 7 =1

1: procedure > (Input parameters network size N, initial parameters distribution 4,
running time T)

2 Initialize: initial parameters 6, ~ 4, initial memories Vi, Z(’)"’i =0,stepk =0
3: while k < T do
4 foralli e {1,2,...,N}do > Truncated forward propagation
) 4 R N X )
s Zih < o (Tio, wilxl + Tl whe Zi’ + bl ) > Updating
memory
6: end for N '
7: YV e Xl Wh e Zia + o > Updating output
8: Ar(6y) = %(Yk'" - Y;)? > Computing loss
9: foralli € {1,2,...,N}do > Truncated backward propagation on Ay(6y)
. m,i d L,j ~J N i, me :
10: AZy <0 (Zj=l Wyi kXie + 2oy Wz eZie + bé,k)
11: bo k+1 = Do = m2(Y" = Y)
12: Wo k41 = wo k 24" = Y)Zp
13: Wolesr = Zl k — 2"~ Yow! (AZRL XL j=1,....d
,€ €
14: WoL 1 = Whe e — MY = Yow!, kAZkHZ,’;‘ , ¢=1,...,N
15: bl k41 = bl — 2" — Yiowh (AZR,
16: end for
17: end while

18: end procedure
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Some bibliographical remarks are in order. In Algorithm [I| training is done
online, i.e., we update the parameters every time we observe a new step of our
sequences (Xj, Y;). Convergence of algorithms like the online Algorithm I,
after appropriate scalings and as a number of hidden units and training steps
N,k — o0, have been recently studied in [CHLSS23]. Scaling limits for recur-
rent neural networks when training is offline by continuous gradient descent
after observing a fixed number of steps of the sequence (X} )k~ has been stud-
ied in [[ALM23]. We will present detailed analysis of scaling limit results for
feed forward neural networks in Chapters 19, R0, and, in the context of rein-
forcement learning, in Chapter 21l.

13.6. Stability

Let’s return to (13.3). Replacing tanh by the identity map, let’s consider the
linear evolution

(13.11) ZF=w,, 7k | +w, X, +b, tefl,2..}

This is a reasonable approximation of the dynamics of (I3.3) if Z™ ~ 0.
Explicitly solving (I3.11]), we have that

t
L L —t'
Zy = wézZO + Z wiZ' {wzi Xy + b}
t'=1

Thus

o If [w,,| < 1, then lim, ,, |w7,| = 0, and the effects of past become
negligible (and (L3.11)) is stable)
o If [w,,| > 1, then lim,, », |w7,| = o0, and the effects of past become
magnified (and ([3.11)) is unstable).
If |w,,| > 1 and ([3.11)) is unstable, the tanh in the dynamics of Z™ of ([[3.3) is
likely to saturate.

To find w,,, we use gradient descent, which involves sensitivities. By com-
parison, differentiating (I3.11]) with respect to w,,, we get

ozt
ow,,

t
= twL, Z5 + Z (t — tHws;! ~Hw, X, + by}
t=1
Since
0 iflw,,|<1
lim |twt,| = _ wzz|
t—co oo if|w,,| > 1,
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Figure 13.4. Time horizon of |w,,|"

the gradient 9z¢/sw,, is likely to
e explodeast / o if |wy,| > 1
e vanishast / oo if |w,,| < 1.
This is a particular challenge if one simply uses gradient descent to update
w,, to improve model fit. Even if |w,,| < 1,

oA
ow,,

Wzz — 7

may fail to be in (—1, 1).

If Z™ is multidimensional, we can replace w,, by a square matrix. In that
case, we replace |w,,| with spectral radius of A.

If lw,,| < 1, writing

|w,|* = (exp[In |w,,|])' = exp[tIn |w,,]]
= exp[—tInYjw,,|] = eXp[—L] ,
Twzz

where
def 1
Tose = i
we can think of T,,__ as a time horizon (see Figure [[3.4)); |w,,|" < 1if and only
ift>T, .

13.7. Advanced Architectures

Standard recurrent neural networks are difficult to train in order to get a stable
time horizon of memory length; we want w,, of ([3.3) to be in (—1,1). One
resolution for this is to replace w,, with a logistic function S, which both take
values in (0, 1), and allows one to dynamically gate memory.

Let’s replace (13.3) with
ZI" = S(WX, + B) O Z{*, + f(X,)
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Figure 13.5. GRU architecture

fort € {1,2,...}. f WX; + B> 1, then
Z& m Z1 + (X,
and we have strong memory. On the other hand, if WX, + B <« —1, then
Z" & f(X),

and the plant forgets the prior state. Since the logistic function takes values in
(0,1), dependence on past should be close to stable.

t t t
" = {HS(WXt/ +B)}Z(’)" + > {{ I swx,. +B)}}f(Xt,).

t'=1 v=1Llt"=r

13.7.1. Gated Recurrent Units (GRU). In gated recurrent units (GRUs), we
set the observer map to the identity (Z" = Y;) and formally make Z;" a convex
combination of Z;" ; and the effect of the input. In particular, we write

Y, =a(X) QY +(1-alX)) O foru(Xs, Y1)
In Figure we present schematically a GRU architecture.
A typical realization of the GRU architecture amounts to setting
a(X;) =S (wx, + BW),
foru(X1, Y1) = tanh (WX, + WOS(WWX, + BW)Y,_, + B@),
resulting in the architecture
Y, =S(WWx, + BO) o Y,_, + (1 - S(WX, + BW))
© tanh (WX, + WS (WWX, + BW)Y,_, + BY).
Motivated by the analysis before, we see that if S (WX, + BV) ~ 1, then
Y~ Y1,
and we have strong memory. On the other hand, if S (WX, + BD) ~ 0, then
Y, ~ tanh(WPX, + WOS(WWX, + B®)Y,_, + B@),

and the plant depends less on the prior state.
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Figure 13.6. LSTM architecture

By setting u; = o (X;), one can write the GRU architecture in the following
equivalent manner

u, = S(Wx, + BW),

v, = tanh(WPX, + W®r, @ Y,_, + B®),
r.=S(WWX, + BW),

Y =u,0Y_1+Q—-u)Ouvy,

where, 7, is called the reset gate, u, is called the update gate, and Y; is the mem-
ory. Of course, one can replace the logistic S and the tanh activation functions
by any other activation functions.

13.7.2. Long-Short-Term Memory (LSTM). Long-short-term memory net-
works, similar to ElIman networks, have a nonlinear observer function. In par-
ticular, we write

ZM = a1 (X)) © Z1%y + a4y (X)) O frstm(Xo)s
Y" = a3 (X;) tanh(Z;").
In Figure we present schematically the LSTM architecture.
A typical realization of the LSTM architecture amounts to setting
a (X)) = S(WWX, + BW),
a, (X;) = S(WPX; + B?),
frstmXy) = tanh (WX, + B®),
as (X;) = S(WWX, + BW),
resulting in the architecture
zi* = S(wX, + BO) 0 Z* | + S (WX, + B@) tanh (WX, + B®),
Y" = S(WWX, + B®)tanh(Z]").
Note that the functions «; (x) € (0,1) fori = 1, 2, 3 are all logistic functions.

As such, and similarly to the GRU case, if a; (x) =~ 0, the corresponding com-
ponent will not be present in the model, or it will be fully present if «; (x) ~ 1.

The previous way of writing the LSTM architecture gives some intuition
on the role of the different components. By setting f; = o; (X;), g = a, (X}),
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and q; = a3 (X;), one can write the basic LSTM architecture in the following
equivalent form

fi = S(WWX, + BW),
g = S(W?X, + B?),
ZM=f,0Z", +g O tanh(WOX, + B®),
q: = S(WWX, + BW),
Y," = q; © tanh(Z/"),
where f; is called the forget gate, g; is called the input gate, Z{" is the mem-
ory, and Y;™ is the hidden state (sometimes called the output). Of course, one

can replace the logistic S and the tanh activation functions by other activation
functions.

The LSTM in its most general form is written as
fi = (WX, + UOY™, + BW),
g = o (WX, + U®Y™, + B@),
r, = tanh (WX, + UPY™, + B®)),
(13.12) Z'=f0ZL +g 0Or,
q = o (WWX, + UDY™, + BW),
Y™ = q; O tanh(Z;"),
where the matrices UV, U@, U®), U® are also part of the parameter of the
model 6 that needs to be learned and o can be a generic activation function.

Also compared to the GRU architecture, the LSTM’s forget gate and input gate
are replaced by a single update gate in the GRU.

Remark 13.1. It is interesting to iterate the formula for Z" in (13.12). We
notice that we can write

2 =f0O0ZL +g0Or

(gk® 11 fé)@rk

¢=k+1

(13.13)

t
=2
k=0

t
= M, Ory,
k=0

where we have set My, = gx © H;zk +1 Jo- Formula ([3.13) shows that an
LSTM memory state models long-distance context and it can be thought of as
an (elementwise) weighted sum of a standard RNN state r,. The weights are
products of the input gate g, and every future forget gate f, for € > k + 1.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



198 13. Recurrent Neural Networks for Sequential Data

We will return to this interpretation of the LSTM in Section where we
compare the LSTM with the attention mechanism.

13.7.3. Bidirectional RNNs. In standard recurrent neural networks Z; de-
pends in a nonlinear manner on the data sequence X;, X;_;,X;_,,...,X;, but
not upon X;, 1, X;42, ..., Xr. This structure ignores potential important depen-
dencies and data for a prediction at time ¢. In order to address this point, bidi-
rectional RNNs were developed in [SP97]. In bidirectional RNNs, there are
plants flowing in forward and backward time, both contributing to the obser-
vations:

Z=fi(Zy_1,X;), t=0,1,...,T,
Zi=f- Zin X)), t=T—1T—2,...,0,
Y, =g(Z,.2,.X,), t=12,...,T.

Here, Z is called the forward internal state and Z is called the backward
internal state. Typically, Z, and Z7 are initialized to be constants.

(Truncated) backpropagation through time is typically used to train bidi-
rectional RNNs which at a high level read as follows:

« Calculate the forward in time direction Z fort=1,...,T.
« Calculate the backward in time direction Z fort=T-1,T-2,...,0.
« Calculate output layer Y; for fort = 0,1,..., T.

« In the backpropagation step we calculate the gradients with respect to
the model parameters.

Note that what makes the implementation feasible is that the forward internal
states Z and backward internal states Z are independent. The same way one
builds standard bidirectional RNNs one can also build a bidirectional GRU or
a bidirectional LSTM.

13.8. Implementation Aspects for Recurrent Neural Networks

In this section we discuss several implementation aspects of recurrent neural
networks, including the regularization method of dropout, Subsection [3.8.1,
that we explored in Chapter J; batch-normalization, Subsection [3.8.7, that
we explored in Chapter [10; as well as layer-normalization, Subsection [13.8.3,
which is similar to batch normalization but instead of normalizing per batch,
we normalize per layer.

We mention here, without going into many details, that in recent years
a number of techniques have been developed to address problems of possi-
ble saturation and vanishing grading problems associated to recurrent neural
network architectures. Non-saturating recurrent neural networks proposed
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in [CSV*19] address the saturation problem by replacing saturating gates in
LSTM or GRU models by using ReLU nonlinearities for activation functions
(as opposed for example to the standard sigmoid and tanh activation functions
used in LSTMs). Highway networks (see [SGS15] for the original paper and
[ZSKS17] for its extension to recurrent neural network structures) combine
identity functions with gates (similar to LSTMs and GRUs) and can help with
addressing the vanishing gradient problem but also successfully build networks
with many layers. Highway networks have also been successfully applied to
numerically solving partial differential equations, see for example [SS18]. We
leave further reading on non-saturating RNNs and highway networks to the
interested reader.

13.8.1. Dropout in RNNs. As we discussed in Chapter @ dropout is a regu-
larization method that is widely used in deep learning. This naturally includes
RNNs, see for instance [SSB16]. Let us recall that the memory state of a recur-
rent neural network reads as

ZM =my (X, Z";0), te{l,...Th

Recalling the dropout operator D from (P.T]), the simplest, probably, way to

use dropout is to instead consider

Zt =myz (X, D(Z1M 1) 0), tef{l,...,T},
where we recall that D(h) = h © y, where y is a Bernoulli vector with success
probability (componentwise) p € (0, 1).

As we explored in Section P.5 we would use D(Z{" ) during training and
replace that by Z[" ; ® E(y) during testing.

A further question we need to answer is whether the Bernoulli random
vector y would change with respect to ¢ or not and whether it would be the
same for all components of the memory state. This leads to the per-sequence
and the per-step sampling.

To have a concrete architecture in mind consider the LSTM architecture
(I3.17). Per-sequence sampling is when sample dropout masks are applied
once and then used in for every step in the entire sequence. Specifically, let
Y1> Y2, V3, ¥4 be independent Bernoulli vectors and consider for t = 1,..., T the
architecture

fi=o (WX, +y, 0 UWYT, + BW),
8t = U(W(Z)Xt +7, O UOY™, + B(z)),

Zr=f,0Z" +g O tanh(WOX, +y; © UPY", + B®),
q =0 (WDX, +y, 0 UMY, + BW),

Y™ = q; © tanh(Z").
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Analogously, per-step sampling amounts to consider for ¢t = 1,..., T inde-
pendent Bernoulli vectors y; ;, 72, V3, ¥4, and then consider fort = 1,...,T
the architecture

fi = O'(W(l)Xt +71: © U(l)yttf1 + B(l))
g =0 (WX, +y,, O UPY", + B?)
ZM=f,0Z" +g O tanh(WOX, + 13, © UPY™, + B®)
q =o(WHX, +y,, © UDY™, + BW)
Y" = q; © tanh(Z{").
Another possibility is to apply dropout to the update gate. Namely replace
in the classical LSTM model (13.12) the equation for the cell memory Z" by
Zr=f,0Z" +g Oy O tanh(WOX, + UPY™, + B®),
where y; for t = 1,..., T are independent Bernoulli random vectors. This for-

mulation has been shown to yield good results in practice, see [SSB16].

13.8.2. Batch-normalization in RNNs. As we have argued in Chapter [0,
batch normalization is a useful technique that is typically applied to neural
networks in order to accelerate training and improve accuracy. It is also applied
to recurrent neural networks, see [LPB*16].

Let us recall that for a minibatch D’ C D, we define (we set ¢ = 0 for
notational convenience)

1
D = X,
u(D") D xgy
! 1 !
(D) = > (x—u(D)),
D] &,
X = L(D) forx € D'.

Then for parameters 6@ = (w, b) and for p = (u(D"), o%(D")) let
T,(x,0®) = wx + b.
In a recurrent neural network one can set
Z!" = o (T, (WX, + UZ" | + B,6),),
or
Z!" = o (T,(WX,,6®) + UZ | + B),
while there is some empirical evidence that the latter works better in practice,

see [LPB*16].
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When applied to LSTM for example, the resulting architecture becomes
ft = O-(T;')(W(I)Xt’ 9(2)) + U(I)Ytnll + B(l)) ,
g = g(]’l')(W(z)Xt, 9(2)) + U(Z)thﬁl + B(Z)) ,
Z8' =, © Z" ) + g O tanh(T,(W®X,,6@) + UOY™, + BO),
q; = o (,(WWX,,69) + 74, © UYY, +BW),
Y™ = q; © tanh(Z[").
Notice that in the architecture above the normalization parameters 6 and
the normalization statistics are shared across times ¢. If we wanted to have dif-
ferent normalization statistics for each time ¢, then it would be challenging

to address datasets with variable length sequences. This issue is partially ad-
dressed by the method of layer-normalization discussed in Section [3.8.3.

13.8.3. Layer-normalization in RNNs. As hinted in the end of Section
[[3.8.2, one of the advantages of layer-normalization is that it is easy to apply in
datasets with variable length sequences, see [BKH16].

In contrast to batch normalization, in layer normalization the mean and
variance used for normalization is computed from all of the summed inputs to
the neurons in a given layer during a single training case. In particular, let the
hidden layer at time ¢ be

O(t = WXt + UZ;“_I,

and let the ith-hidden unit be a;, with H the total number of hidden units.
Then, to perform layer normalization in recurrent neural networks we replace
Z;" by

w
zZ =0<_®(‘xt_#t)+3>’
Ot

1 H
qH Z Aits
i=1

71 H 2
o = E;(ai,t —#t) )

where W is an additional parameter.

Apart from the easiness in implementation, layer normalization is invari-
ant to rescalings of the input X; and Z" ;. This would typically result in more
stable internal state dynamics and can be useful for out-of-sample data with
different lengths.

Let us conclude this subsection by demonstrating the claimed invariance.
Let ¢ be a scalar and let us set Xt = {X, and Zt 1 = ¢Z" . Then, define ocg,
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/,Lf, and af analogously to «;, y;, and o, with (Xf , Zf’_"f) replacing (X;, Z" ;). A

simple calculation shows that
Ui = ¢, and of = ¢,

Hence, we directly get that

w
Ze" = o(—g o (af —u5>+B)
O¢

w

= O'<— Q(at—/it)"‘B)
Ot

:Z;“,

proving the invariance claim.

13.9. Attention Mechanism and Transformers

So far in this chapter we have studied the basic recurrent neural network and
its more advanced architectures, such as GRU and LSTM. Recurrent neural
networks are designed to model sequential data, that may be time series data
(e.g., energy prices), language translation, music composition, etc.

When it comes to certain applications though, such as language models,
the basic RNN has certain shortcomings. The next hidden state Z; is a function
of the previous hidden state Z;_; and the input for the current position X;. In
the context of language models, the current position amounts to the current
word in the text. That way the network learns to use information from previous
words in the sequence. However, due to the way that the basic RNN is built, the
effect of previous words goes down as we move within the text in the forward
direction. We saw a glimpse of this in the stability analysis of Section [[3.6.
However, language is more complicated. Specific words in the early part of the
text can be very meaningful for understanding the context of later parts of the
text.

This issue is alleviated to some extent with the use of more advanced RNN
architectures such as GRU or LSTM. As we saw in Section [[3.7, a GRU or LSTM
neural network introduces additional memory cell states. The gates control the
influence of the memory cells through the parameters that are being learned
via some version of SGD.

However, as with the basic RNN, GRU, and LSTM, we face the issue of
processing the data in a purely sequential manner. In order to apply the neural
network on a new word vector X; (typically given as a vector that appropriately
maps the alphabet), we also need to know the effect of the network on the
previous word vector X;_;. That aspect hinders the ability to parallelize. This
shortcoming becomes more evident in longer sequence lengths due to memory
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constraints across examples. We would like to not have to do things sequen-
tially (to an extent mimicking how actual language works) and to be able to
stack word vectors in a matrix and apply the appropriate neural network to the
whole matrix at once.

Essentially, we would like our model to be able to pay attention to words
that have appeared much earlier in the sequence (e.g., text). Some advances
in that direction were made in the mid-2010s with the concept of the atten-
tion mechanism, but the real breakthrough came with the paper [VSP*17],
where the authors recognized that the attention mechanism, if done correctly,
does not need to be embedded in a recurrent neural network structure, and
they proposed the transformer architecture which is a combination of atten-
tion mechanism and standard feed forward neural networks, Chapter B, and
layer normalization, Section [[3.8.3.

The goal of this section to present the basic architecture and compare it
with recurrent neural networks. In Section we discuss the building block
of the transformer architecture, which is the self-attention/attention mecha-
nism. In Section we present the basic transformer architecture. In Sec-
tion we discuss how the architectures of transformer and LSTM compare
with each other.

13.9.1. Self-Attention/Attention Mechanism. A central component of the
transformer architecture that we will present in Section is the self-atten-
tion layer that we study in this section.

For the discussion that follows it will be useful to have language as an ap-
plication domain of interest. The framework is more generically applicable,
but having a concrete application domain will ease the presentation.

Consider a sequence of input word vectors X;,...,Xx, € R% Oftentimes
in the literature, an element x; of the sequence {X;};cq1, .. n is called a token
and the whole sequence {X;}ie(1,.. .y s called a prompt. Tokenization refers
to the process of obtaining a sequence of tokens, and embedding is the vector
representation of a token.

Let X be the matrix with rows Xy, ..., x,,. This means that X € R"*q,

Consider now three matrices to be learned through training, W, , € RA*dk,
Wik € R>% W, , € R4, Here h = 1,...,H is the hth attention layer or
head.

Let us then set
Qn(X) =XWp g, Kp(X) =XWyi, Vi(x) = XWp,.

These linear operations correspond to queries, keys, and values, respec-
tively. The idea for these names is that a word-vector x; has a query that will
be tested with the key word-vector x;. If they are compatible, then their inner
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product would be large, in which case we look up the value of x;. As such, the
matrices Wy, g, Wi, ., Wy, , are called query, key, and value, respectively.

Next, we define the matrix Ay, = [ap;;]} j=1 Where aj, ;; are computed as a
softmax function applied to the rows of a matrix-matrix product

QXK (X)) .
Ve

We recall that the output of a softmax function can be interpreted as prob-
abilities. Let us now decipher what it means to apply the softmax function to
a matrix. If, with some abuse of notation, we write

Ap = Ssoftmax (

(13.14) Qn(x) = xiWh g,  Kn(x) = xiWh o Vi(xi) = ;Wi ps

then Ap = [ah,,-j]”

i.j=1 Where ay ;;

Qp(x),Kp (x)
J

<Qh<xi>,1<h(xj>>,i) e T

(13.15) Apij = Ssoftmax(

\ /dk (Qp(x)),Ky, (xm)) ’
Zmzl e ﬁ
The scaling by — is to avoid numerical overflow. The elements of the

matrix A, ayp,;j, are called self-attention weights and control how much x; at-
tends to x;. Then, with W}, , € R%xd another matrix whose elements are to
be learned through training, we define

H n
(13.16) zi= ) Wiy D aniVu(xp), i=1,....n
=1 ji=1

In the last display we sum up the value of each word-vector x;, i.e., V;(x;),
in a way that is proportional to the compatibility of x; and x; via ap;;. Since
we are interested in how much each element of the matrix X attends to each
other, we call this the self-attention mechanism. We do this for all heads h =

., H to get the multihead self-attention z; for i = 1, ..., n. This process can
be parallelized. Equations ([[3.14)-(13.16) refer to the multihead self-attention
block. In Figures and we present schematic representations of the
self-attention block (or mechanism) and of the multihead self-attention block,
respectively.

One interesting property of the self-attention block is that it is permutation
equivariant. Let us first define what this is.

Definition 13.2. Let X € R™ be a given matrix. Let 7 be the permutation
operator of n objects and the permutation matrix associated with 7, L(r) =
(r,>---»€x,) € R™", where e, are one-hot vectors whose 7; element is 1 and
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Self-attention block

A

Matrix multiplication

A

Softmax operation
Matrix muttiplication and normalization

A

e
J L L

Figure 13.7. A schematic representation of a self-attention block
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{ Ny

Multi-head self-attention
block

1

4 N

Linear transformation

A

Combined into a single
matrix

1
I I

Self-Attention Self-Attention Self-Attention
1 2 H

1 T T

Figure 13.8. A schematic representation of a multihead self-attention block

the rest of the elements are 0. We will call the transformation M(X; ) = L(7r)X
a permutation of X.

Definition 13.3. An operator 2 : R™? - R"™ ig called permutation equi-
variant if for any X € R and for M(X; ) = L(7)X a permutation operator,

) Toxey )" : .
we have Z(M(X; 7)) = [M (27(X); )] . The operator Z is called permutation
invariant if for any X € R™4, Z(M(X; 1)) = 2(X).

We will now show that the self-attention block operator is permutation
equivariant. Consider for simplicity and without loss of generality the single-

head attention, i.e., the case of H = h = 1, and set
-
X%%f)
Vi

Z(X) = W)T(W))TXTSsoftmax(

Then, we have the following lemma.
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Lemma 13.4. We have that the self-attention block operator Z is permutation
equivariant.

Proof. We observe that

Z(M(X; 7))

(MX; )W W (M(X; ﬂ))T)

Va

= %T(%)T(M(X; ﬂ))TSsoftmax (

L(m)XW, W,/ XTL(m)"
= %T(%)TXTL(ﬂ)TSsoftmax< q\/d—
k
T Ty T T XI/un/kTXT T
=W, (VVU) X L(?T) L(n)ssoftmax T L(ﬂ)
k
XW, W,/ xT
= W, (W) "X Ssoftmax (Q—)L(nf
Vd

= [M(2T(X);7)]"

To derive this, we used the fact that for the orthogonal matrix, L(7r) we have
that L(7r) "L(r) = I and that for a given matrix A, we have

Ssoftmax (L(”)AL(”)T) = L(7)Ssoftmax (A)L(”)T . U

Lemma says something important. It suggests that the order in which
we consider the input affects the output in the same way; for example the pre-
dictions change direction if we change the direction of the input. Said other-
wise, the output is permuted the same way as the input is permuted.

In Exercise we will see that in the attention-block case (not self-atten-
tion) the property of permutation invariance is true. The difference between
attention and self-attention is that in the former we have the query Q,(X) =
Wh,q instead of Qp(X) = XW,, 4;i.e., the query does not depend on the input X,
or said otherwise it is the same for all input instances.

13.9.2. Transformer architecture. The transformer architecture is com-
posed by transformer blocks. A transformer block gets an input X € R™¢
and transforms it to another object, say Y € R™<,

Before we give the definition of a transformer block, we recall the layer
normalization (LN) operation from Section [[3.8.3. For a vector x € R? and for
vectors w, b € RY, we define the layer normalization as in Section

LN(x: (w, ) = — © (x = ) + b,
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|Transformer block]

1

Layer
normalization

Layer Neural Network
normalization transformation
}
Multi-head
[ X self-attention
block

Figure 13.9. A schematic representation of a transformer block

where the vectors w, b are to be learned during the training process. For fixed
w, b, one can think of the layer normalization here as a constraint on x being
on an ellipsoid.

Now we are in position to give the definition of the basic transformer block.
Let {X;}icq1,... ) be an input sequence and let z; be the multihead self-attention
block from ([[3.16). The basic transformer block is given by

Z; = LN(x; + z;; (wy, by)),
9i = Wi'ReLU(W; 2, + B,)
(13.17) y; = LN(Y; + 255 (w4, by)), i=1,...,10,

where W, € R4, W, € R4>9 are matrices and wy, w,, by, b,, by are vectors.
In fact the parameter to be learned during the training phase is

0 = (w1, Wy, by, by, by, Wa, W, {(Wh,q» Wi ks Who Who) h = 1,..., H}).

So, in the end, we have obtained the model for the transformer block Y =

m(X; 0). In Figure we present a schematic representation of a transformer
block.

A transformer is then a combination of transformer blocks. Different ap-
plications may use different variations of combinations of transformer blocks.

Remark 13.5. Note also that the model is flexible enough to accommodate
different kind of neural network architectures. For example, referring back to
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13.9. Attention Mechanism and Transformers 209

(L3.17) one can generally set
Vi =m(zy),
where m is any kind of deep neural network architecture that takes Z; as its

input, and not necessarily the shallow neural network with ReLU activation
function that was considered in (L3.17).

In [VSP*17] the problem of machine translation was studied and an enco-
der-decoder combination was used to define the transformer architecture. The
definition of the transformer block for an encoder is ([[3.16) with the attention
mechanism ([[3.13). For a decoder, the definition is slightly different and is
based on what is called a masked multihead self-attention. In particular, in

that case we still have ([3.16), but with (13.15) replaced by

exp( <Qh(Xi),Kh(xj)>>

Jax

, forj<i,
R i Qp (x),Kp, (xm) -
(13.18) apij =13 exl{%)
0, otherwise.
Note that in an encoder, the output z; sees the whole sequence Xy, ..., X,.
On the other hand, in a decoder, the output z; sees only x, ..., x; and it does

not see Xy41,...,Xy.

As a concrete example of a transformer let us describe the one presented
in [VSP*17]. This architecture is composed by an encoder, a decoder and po-
sitional encoding. The encoder is a composition of L transformer blocks, each
one with each own parameters, i.e., the output of the encoder is

m(-;0;) 0 ---om(-;6;) € R™4,

The decoder is again a composition of L transformer blocks, each one with
its own parameters. However, one difference with the encoder is that we mod-
ify the transformer block as follows. After we have computed the 2; in (I3.17),
we then apply a masked multihead self-attention mechanism as in ([[3.1§). The
output of this operation then goes through a layer normalization and then we
proceed as in ([[3.17), with a feed forward neural network followed by a subse-
quent layer normalization.

Lastly, we discuss what position encoding refers to. We note that up to now
in our description, the relative order of the word-vectors x; in a sentence did not
play any role. It would be good for the model though to have some information
on the relative positions of the words in the sentence. To achieve this, we add
positional encoding to all inputs before feeding the encoder or the decoder with
the information. Consider a sequence x; € R, i e {1,...,n}, of word embed-
dings and let q; € R? be the positional encoding of the x; word embedding for
i € {1,...,n}. While there are many different choices of position encoding in
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the literature (see for instance [VSP*17, GAG*17]), in [VSP*17] the authors
used the sinusoidal position encoding g € R™¢ where

. i
ql(Zk) = Sln(W)
with k € {1,...,d/2 — 1} and then transform the data to

i
and q;(2k + 1) = COS<W>,

X = FeedForward (x) + q.

Then % is input to the initial stage of the encoder and decoder, i.e., at time
zero of the algorithm. We lastly mention that in the original [VSP*17] paper,
L=6,H =8,d; =64,d = 512, and d; = 2048 for the inner feed forward layer
of (13.17). Another way to do positional encoding is to let g; to be some ran-
dom vector (random positional encoding) or a transformation that is learned
through training.

13.9.3. Comparison of Transformer and LSTM. In this section we com-
pare the attention mechanism (consequently the Transformer architecture) to
the LSTM of Section [[3.7. Let us recall the recursive formula for the memory
state of LSTM ([[3.13).

Let us focus the discussion within the context of language models.

« The attention weights aj, ;; are computed for all i, j = 1,...,n. In the
LSTM network the weights M, are computed only for k < t. This
means that in the LSTM network an item of length ¢ only attends to
items of length k < ¢ and not to longer sequences.

« The recursive formula for the memory state of LSTM, (13.13), indeed
shows that an LSTM tends to give more weight to recent words be-
cause the weights decay over time. Indeed, if the forget gate f, < 1
for all ¢ < t, then My, ; < My, , for k; < k,. This is one difference
with the attention mechanism of Section [[3.9. The attention mecha-
nism attends equally well to all items.

« Attention has a probabilistic interpretation through the softmax func-
tion, which gives probabilities of how much a given word attends to
another word. In contrast, in LSTM the weights in the formula ([3.13)
may grow up to the length of the sequence.

The observations above suggest that the attention mechanism may have
certain advantages in tasks such as text and language models over recurrent
architectures like the LSTM. Indeed, in recent years variants of the transformer
architecture have enjoyed many successes in large language models. For this
purpose, bidirectional LSTMs have also been used in large language models,
defined analogously to the bidirectional RNN structure of Section [3.7; two
LSTMs are considered, one moving in the forward direction in text and the
other one moving in the backward direction in text, effectively increasing the
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amount of information available to the network. We note that the attention
mechanism can also be considered in conjunction with LSTMs where a given
input datapoint is first processed by an LSTM before being fed into the attention
mechanism.

Even though transformers are indeed very effective in handling long-range
dependencies in data, they are also very costly in terms of memory usage and
computational resources. Typically, transformers need more memory and com-
putation power when compared to RNN based architectures, which stems from
the fact that they extensively use the self-attention mechanism. Despite atten-
tion-based models and transformer architectures having advantages, RNNs and
the related advanced architectures like GRU, LSTM, and bidirectional RNNs
are a very powerful class of models for time-series data and generally sequen-
tial data analysis.

13.10. Brief Concluding Remarks

In this chapter we studied recurrent neural networks and transformers that are
widely used to model time series and sequential data.

The attention mechanism was popularized with the paper [VSP*17],
and since then, modifications of the basic Transformer architecture have
found many applications in music generation [HVU*19], image generation
[PVU*18], and more. Both LSTM based recurrent neural networks and var-
ious variants of the transformer architecture have found many applications
in large language models, see for example [DCLT19, RNSS18, RWC*19],and
[BMR*120]. LSTM such as recurrent neural network architectures have also
found applications in solution of high-dimensional partial differential equa-
tions, see for example [SS18]. [LLFZ18] includes a discussion on the analogy
between LSTM and the transformer’s attention weights.

In Chapter 14, we study convolution neural networks that are widely used
in image recognition problems.

13.11. Exercises

Exercise 13.1. Consider the one-dimensional dynamical system with system
updates Z,, = f(Z,_,,0). For the following choices for f, find the hidden state
of the system in the long run, lim,,_, Z,.

(1) f(z,0) = tanh(6z) with |0] < 1.
(2) f(z,0) = o(B - z), where o is the logistic function.
3) f(z,0) =sin(8 - 2).

Exercise 13.2. In the context of Section prove that tBPTT based SGD is a
biased algorithm.
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Exercise 13.3. Fill in the missing details in the chain rule derivations in Sec-
tion together with the details of the resulting backpropagation algorithm.

Exercise 13.4. Consider the recurrent neural network

Hy = wyH; 4
Zy = wHy,
with initial condition H_; = 1. Provide formulas for
(1) Zs,
623
o7
3 22,

in terms of wy, and w,.
Exercise 13.5. Consider the single layer recurrent neural network
H; = tanh (wy,H;_; + wjX; + by)
H_; = h,.
Compute the partial derivative Z—Z fort €{1,2,...}.

Exercise 13.6. Consider a simple RNN with parameters 6 = (a, b, c) € R3:
Zt+1 = aO'(bZt + CXt)

where o(z) = 1— Suppose that initially a = b = -. What s 67 where T >
t? What happens when T — oo and why is this an example of the vanishing
gradient problem?

Exercise 13.7. Prove that for a permutation matrix L(7r) as in Definition
and A € R™" a matrix, we have

Ssoftmax(L(MAL(7)T) = L(7)Ssoftmax(A)L(T)".
Exercise 13.8. Consider the attention block operator
XWeW! )
NER .

Prove that it is permutation invariant. Why is the permutation invariance prop-
erty useful for image classification problems?

Z(X) = %T(%)TXTSsoftmax (
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Chapter 14

Convolution Neural
Networks

14.1. Introduction

Is there an umbrella in Figure [4.1? You have probably seen enough umbrellas
enough times to be able to recognize one! When you look at Figure [[4.1], you
scan over it and try to find a part of the image that matches the pattern you
have in your mind for the umbrella.

Let’s see if we can understand a deep learning approach to this. We start
with a lot of training images, some of which contain (label 1) an umbrella, and
others of which don’t (label 0). We want to build a pattern representing the
umbrella, and move this pattern around to see if we get a match.

Although two-dimensional images are the common application of convolu-
tion neural networks (CNN), we shall develop the ideas within the framework
of one-dimensional signals. Almost all of the ideas can be developed, and the
notation is simpler.

We begin in Section with the simpler task of detecting a known ref-
erence signal. In Section we elaborate what to do when we do not really
know the reference signal. Auxiliary topics like stride and channels are pre-
sented in Section [[4.4. Then, in Sections and we discuss details on
the implementation of stochastic gradient descent for the case of single and
multiple channels, respectively.

213
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Figure 14.1. Sample image of an umbrella (photograph by the second author)

14.2. Detection of Known Signal

Let’s start by trying to detect a known reference signal R = (Rn)ﬁégl of Figure
(where N’ = 7) in alarger observed signal of X = (X,,)Y=4 (where N = 25).

See Figure [[4.3.

R

. n
> 0 4.0
j 1 45
. 2 50
1 3 5.5
0 0 1 2 3 4 5 6 4 60
n 5 6.0
6 6.0

Figure 14.2. Reference signal R
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8

61

4

Mt

27 5 10 15 20I 25
n

X I R

Figure 14.3. Typical observed signal X. The reference signal R starts at 7.

Let’s think of this in feature-label space.

« Feature space will be RN (i.e., R?); each element of feature space will
be a signal of length 25.

« Label space will be {0, 1}
- label 1 will correspond to R being present somewhere in the sig-
nal
- label 0 will correspond to absence of R in the signal

Convolution allows us to efficiently search for the presence of the reference
signal at all starting points. In our introductory two-dimensional example of
Figure [[4.1, convolution would have allowed us to search for all positions of
the umbrella in two dimensions.

Let’s formalize things a bit more by considering some ground-truth training
data; more specifically, ten feature-label pairs as in Figure [[4.4. The reference
signal, R, when present, has been corrupted by noise. The reference signal can
also start anywhere. For simplicity we will restrict the start n of the signal so
thatn + (N’ — 1) < (N —1);i.e,, n < 24 — 6 = 18, so that the entire signal is
either present or not in the observation.
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Training Data X"
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Figure 14.4. ground-truth training data on observed and reference signals,
X and R, respectively
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A somewhat natural way to try to find the reference signal is to compute
correlations. For an observed signal X € R?*, define the Pearson correlation
(for the specific signal at hand)

On(X)
6

d:ef % Zn/:() {Rn’ - (% ZZ’:O Rn’)} {Xn+n’ - (% ZZ/:erHn’)}
N R i [N R
6 1

% Zfﬂ:o Rn’Xn+n’ - (% En/:() Rn’) (; ZZ/:oXn+n’)
2

1 6 2 1 6 1 6 2 1 6
\/; an:o Rn’ - (; anzo Rn’) \/; Zn/:()Xn+n’ - (; Zn/:()Xan’)
between (R,1)S/_, and (X, /)8 _o. If there were no noise, then £,(X) = 1 if

Xwin = Ry forn” € {0,1,2,...,6}. We note, however, that the reverse is not
true; if €, = 1, we only know that there are a > 0 and b € R such that

Xpsw =aRy +b,  n' €{0,1,2,...,6}

(i.e., (Rp)S _o and (X,,10)% _, are colinear). See Figure [4.3. We do indeed
see that

2

2

2(X) £ max{6,(X) : n € {0,1,...,18}
tends to be large when the signal is present and small when it isn’t. We might
try to detect R in a signal X by selecting a threshold ¢ and declaring

« Ris present if Z(X) > ¢
« Risabsent if £(X) < .

_In other words, we can think of detecting R by applying logistic regression
to £(X). This is an example of feature engineering.
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Let’s rewrite the correlation coefficient;
(14-1) 14011(X) = wn(X)(R * X)n - bn(X)’
where

wn(X)

| =

5

def 7
2 2
1«6 5 1«6 1«6 5 1«6
ViZook = ( TV Zh i (LT o)
by(X)

d=ef (% nyzo Rn’)(% ZifzerHn’)
\/% Zi’:o R%’ - (% ZZ':O Rn’)z\/% Zifzo X1’21+}’l’ - (% nyzo Xn+n’)
and

>

2

6
def
R*X), = > RyXpin

n’'=0

Instead of trying to detect R in X by using the engineered feature £(X),
(4.7 suggests that we might instead try to detect R in X by applying logistic
regression to the engineered feature (the correlation)

max{(RxX), : n€{0,1,...,18}}.
Namely, let’s consider training a model
m(X, 0) o S (w max(R x X),, + b)
n

(where, as usual, S is the logistic function) for the probability that the reference
signal is present (and then voting to decide the label 1 or 0). As usual with

logistic regression,
w
o~ (%)

D c R® x{0,1}

The training data is

and per-datapoint losses are

(14.2) Mm%@:g&s@mng*xh+b», a:@QERa

where, as in (B.7),

) def y 1-y
4 =yln=+1-y)ln .
yO) =y % 1=y 1=y
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As usual, the average loss is then

def 1
(14.3) AB) = ] Z Ax,)(6)s 0= ('g) € R2.
X,y)eD

Several side issues are worth some attention. Firstly, we have restricted
the starting point of the signal R, if present, to be such that the entirety of the
signal is present (i.e., n < 18). We can easily extend (R % X),, to other n by
zero-padding; for any n € Z, we can define

6
def
(R*X)n = Z Rn’Xn+n’1{05n+n'§24}-

n’'=0
Secondly, the correlation (R % X) can be rewritten as
(144)
N'—1 0 n+N'-1
(R*X)n = Z Rn’Xn+n’ = Z R_m/Xn_m/ = Z Rm//_nXmH
n'=0 m'=—N'+1 m''=n
= Z Km/Xn_mr = Z Kn_merm//
m'ezZ m''ez
with

R_, if0o<-m<N -1

Kp =
0 else.

The last expression in (14.4) is the convolution of X with (K;,)mez-

Let’s think through how we might minimize the average loss A of ([4.3).
Reusing a number of calculations from Chapter B, we can compute the gradient
of A with respect to the vector 6;

(14.5) VA(X,y)(e) = (€y 0S) (w m,?X(R *X), + b) (maxn(If * X)n) )

14.3. Detection of Unknown Signal

Of course, in reality, we don’t know the reference signal R. Thinking back to
Figure [[4.1], we mentally have built a reference signal from experience. In other
words, we can think of R as part of the parameter vector.

Let’s work through this. Let’s modify (I4.2) to include r = (,)N_5! as a
parameter. Define

Ax,y)(6) =6, (S (w max(r * X),, + b>>, o= * |erN'+2
n
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The derivatives of A(x , of ([4.5) with respect to w and b are given in (14.5).
To fully implement gradient descent, we need to work through the derivatives
of max,,(r x X),, with respect to the r,’s.

Let’s first of all understand derivatives of the maxpool function
M (X1, X3, X3) < max{x;, X5, X3}, (X1, X2, X3) € R3,
For specificity, let’s take the derivatives at (x;, x,, X3) = (-1, 5,7). Explic-
itly,
M(-1,5,7) =7
and
argmax(—1,5,7) = 3,
i.e., x3 > max{x,, x,}. For small ¢,
M(-1+¢,5,7) =7,
M(—-1,5+¢7) =7,
M(-1,5,7+¢)=7+c¢,

implying that
oM
a—xl(—l, 5,7)=0,
oM
a—xz(—l, 5,7) =0,
oM

a_x:;(_l’ 5, 7) =1.

More generally,

oM
0x,

1 ifn=argmax(x)

argmax(x)(n)-

(X1, %2, X3) = {0 if n # argmax(x) B

The gradient of M is of course not defined at places where argmax is not
unique:
7+¢ ife>0

M(-1,7,7+¢) = .
7 ife<o0

9 v s . . . L

o) a—M(—l, 7,7) doesn’t exist. Generically, a floating point computation is un-
X3

likely to encounter such a case.

Secondly, let’s compute derivatives of the correlation operator. For r,

N'-1
def
(r*X), = Z TwXnen = 10Xn + 1Xpi1 - TN 1 Xny N1

n’'=0
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Thus
d(rxX)
ary = X
o
a(r x X),,
a—rl = An+1
o(r x X),
Tn’ =Antn-
Let’s collect things together. We have
9 (x,y)
T e
X9 r
e © M)
VA, (6) = | o1exy) ©|= G oS mMExX) +b)f e
S Y or
f—w;(e) M(r % X)
Mxy) 1
5 ©)
for
Yo
r
o=| * |erN+2
N1
w
b
Explicitly,
OM(r*xX) aM(r*X)a(r*X)n
ar, A ox, ar,
_ a(r * X)argmax(r*x) _
- 51’0 — Aargmax (rxX)
OM(r*xX) aM(r*X)a(r*X)n
or A ox, or
_ a(r * X)argmax(r*x) - X
- arl — Aargmax (rxX)+1
OM(r*X) oM o(r x X),
or, A oxy (r *X) or,
a(r * X)argmax(r*X)
= ar = Xargmax(r*X)+n-
n
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Combining things together,

(14.6)
a’l(X,y) (e)
or
6/1(,3},) ( e) anrgmax (rxX)
arl. wxargmax (rxX)+1

VA 0) = a,1X: =6, 0S) (WMTxxX)+b .
(X,y)( ) ﬁ,y)(e) ( y ) ( ( ) ) LUXargmax(r*X)+N’—1
N’/-1

3 x.y) ©) M(r 1* X)
af(’;(ljy)
pranl C)

We can in fact easily interpret (I4.6). Gradient descent for CNN tries to
change reference patterns by the subpattern in the observations which is most
likely the current estimate of the reference pattern. Of course, then this algo-
rithm may lock onto the wrong pattern if the argmax is wrong.

CNNs are trying to do two things at once:

« Find the pattern of interest (add randomness to avoid locking into the
wrong pattern).

« Find the map from observations to the label.

Note that it is reasonable to expect that longer patterns in shorter observa-
tions are typically better, because it is then easier to find the pattern of interest.

14.4. Auxiliary Thoughts

14.4.1. RelLU. Since in fact we are only interested in positive correlations, we
might add a ReLU function (see Figure [[4.6) after the convolution, but before
the maxpool;

M(ReLU(r x X)).

The network will only act on parts of X which have positive correlation with
r (but will get stuck if all correlations are negative; we want enough random-
ness in training to avoid that).

14.4.2. Stride. Returning to Section [[4.2, if the reference signal R is (known
to be) continuous; R % X should also be continuous. In the case of Figure 14.3,
the explicit formula for R was

R, =6+ %min{n—4,0}, neiol,...,6}
implying that

1
|Rn1—Rn2|§§|n1—n2, n,n, €{0,1,...,6}.
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3.0+
2.5+
2.0+
1.5+
1.0+
0.5+

0.0+

Figure 14.6. RelLU function

For any n; and n, in Z, we then have that

(R* X)nl —(Rx X)n2 = Z Ry X, 4nr — Z Ry X, n

n'ez n'

= > Ricn Xk — D Rimn, X
kez kez

= 2 {Rkon, = Ric_n, } X
kez

and thus

I(R*X)nl - (R*X)n2| < %lnl - I’l2| {; |Xk|}

If R % X is sufficiently continuous, we might be able to approximate

max(R x X), and argmax, (R x X),
n

with (stride = 2 for example)

max (R *x X), and argmax
neven

n even(R * X)”

Effectively, the stride parameter determines how many steps the calcula-
tion in the convolution operation shifts. For example, in the discussion above
we took the stride to be equal to 2. A stride of 2 means that at each step there
is a shift by two units (this could be a shift by two pixels if the object of study
is an image for example) in the calculation of the convolution operation. To
compare, a stride of 1 would mean that at each time step there is a shift by one
unit.

We define multilayer convolution networks with arbitrary values for stride
later on, in Section [[4.7. The stride parameter is another hyperparameter that
the user is choosing and can affect the performance of the algorithm. Generally
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channel 0 channel1

61 n
Al 0 4.0 1
1 4.5 3
2 2 5.0 5
3 5.5 7
S R S B 4 6.0 7
B channel 0 EEN channel 1 5 60 7
6 6.0 7

Figure 14.7. Reference signal with two channels

speaking, longer strides decrease computational time because they involve a
smaller output dimension, but may also decrease accuracy.

Lastly, we mention that, in practice, we do not know R, and we need to
adaptively find it, i.e., set r in place of R as was done in Section [[4.3.

14.4.3. Channels. In practice, there may be several (i.e., K) channels (pat-
terns) corresponding to the desired label;
« red, green, blue in images.

« voice ranges: bass, baritone, tenor, alto, mezzo-soprano, and soprano.

An example with K = 2 channels is in Figure [[4.7.

Denoting the channels of pattern as (r(k))lk(=1 and observation as (X(k))lk{:l,
we can construct the correlations

N'-1
(1’ * X)k,n = Z rk,an-
n=0

For each channel n € Nand k € {1,2,...,K}, where r®) = (rk,n)’,fégl and
XK = (Xk.n)nen- The argmax

argmax, Z |(r % X)
1<k<K
will find the index n € N at which the channel-averaged cross-correlation
1
X Z |(xr % Xy

1<k<K

is maximum. The setting of multiple channels in convolution neural networks
will be studied in more detail in Section [[4.6.
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14.5. SGD for Convolution Neural Networks with a Single
Channel

We now generalize the motivational examples and setting studied in the previ-
ous sections. We investigate how stochastic gradient descent looks for a convo-
lution neural network with a single hidden layer in a multidimensional setting.
Let the input image be X € R%4 and an unknown signal (often also called fil-
ter) r € R**Kx. Convolutions will be taken with a stride of s = 1 and there
will only be a single channel. Generalizations to the case of stride size s > 1,
multiple channels, and multiple hidden layers will be considered later. We also
do not include the bias term, to further simplify calculations.

We define a convolution of the matrix X with the filter r as the mapr X :
REy<k: 5 pdxd _, pld=—ky+Dx(d=k:+1) where

ky_l kx—l
(r*x)i,q = Z Z rm,nXi+m,q+n'

m=0 n=0

The hidden layer applies an elementwise nonlinearity o : R — R to each
element of the matrix r * X. We define the variable Z € R(¢-ky+Dx(d=ke+1)
and the hidden layer H € R(@-ky+Dx(d=kx+1) where

Hi,q = o-((Z)i,q)’
Z=r*xX.

Y is the label for the image X and takes values in the set Y = {0, 1,...,J—1}.
The output of the network is simply the softmax function applied to a linear
function of the hidden layer H:

m(x; 6) = Ssoftmax(U)s
Uy =W H+b;
where W € R/(@-ky+Dx(d-ke+D) 'p e R/ U € R/, and
Wi - H= Z WjiqHig-
iq
Recall that the : notation in the place of an index signals summation with re-
spect to that index.

The collection of parameters is 6 = {r, W, b}. The cross-entropy error for a
single data sample (X, Y) is

¢ 1= ¢y(m(X;0)) = —log (my(X; 6)).

In order to implement the stochastic gradient descent algorithm, we must
calculate Vg¢. We will next derive the backpropagation rule for single-layer
convolution networks.
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First, define

J-1
o¢ o¢ o¢
5. =2 = —Wiig=== W g
L,q aHi,q ! an Jba U L,q
Recall that
o¢
w = —(e(Y) - m(X, 9)),
e(y) = (1y=0, ey 1y=J—1)'
This of course immediately yields
o¢ o¢
— = —_—H,
3W,...  aU,
6e _o¢
db U’
We must next derive the gradient with respect to the filter r. By the chain
rule,
d—ky, d—
60 _§'S 5 OHmn
ari’q m=0 n=0 m,n al’i,q
d_ky d—kx
= Z Z 5m,nOJ(Zm,n)Xi+m,q+n
m=0 n=0

= Xisi+d—ky.q:q+d—k, - (0'(2) @ 8),

where, with a slight abuse of notation, ¢’(Z) is the elementwise application of
the nonlinearity o(:), i.e.

' (Zo,0) o' (Zoy) .- d'(Zoa-k,)
o'z az "(Z14-
o'(Z) = (:1,0) (:1,1) : a'( 1;d kx)
' (Za-k,0) ' (Za—k,1) - (Za—ky,d-k,)

In particular, we have that

d—ky d—k, o¢
(x(0@09) =3 3 DO, Kumaen = 1
Lg  m=0 n=0 b4

Therefore, from the definition of a convolution,

o¢ ,
3 =X % (d'(Z2) @ 6).
This is a very nice result since the gradient with respect to the parameters
also involves a convolution. That is, both the backward and forward steps in

the backpropagation algorithm can be written in terms of a convolution.
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Collecting our results, the stochastic gradient descent algorithm for updat-
ing O is:
« Randomly select a new data sample (X, Y).
« Compute the forward step (Z,H, U, ¢).

« Calculate the partial derivatives (;—Z, 0, z—g).
iy
« Update the parameters 6 = {r, W, b} with a stochastic gradient descent

step:
o0¢
biy1 = b — Ui

¢
H, j=0,...,J,

0

Wi i =W 0 — 1t
sk 1 Frk — ke

3,

Tyl =T — Uk(X *x (d'(2) © 5))

where 7, is the learning rate used at iteration k.

14.6. On Convolution Neural Networks with Multiple Channels

Now we study convolution neural networks with multiple channels, and for
now we focus on the single layer case. The hidden layer now contains K feature
maps. The number of feature maps K is often called the number of channels.
By having multiple feature maps (instead of a single feature map), the network
will be able to represent more complex relationships in the data.

The feature maps for the hidden layer are represented by a variable H €
R—ky+Dx(d=ke+DXK Each of the feature maps is produced by a convolution
with a filter. The convolution layer has an array (or stack) of K filters where
each filter is of size ky, X k,. The filters are given by the variable r € RyXdxxK

The hidden layer H is given by

ky_1 kx—l

Hi,q,k = G( Z Z rm,n,kXi+m,q+n)'

m=0 n=0
Therefore,
H. . ,= o'<Z:,:,k>’
Z:,:,k :X:,: *r:,:,k~

The output of the network is simply the softmax function applied to a linear
function of the hidden layer H:

m(X; 9) = Ssoftmax(U)’
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where W e R/>@-ky+Dx(d-ke+DxK b e RJ U € R/, and W... H=
> Lak W i,q,kHiq,k (the : notation in the place of an index signals summation
with respect to that index). The collection of parameters is 6 = {r, W, b}.
Define
o¢ o¢
Sigk :=35— =737 " Wigk
i,q,k aHi,q,k U Liq.k

The backpropagation algorithm is essentially the same as before, with

Vr:,:,ke =X % (O',(Z:,:,k) O 5:,:,k)’

and
se _oe
ob ~ oU’
o¢ ¢
ow; aU au

Joistst

Let us now briefly discuss multi-layer convolution networks with multiple
channels. The setting is that the input image X € RI*dXK® and that the ¢th
convolution network contains K¢ channels (often called feature maps).

The first feature map is taken to be H® = X. The ¢th hidden layer is H® €
RE*dXK’ and is given by

Ké1-1k{—1kt-1

Hliq, =0 Z Z Z rmnkk’ l+m,q+n,k’

=0 m=0 n=0

The height d}’j and width d, of the feature maps in the £th layer depend on
the height d{~! and width d{™' of the feature maps in the previous layer and
on the filters k%, x k%. In particular, we have

df=di ™t —k§ +1,
di=di ! —kG + 1.

In this case zero-padding means that we expand the matrices H"_lk by

adding P zeros on all sides to form a larger tensor

a1 e R(d§-1+2P)><(d§;—1+2p)x1<€—1

and we have

Ke1-1k{—1kl-1
e _ £—1
H,q, =0 Z Z Z m,n,k k’Hl+m,q+n,k'

=0 m=0 n=0

Now H* has dimensions (d{~" — k{, + 2P + 1) X (d%™! — k% + 2P + 1) X K*.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



230 14. Convolution Neural Networks

Analogously, a convolution neural network with stride s would be

Ke1-1k{—1kL—1

(14.7) Hiéjq,k =0 Z Z Z m,n,k, k’Hiv+1m,qs+n,k’

=0 m=0 n=0
g +1> x (155 + 1) x K°.

Now that we have seen how convolution neural networks look in a gen-
eral setting, let us conclude this section with a discussion on why convolution
neural networks work well for image recognition problems. The first relevant
observation is that a CNN has shared weights across layers and sparse interac-
tions when compared to fully connected neural networks. Thus, it has much
fewer parameters that must be learned when compared to a fully connected
network; this naturally leads to potentially less overfitting. The second relevant
observation is that a CNN learns all weights irrespective of where the specific
object of interest is located in the image. The third relevant observation is that
CNNs are invariant to translations. This translation invariance is a desired fea-
ture: think for example of a chair that has been photographed from different
angles.

and H? has dimensions ([d

Let us now offer a short proof of why the latter statement of translation
invariance is true. Consider an image X : Z X Z — r and set

ky_1 kx—l
Zlq = (r*X)i,q = Z Z Vm,nXi+m,q+n-

m=0 n=0
Consider the translation operator T defined by
X T(X)l q = 1 a,q—b-

We notice that
ky_l kx—l
(r* X)i,q = Z Z rm,nXi+m,q+n

m=0 n=0

ky—1ky,—1

Z Z rmn i+m-a,q+n—->b

m=0 n=0

= (I‘ * X)i—a,q—b

= Zi—a,q—b
== T(Z)i,q'

Therefore, we have indeed established that

rx T(X) = T(r x X),
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which demonstrates that shifting the data does not change the output of the
convolution operator.

14.7. Brief Concluding Remarks

In this chapter we studied convolution neural networks. Convolutional neural
networks have been very successful in image recognition problems. In the next
chapter we discuss generative models, another very successful class of models
that are widely used when one’s goal is to generate data from a given distribu-
tion.

There is an increasingly wide range of applications of deep learning to
image processing (typically building on convolutional neural networks); see
[GBC14, KWRL17, RHK23] and the references therein.

14.8. Exercises

Exercise 14.1. For a reference signal R we have

n 0 1
R, |1 2

‘We want to calibrate a convolution neural network of the form

m(x,0) =S (w r%afc (R * x)(n) + b) ,
nefo,1,
where R x is the correlation between R and x, 8 = (w, b)" and S is the logistic
function. Fix an observation X

n 0 1 2 3
X, ||12]23]0 -1

which contains the reference signal and some noise. Our goal is to calibrate
the model m to this datapoint.
(1) Compute (R * X)(n) for n € {0, 1, 2}.
(2) Compute m(X,(0.5,0.1)).
(3) If we let A(6) = H(1, m(X, 0)), where H is relative entropy, compute
%(0.5, 0.1) and %(0.5, 0.1).

Exercise 14.2. Fix an observation X

n 0 1 2 3
X, ||12]23]0 -1

and consider the function

m(Rg, R;) = Lonax }{((RO’Rl) * X)(n)}.

EET)
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(1) Compute m(1,2).
Om Om
(2) Compute a_RO(l’ 2) and a_Rl(l’z)’
Exercise 14.3. What would be the formula for a 3 — d convolution with stride,

padding, and multiple output channels? The input is a 3 — d image with Kj,,
input channels, i.e., X € R%*dyxdzxKin_

Exercise 14.4. Consider the convolution network with bias parameter
Z=R%xX+b!,
H = o(Z),
— 2 i
Up=W,,..-H+b}, j=01,.,]-1,
m(x; 0) = Ssoftmax(U)-

. ae
For the cross-entropy error function, calculate PIRE

Exercise 14.5. Consider that the filter is given by
R = { ey R_3, R_z, R—l’ Ro, Rl’ R2, R3, e }.
Let the result of the convolution between the data X and the filter R be
Zy=R*X), = > RpXypn-
n'=—c
What is Z, in the case where the filter R has R; = 0 for all j ¢ {0,1} and
Ry =R, = %? What about when the filter R has R; = 0 for all j ¢ {0,1,2,3}

andRy =R, =R, =R; = i? What do the signals resemble in both cases?
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Chapter 15

Variational Inference
and Generative Models

15.1. Introduction

In the problems of regression and classification that we have seen, the goal is to
match the target data, which could be real-valued or categorical, respectively.
In this chapter, we change gears and we consider generative models where the
goal is to train models that create new data. Imagine for example that we have
image data and the goal is to create a model that outputs similar images.

This problem is inherently probabilistic and what we are after is the prob-
ability distribution that generates the data that we are interested in, say im-
ages for instance. One of the main ingredients that we need in order to do
so is a notion of distance between two probability distributions. In particular,
consider two probability distributions u and v. There are many candidate op-
tions for measuring how close u and v are, for example total variation distance,
Hellinger distance, integral probability metrics, Rényi divergence, Kullback-
Leibler divergence, Wasserstein metric, and more, each one of them having
their advantages and disadvantages. Two popular choices that we will use in
this chapter are:

« Kullback-Leibler (KL) divergence defined by

[ )
:mwM—LMgM@mwm

« Wasserstein r-metric defined by

W(u,v) = inf (EIX—Y|),
yE(1,v)

233
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234 15. Variational Inference and Generative Models

where y € II(u,v) is any coupling with marginals u and v, i.e. the
x—marginal of y is the measure x and the y-marginal of y is the mea-
sure v, (X,Y) ~yandr € [1, o0].

Given a fixed distribution v, a variational optimization problem with the
loss function being the KL-divergence for instance would be

u= argminﬂem KL (u|v),

and analogously for the Wasserstein metric. The choice for the set M is very
important. If M is too big, then the problem becomes too hard. Ifit is too small,
then it may not contain the distribution we would like to include.

With some abuse of notation, for probability distribution functions u(dx)
and v(dx) that have densities g(x) and p(x), we shall write KL(g|p) or W,(g, p)
for KL-divergence and Wasserstein r-metric, respectively.

The rest of the chapter is organized as follows. In Section we present
one characteristic way of estimating probability density functions that is based
on the Kullback-Leibler divergence and leads to the so-called Evidence Lower
Bound and to the encoder-decoder paradigm. In Section we introduce
Generalized Adversarial Networks (GANs) that have been very influential gen-
erative models. In Section we study optimization in GANs. In Section
we describe Wasserstein GANs, which is a class of GANs motivated by the
Wasserstein metric.

15.2. Estimating Densities and the Evidence Lower Bound

In this section, we present one of the main approaches in learning densities of
distributions generating the class of data we are interested in. A key component
in such a consideration is the concept of a latent variable. Imagine, for exam-
ple, that we want to draw a new car. Before drawing the new car, we need to
decide its type (for example sedan/SUV/truck, etc.), its color, the background
(is it moving on the road or is it parked), etc. These variables are called latent
variables and will be denoted by z.

Then, after deciding on z, we will draw the car. However, two different
people with the same choices for the latent variables z, will still draw two differ-
ent paintings with cars. Namely, the process is inherently random. Therefore,
what we are truly after is to obtain samples from the conditional distribution
given z, say p(x|z). Obtaining such samples is what is called the generative
process. Also, since we do not know z, we assume a prior distribution on z, say
p(2).

We note that we are abusing terminology since both p(x|z) and p(z) are
densities and not probability distribution functions. However, in this section
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we will do so without any further warning as working with densities makes the
presentation simpler.

In practice, we have access to training data Dy, = {x,,,}¥_,. We do not
know the posterior probability density function p(z|x) and we do not know the
true latent variables z. So, it makes sense to look into the problem

M
as1) min 57 30 KLl o).

where the set G is the set that contains the possible probability densities
of interest and hopefully contains p as well. Let us denote a minimizer
by g*(zl{x,}M-,) emphasizing the conditioning on the training data
Dirain = {xm}%zl'

We have assumed that the probability distributions we are working with
have well-defined probability densities. Let us also assume momentarily for
convenience that z and x,, are univariate random variables; see Remark
for the generalization to the multivariate case.

In this section we shall develop the basic principles of variational inference
and its connection to neural networks using the encoder-decoder paradigm,
building towards variational auto-encoders.

15.2.1. The Evidence Lower Bound. Before continuing to explore the prop-
erties of the optimization problem ([[5.T), let us rewrite the KL divergence in a
more useful way. We notice that for any m € {1, ..., M}

KL (8(z]x)| plzlxm)) = E [1og %]

= E [log g(Z|x,,)] — E [log p(Z|x,,)]
= E[log g(Z|xp)] — E[log p(Z, x,)] + log p(x,,),

where Z ~ g(Z|x,,). However, by definition, we have that
KL(g(z|xp)|p(z|xp)) 2 0.
So, we obtain that
(15.2) log p(xp) 2 E[log p(Z, xp,)] — E [log g(Z]xpy)] -

The left-hand side of the last display is the true log probability density func-
tion log p(x) that we are after when evaluated at the point x = x,,,; oftentimes
called the evidence. Thus, it makes sense to find a function g that maximizes
the right-hand side of (5.2). The right-hand side of ([5.2) is called the evidence
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lower bound (ELBO). In particular, we define

ELBO(x,,|g) =E [log %]

(15.3) = E[log p(Z, xp)] — E[log g(Z|x,)],

where we recall that Z ~ g(z|x,,). Hence, instead of working with ([5.1]), we
work with the optimization problem

M
1
max — ELBO(x ,

and let a candidate maximizer be denoted by g* (z|{x,,}_, ).
Next, we observe that we can write

ELBO(x,ng) = E [1°g %]

= E[log p(Z, xp,)] — E[log g(Z]|x,,)]
= E[log p(xs|2)] — (E [log g(Z|x,,,)] — E [log p(Z2)])
= E[log p(x;|2)] — KL(g(Z|x,)|p(2)) .

It is interesting to note that in the last display, log p(x,,|z) is the log-likeli-
hood of x,, given the variable z, whereas KL(g(z|x,,)|p(z)) is the error being
made by using g(z|x,,) as a proxy for the prior distribution p(z). We have ar-
rived at the program

M
1
max — ELBO(x

M
(15.4) = max % Y. (E[log p(x|Z)] — KL(&(Z|xm)IP(Z))),
8€9 m=1

where we recall that Z ~ g(Z|x,,).

15.2.2. The encoder-decoder paradigm. Let usnextdiscuss how to use neu-
ral networks to solve ([[5.4). How do we choose the set G over which the opti-
mization is performed?

This brings us to the so-called encoder-decoder paradigm. We will pa-
rametrize the probability density distributions g(x|z), p(x|z), and p(z), view
them as neural networks, and optimize (I5.4) over the parameters of these
neural networks. To simplify the discussion below, let us focus on parametriz-
ing g(x|z), p(x|z). Let 6, and 6, be parameters of neural networks and set
g(x|z) = g(z|x;6,) and p(x|z) = p(x|z;64). Then the goal is to do gradient
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descent or stochastic gradient descent on ([[5.4)) in order to learn the unknown
parameters 6, and 9, namely

1
(15.5) max

M
@I 37 25 (ElloB PtnlZ: )] ~ KL((Zxi 8)IPD).

where we recall that Z ~ g(Z|x,,;6,). Denote by (6;,6) a solution to this
optimization problem.

However, we immediately have another problem to solve. In doing SGD on
(5.4) or (L5.3), we want to be able to compute quantities, such as Vg, E[f(Z)]
where Z ~ g(Z|x; 6,) for some function f. Note that the parameter with respect
to which we want to differentiate also affects the distribution under which we
sample Z, which is problematic.

To this end, notice first that, under smoothness assumptions on g, we can
write (its derivation is left as Exercise [[5.2)

(15.6) Vo,E[f(2)] = E[f(Z)Va, log g(Z|x;6,)].

In the latter expression Vg, log g(z|x; 6,) is typically called the score func-
tion of the probability distribution g. Note that this identity reduces the calcu-
lation of the gradient of the expectation of a test function f, to the calculation
of expectation of f multiplied with the score function.

The score function formulation ([[5.6) allows us to compute what we want
because given a sample Z = z, we can get Vg, log g(z|x; 6,) by standard back-
propagation and then use Monte Carlo for the estimation of the expectation in
([5.6). Namely, we can approximate

K
(15.7) Vo.ELf(2)] % g Y, [(@)Vs, logg(zix; 6,
k=1

where z;, ~ g(z|x;6,). However, it is known in the literature that the usual
Monte Carlo gradient estimator of this quantity may have high variance, see
[PBJ12]. This issue typically originates from the fact that Vg log g(z|x;6,) =
Vo, 8(z|x:6)

8(z|x;0,)
the tail of the distribution (i.e., if it is rare).

and the denominator can take very small values if the sample z is in

This then brings us to an alternative way to solve this problem. In partic-
ular, let us directly assume that g(z|x; 6,) is the density of some distribution.
We then model its parameters (that will be functions of x) as neural networks
with parameter 6,. So, effectively, we model for example Z ~ N(u(x),o?(x))
and parametrize u(x), o%(x) to be neural networks with parameter 6,. In par-
ticular, for a given x and 6, we set for example Z = u(x;6,) + o(x; 6, ) where
€ ~ N(0,1) which implies that the expectations are taken with respect to the
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standard normal distribution which does not involve the parameter 6, of dif-
ferentiation. This then allows us to move the differentiation inside the expec-
tation. Namely, we now write

Ve, E[f(2)] = E[Va,f(u(x: 8) + o(x;8,)¢)]

where the expectation on the right is taken with respect to ¢ ~ N(0, 1), and can
be evaluated via Monte Carlo estimation. This is usually called in the litera-
ture the reparametrization trick (([KW13]), and is used routinely in generative
modeling.

To be more precise, with 6, being the parameter vector of the neural net-
works u(x,,; 6,) and log o%(x,,; 6,), we set

(15.8) g(z|xy,) = density of Normal (u(xp,; 6,), 02(x ;3 6e)) -

This is called the encoder and it models g(z|x,,). How do we model
p(X|2)? We have data Dy, = {X,/_; and {z,,}M_, provided by the en-
coder. The decoder models p(x,,|z) as a neural network with parameters 6.
For example, p(x,,|z; 64) here could be Bernoulli (in case of binary data), i.e.,

log p(xp|2;64) = xm log m(z;04) + (1 — xp,) log(1 — m(2; 0q))

with m(z; 64) an appropriate neural network modeling probabilities. Alterna-
tively, p(x,,|z; 64) could be Gaussian (in case of real-valued data),

p(xm|z;64) = density of Normal (u(z; 64), 0(2; 64)) ,

where u(z; 64) and log 0?(z; 6,) are neural networks.

In applications, one typically models the prior probability density function
of the latent variables p(z) as the density of a Normal(0, 1) distribution (or a
product of standard normal densities if there are more than one latent variable).
Note that p(z) could be also parametrized as a neural network. We will not do
so here for simplicity but the framework allows us to do so.

So, effectively we have replaced ([L5.4) by

M
(159) x5 3% (E0g plenZ60)] = KL8ZI: QIpE),

where p(x,,|z;64) and g(Z|x,,; 6,) are densities of random variables (from ap-
propriate desired distributions as discussed above) parametrized as neural net-
works with parameters 6; and 6,, respectively. Z is generated based on (5.8)
and p(e) is the density of a Normal(0, 1) distribution. This is an example of a
variational auto-encoder [KW13].
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Note that ([5.9) can be simplified further. For example, by direct compu-
tation, we have that (see Exercise [[5.1])
0%+ u?—1-2logc?
2 b
which means that in the case where we work with Gaussian distributions
02(Xpm; 0,) + U2 (X5 6,) — 1 — 210g 0%(x15 6,)
KL(g(Z]xm; 6,)|ple)) = ———2e—Ftmmi e B2 m R,

Then, in order to solve (15.9) one can perform standard stochastic gradient
descent.

KL(N(u, 02)IN(0,1)) =

Remark 15.1. In this section, we assumed that z and x are univariate variables.
Ifinstead they are multivariate but independent, then the framework is similar
due to the property of KL-divergence that

K K K
KL(H &z T pk(zk>) = 3 KL(g(Zi)|pi(Zi) -
k=1 k=1 k=1

Exercise establishes the validity of this identity.

Remark 15.2. Of course, instead of Gaussian models, one can use other dis-
tributions. The framework allows for that, but the calculations may be more
involved.

Remark 15.3. The score function formulation and the reparametrization trick
offer two different ways to compute the gradient of expectation of test func-
tions. Both are popular formulations that have generated a lot of interest in
recent years and both are used in deep learning applications (e.g., in genera-
tive modeling and in reinforcement learning). Both methods have advantages
and disadvantages. As we already discussed, the estimation via the score func-
tion formulation is subject to high variance, whereas the estimation via the
reparametrization trick will be less accurate when g(x|z) has more than one
mode because in that case a normal distribution will not be able to capture
that.

15.3. Generative Adversarial Networks

In this section, we discuss generative adversarial networks (GANs), a clever re-
formulation of a generic generative model. GANs have found many applica-
tions in super-resolution of images, data simulation, semisupervised learning
with unlabeled data, and much more.

GANS s transform estimating a density (studied in Section [[5.2) to a classifi-
cation problem. In a sense GANs owe their empirical success to this property
by leveraging the fact that deep neural networks work very well when it comes
to classification problems.
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15.3.1. Revisiting the Basic Classification Problem of Chapter §. We in-
troduce GANs by connecting them to the basic classification problem that we
studied in Chapter B via logistic regression. In particular, consider the situation
were the {0, 1}-valued label y corresponds to whether an image comes from the
generator’s distribution v(dx), in which case y = 0, or from the nature’s distri-
bution u(dx), in which case y = 1. Our data are images D = {x,,}2, such

that D = D, U D, where
Dy={xp, ~v, m=1,...,M},
D ={xp~u m=M+1,...,2M}.
In this case we model the probability of success as a neural network
P(y = 1]x) = m(x;0).

In its simplest form, and as used in Chapter B, the model m(x; 6) could be
the logistic function

ewx+b 1

m(x;0) = S(wx + b) = T owontb — ] T o—(@xib)’

where 6 = () are the parameters of the model taking values in the appropriate
space ©.

No matter what the actual choice of the model m(x; 6) is, the associated
logistic loss function is

1 1
AO) = -1, >, logm(x; - > log(1 — m(x; 6)),
X€D, X€D,

and naturally the goal is to find 6" = argmin, A(0).

Let us now abstract this formulation a little bit. The population loss func-
tion corresponding to A(6) defined above is

(15.10) Apop(m) = —E, log m(x) — E, log(1 — m(x)),

where the subscript in the expectation operator denotes the probability distri-
bution under which the expectation is being considered. Then, in theory we
would have

m* = argmin_ Apop(m).

With the goal of building some intuition, let us characterize the optimal
point m*(x).

Lemma 15.4. Assume that in the loss function defined in (15.10), the measures
u and v have continuous densities p, and p,, respectively, that are bounded away
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from zero. Then we have
pu(x)
Pu(X) + py(x)’

In addition, the global minimum m*(x) is achieved if and only if p,(x) = p,(x)
in which case Apop(m*) = In4.

m*(x) = argmin, Apop(m) =

. I o By
Proof. A perturbation argument for the variational derivative Ohpop(m)

that

gives

5Apop(m) _ _p,u(x) pv(x)
Sm m(x) 1-m(x)

Setting this equal to zero and solving for m(x) gives that indeed m*(x) =

— P Note that
PR ()40 (X)

62 Apop(m)  pu(x) py(X)
smZ . m2(x) | (- mR =

which implies that indeed m*(x) is a minimum.

To answer the second part of the lemma, we note that by symmetry the
minimum of A,,(m*) is achieved when the two terms balance, which happens

when m*(x) = % This is true if and only if p,(x) = p,(x). In that case, we

immediately see that Ay, (%) =In4. O

15.3.2. The Discriminator-Generator Framework. Lemma shows
that the ideal case would be when m*(x) = ; for all points x, which hap-
pens when p,(x) = p,(x). This means that in that case all samples are pro-
duced from the same true distribution. The latter starts being suggestive that
we should be viewing the two terms on the right-hand side of Ap,(m) as com-
peting with each other. The first term (corresponding to distribution u) tries to
find out whether a datapoint x comes from nature’s (true) distribution, while
the second term (corresponding to distribution v) gives an output x which is
supposed to be close to points in the true dataset.

This point of view brings us to the definition of GANs. Formally, a GAN
consists of two neural networks:

« Discriminator (D): this works as a classifier. Given a datapoint x (e.g.,
an image), a number between [0, 1] is produced which corresponds to
the probability of the datapoint x being part of the dataset, i.e., coming
from nature’s distribution.

+ Generator (G): this gives an output datapoint x, which is supposed to
be close to images in the dataset.
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To record the fact that we can really think of discriminator and generator
as two different things, we reformulate Ayop(M) as Apop(mp, mg) where

Apop(mD, mg) = _[E,u log mp(x) — E, log(l — mg(x)),
where the subscripts D, G correspond to discriminator and generator, respec-
tively.

Typically mp, mg are neural networks with parameters 6 and 65, respec-
tively, and we choose

mp = mp(x;6p) = m(x;6p),
mg = mg(x;65) = m(g(z; 6¢); Op),

where g : Z — X maps latent space to data space (and it is also modeled as a
neural network). Thus, we can actually write

Apop(m(+;6p), m(g(-;6p); 65))
= —E,log mp(x) — E, log(1 — mg(x))
= —E, log m(x; Op) — E, log(1 — m(g(z; 65); Op))-

We may view the loss function as a function of 8p, 85, and thus we write
(15.11) [\pop(eD, 0g) = —E,log m(x; 0p) — E, log(1 — m(g(z; 6); Op))-

The objective of a GAN is twofold. The discriminator updates its weights
Op to minimize the loss Ay, Whereas and generator updates its weights 6 to
maximize it. Then, we choose

(15.12) (6, 0¢) = argmax, argming Apop(6p, 6g).

Remark 15.5. In this remark we directly connect the empirical loss function

corresponding to ([15.11)) (this is (15.13) that we shall explore in Section [[5.4) to
the binary cross entropy (B.7) #,(y") that we defined in Chapter . Let us think
of the true datapoints being in D, (i.e., with label 1) and the fake datapoints
being D, = {g(z;0;) : z generated points, say from N(0, 1)} (i.e., with label 0).
Create the labeled dataset

Dispeted = {D1 X {1}} U {D, X {0}}.

Assume that the classifier m(x; 6p) is used by the discriminator. Let y €
{0, 1} denote the label of whether a point is fake or real, respectively. Then, we
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have

A 0c) = —— S 4,(m(x;6p)

|DlabeIEd| (%,9)€D1apeted

&, (m(x;6p)) + —— €0 (m(x;6p))
|2)labeled| xg; ! b |D1abeled| x; 0 P
=t |- Z log m(x;6p)
|Dlabe1ed| xeD,; P

_ Z log(1 — m(g(Z;65);6p)) |-

zef{fake dataset}

Namely the loss empirical function is directly connected to the average
cross entropy associated with a classification problem.

An equivalent formulation is to define
Apop(@p, 66) = Ey log m(x; 6p) + E, log(1 — m(g(z;66); Op)),

in which case (65, 05) = argminec argmax, I\pop(eD, 6c). Note that the two
formulations are equivalent since Apop(GD, Og) = —Apop(eD, 6;). However,
we will work with the formulation based on APOP(GD, 0¢) from ([[5.11)), since,
as we discussed in Remark [15.5, Apop(eD, 0c) is directly related to the basic
cross entropy (B.7) £,(y") from logistic regression.

We shall discuss how to implement in practice the min-max problem

(I5.12).

15.4. Optimization in GANs

In practice, we have training data D, = {Xn}M_,, Where u is the empiri-
cal distribution of the data D,.,;, and the generator produces data from some
model distribution v, say Gaussian N(0, 1). So, typically, in practice we have
the empirical loss function

(15.13)

" 1
A(GD’ GG) =

D 2 logm(xip)—Ez., log(l—m (g(Z:0):6p))-
train

x€D, train

The goal is to obtain maxgy, ming, A(8p, 8;). Standard SGD updates then
read as

6p.k+1 = Ok — Ve, A@D ks O,k
6c.k+1 = Ok + 1Vag , AOp k41, 66,00
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where 7 > 0 is a learning rate. Notice the different sign (minus for the update
of Op k41 and plus for the update of 6 k) in the gradient descent updates.
The difference in the sign is not a typo! It is because we are solving a min-max
problem.

Let us now study the derivatives Vo A(6p,6¢) and Va A(6p,6g). Direct
calculation gives

R 1 1 am(X, GD))
Vo A(6p.6g) = — (
A0 =~5 7 2 \ Wit o6
+E ( 1 om (8(Z; 65); 6D)>
#7\1-m(8(Z65);6p) 96p
and

A _ 1 om (8(Z; 6c); GD)>

VGGA(QD’ eG) =Ezw (1 —m (g(Z, GG); eD) aeG
—E ( 1 dm (g(2);0p) 9g(Z; Gc))
“\1-m(gZ:65):6p) 08(2) 96

In practice, we sample a minibatch of images {x;, ..., x,} and we sample

latent variables {z;, ..., z;}. Then

(1) We update the generator g(:; 65) using the gradient updates and the
minibatch being sampled.

(2) We update the discriminator m(:; ©p) using the corresponding gradi-
ent updates and the minibatch being sampled.

Remark 15.6. Training goes in cycles. In the early phases of the training pro-
cess, the generator produces noisy data-images, but over time it becomes bet-
ter at producing images that are closer to the real ones. The discriminator is
trained initially on both fake and real data but as the generator gets better at
its job, the discriminator has a harder time telling apart real from fake data. If
training is successful, then by Lemma [[5.4, the discriminator in the end (i.e.,
when maxg , ming A(Bp, 0;) has been achieved) produces probabilities of 1/2.
Namely, it cannot decide whether a sample is real or fake. When that happens,
the discriminator is useless and can be discarded, leaving only the generator as
being useful.

Thisis an inherently min-max problem, since the discriminator is minimiz-
ing the objective whereas the generator is maximizing the objective function.
Training a GAN can become complicated with gradient methods especially be-
cause solving the min-max problem amounts to finding saddle points (so in-
volving gradients makes it relatively possible to climb up the hill or fall down
the hill). See Remark in that direction.
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Remark 15.7. Early in training the discriminator has an easy job to do whereas
the generator has a hard job to do. In those early steps of training if the gener-
ator is not good enough, then we will have

J6,m (8(Z:65):6p) _ o
1-m(g(Z;65)6p)

Hence, in that case the job of the generator gets even harder! This often
leads to the phenomenon called mode collapse, which means that the generator
produces the same output for many different inputs; we will also discuss this
in Section [[5.3. This is why in practice oftentimes the loss function is modified
to be

Vo, log(1 — m (8(Z;66);6p)) = —

" 1
A(p,6) = ——=——— D, logm(x;6p) — Ez., logm (g(Z;65);6p).
|2)train|

x€D train

where again v is some model distribution, say standard Gaussian for example,
N(0,1) (if one dimensional). The goal is the same, i.e., to reach

max min A(6p, 65).
6c 6p

This choice of the loss function does not face the same vanishing gradient prob-
lem as the original formulation.

We conclude this section with an illustrative max-min problem.
Example 15.8. Let us define
fGoy)=(x=2y)* =70y - 1),

and consider the problem max,,cg min,cg f(x,y). Think of x as the generator
and y as the discriminator.

A straightforward computation shows that
[ =min f(x,y) = =7(y — 1)%,
X€eR
with the minimum achieved at x = 2y and
max f*(y) =0,
yeR

with the latter maximum achieved at y = 1. So, the saddle point is (x,y) =

(2,1).
If we were to solve this via SGD, we would have
af
a(x’ y) - Z(X - Zy),
af
5(x, Y)=4x—-2y)—14(y —1) =4x — 22y + 14.
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Consequently, with > 0 a given learning rate, the SGD update equations
would be

X1 = Xk — N(2xk — 4yk),
Yk+1 = Yk + 0(4Xp41 — 22y, + 14).

In Exercise we will see how the SGD algorithm actually converges to
the target saddle point (x,y) = (2, 1).

15.5. Wasserstein GANs

As we discussed in Remark of Section [[5.4, the gradient of the standard
GAN with respect to the generator parameters can be near zero at least in the
early phases of training, which may lead to the phenomenon of mode collapse.
Mode collapse is when the generator produces the same output for main dif-
ferent inputs and it is a challenge that large-scale images will often phase.

A popular remedy to this problem is the Wasserstein GAN (WGAN) algo-
rithm that was originally introduced in [[ACB17]. Let us first recall the Wasser-
stein r-metric:

Wi(u,v) = inf (EIX —Y[")',
yE(1,v)

where II(u,v) is any coupling with marginals yx and v, (X,Y) ~ yandr €
[1, oo]. Consider the case of r = 1.

By the Kantonovich-Rubinstein duality (see [Vil09]), we have
Wi(u,v) = sup {Ex . [fX)] = Ey,[f(N]},

IfllLip<1
where {f : || fllLip < 1} is the set of globally Lipschitz functions with Lipschitz
constant bounded by one. Note that if W;(u,v) = 0, thenu = v, and if we have a
sequence such that lim,,_, ., Wj(u, v") = 0, then v" will converge weakly to the
measure u. These properties make Wasserstein metric appealing for generative
modeling.

In the world of GANs we have Y = g(Z; 6;) and u would be the empirical
distribution of the data Dy;,. Then, if X ~ pand Y ~ vg , we get

Wi, v) = sup {Exu[fCO] = Ezomodell f(8(Z: 06))]}-

IfllLip <1

Hence in the end, we are interested in the problem
min Wi(x,v) = min sup {Ex~ul fCO] = Ezmodell f(8(Z; 66))]} -
G

66 || fllLip<1

task. On the other hand we know by the uniform approximation theorems that
neural networks m(x; 6) approximate continuous functions on compact sets,

However, optimizing over the whole space {f : | flrip < 1} is a difficult
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see Chapter [L6. This approximation, leads us to look into the more practically
relevant optmization problem

(15.14) rrelicn sup {Exu[m(X;6)] = Ezomodel[m(8(Z; 66); 6p)1}

which is analogous to ([[5.13).

However, m(x; 6) may not be of Lipschitz constant one. To this end, we
observe that

J(u, VGG) = Ssup {[EX~,u[f(X)] - [EZ~model[f(g(Z; eG))]}

IfllLip<K

=& s fEx., | 2700 ~ Ezomoser | £ 060}

=K sup {[EX~/,¢ [A(X)] — Bz model [1(8(Z; eG))]}

IAllLip<1

= KW(IL{’ VGG )'
Thus, we shall have

1
VQG WW’ VGG) = EVQG‘I(IL{’ VQG )’

which shows that the two problems are equivalent. Hence, (I5.14) can indeed
be used in place of ([15.13), also validating Remark [[5.7. In Algorithm P we
present pseudocode for the WGAN algorithm where we also clip the 8p pa-
rameter.

Algorithm 2 WGAN algorithm with SGD

1: procedure > (Input parameters )

2: Initialise: initial parameters 6 g, ©p o, clipping constant ¢ > 0, learning rate
7, stepk =0

3 while Not yet converged do

4: Sample X, Z

5 6p < 6p +1(Ve, m(X;6p) — Vo, m(8(Z;65); 6p))

6 6p < max(min(ép,c),—c)

7 end while

8 Sample Z

9 g < 0 —n(-Ve,m(g(Z;06); Op))
10: end procedure

Generally speaking, clipping the estimated parameter amounts to fixing a
threshold ¢ > 0 and then replacing 6 by max(min(6,c), —c). It is easy to see
that this operation constrains the resulting estimated parameter to be within
the interval [—c, c]. It is a technique often used in practice to reduce the mag-
nitude of the parameter by scaling it back to a given threshold if it becomes
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248 15. Variational Inference and Generative Models

too large in norm. Oftentimes, the clipping idea is used directly on the gradi-
ent updates to scale them back to a given threshold if they become too large
(effectively trying to mitigate the exploding gradient problem), see [PMB13].

At the same time, clipping introduces a discontinuity which can some-
times lead to undesired results and to difficulty with training. Adding gradi-
ent penalty terms (essentially enforcing a Lipschitz condition with a penaliza-
tion) as an alternative to weight clipping in WGAN algorithm, was suggested
in [GAA™*17)] as a way to improve the convergence properties of the original
WGAN algorithm.

15.6. Brief Concluding Remarks

Excellent sources for the auto-encoding variational Bayes procedure that we
analyzed in Section are [KW13] and [DMBM17]. [Bis06] also contains a
nice related exposition to variational inference.

The generative adversarial networks (GANs) that we studied in Section
were originally introduced in [GPAM™14] (see also the book [GBC16])
and since then have been tremendously influential. The Wasserstein GAN
(WGAN) algorithm that we presented in Section was originally introduced
in [ACB17]. Some of the pitfalls (associated with critical weight clipping) of the
original WGAN algorithm were empirically demonstrated in [GAA*17], and
adding a gradient penalty term was proposed to alleviate these pitfalls. Theo-
retically understanding this phenomenon is a subject of active research.

In this chapter we mainly discussed the Kullback-Leibler divergence and
the Wasserstein metric as distance measures and used them in training gener-
ative adversarial networks. There are other distance measures, such as integral
probability metrics and f-divergences, that sometimes are advantageous, espe-
cially when we aim to compare distributions which are not absolutely contin-
uous with each other, see [BDK*22] for details.

This chapter concludes Part 1. In Part 2, we go deeper into several topics,
some that are more of a theoretical nature and some that are of a more compu-
tational nature.

15.7. Exercises

Exercise 15.1. Consider two independent random variables X ~ N(u,,o2)
and Y ~ N(uy,03). Find a formula for KL(N(uy, 07)IN(uy, 05)) in terms of the
mean and variances of the random variables X and Y.

Exercise 15.2. Prove that under the proper assumptions relation

Vo,E[f(2D)] = E[f(2)Vp, logg(z]x; 6,)] »
will hold.
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Exercise 15.3. Prove that the statement of Remark holds. Namely prove
that if Z are multivariate but independent random variables, then

K K K
KL(H 2| [ 1 pk(zk>) = > KL(&(Z)Ip(Zi)) -

Derive how ([[5.9) will look in the multivariate case.

Exercise 15.4. Consider the setting of Example [[5.§, namely let

fGey)=(x—2y)* = 7(y — 1)?
and consider the problem max,cg min,cg f(x,y). Implement the stochastic
gradient descent algorithm to show convergence to the saddle point. Assume
starting point (x, y) = (0, 0). Produce an x — y plot showing the progress of the
max-min problem towards the saddle point (2, 1).

Exercise 15.5. Consider the loss function (I5.13). Assume that m(x;6p) =

eb(x:6p)

14+eb(:fp)”
(1) Write down Vp A(6p, 6¢) in this case.
(2) Express this in terms of KL-divergence when the optimal m*(x) by
b(x)
Lemma takes the form —

14eb@

Exercise 15.6. Consider the discriminator to be a sigmoid neural network of
w-x+b

one hidden unit. Namely, let us set mp(x) = m(x;6p) = le— with 6p =
e

+ew-x+b
(w, b). Simplify the loss function (I5.13) in that case.

Exercise 15.7. Consider a payoff function A(x, y) which depends on the values
x and y. Then, consider that we are interested in

(X,y) = argmax argminy A(x,y).

Obtain the point (X, ) as the long time behavior of a gradient descent
method in continuous time of the joint variable (x(t), y(t)).

Exercise 15.8. Consider a loss function A(x,y) = xy and consider the system
Xk+1 = Xk = NVk>
Y1 = Vi + 0%k,

where 7 > 01is a learning rate. Find conditions under which (x;, y; ) converges
as k — oo.
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Transitioning
from Part 1 to Part 2

As we mentioned in the introductory Chapter [, this book is composed of two
parts. In Part 1, we introduced the main tools for deep learning from a mathe-
matical perspective based on a unified mathematical language. We often made
connections with and drew motivation from classical statistics and machine
learning topics. In Part 2 we dive into more advanced topics of deep learning.
We build gradually.

We recall that the paradigm we have implemented in this book follows the
diagram in the next figure.

Some of the components of the diagram are presented in Part 1 and some in
Part 2, depending on the background that is needed. As we now transition from
Part 1 to Part 2 of the book, let us elaborate in more detail in those components.

1. Motivating Learning: Part 1.

In Part 1, we first presented linear and logistic regression in Chapters P and j,
respectively, from the lens of optimization and in the language of deep learning.
We then motivated how neural networks appear via kernels in Chapter . In
Chapter f§ we visited the feed forward neural network architecture.

253
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Chapter 9: Chapter
Regularization 13:RNN
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- - Sequentia
Chapter 2; Chapter 6: Chapter 10: Data
: Backpropagation Batch
Linear N lizati Chapter
Regression Chapter 7: ormalization 14: CNN
PART1 Chapter 3: Basics on Chapter 11: Chapter
Logistic SGD Training, 15:
Regression Chapter 8: Validation, Variational
Chapter 4. Chapter 5. SGD for and Testing Inference
Perceptron Feed Forward| |pyiti-layer Chapter 12: and
and Neural Meural Feature Generative,
Kernel Networks Networks Importance Modeling
— i ry T —.}—
_T_ Neural — Optimize | [Optimization
Motivating| | VEtworks as | | Training of Training of || in Feature Selected
Learning Um\.rgrsa! el MNeural Neural Learning Topics
pproximation | Networks Networks Regime
Functions
L L L 3 ¥
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Universal ! / The Neural || Reinforcement
N Analysis of Analysis of ,
Approximation GD SGD Tangent Learning
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naly Chapter 20:|| Differential
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Chapter 23: in Feature
Distributed Learning,
Training Mean Field
Chapler 24: Scaling
Automatic
Differentiation

Graphical representation of how the book is organized

2. Neural Networks and Universal Approximation: Part1 —
Part 2.

The development of Chapter § (Part 1) was tied to truth tables. This is moti-
vated by the fact that neural networks are universal approximators. Namely,
neural networks can approximate reasonable functions to good accuracy. The
theory of uniform approximation of neural networks is well established, and
we present it in Chapter [Lg (Part 2). It is presented in Part 2 because its presen-
tation requires more advanced mathematical tools.
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3. Training of Neural Networks: Part 1 — Part 2.

Now that we know that neural networks are universal approximators and that
they can be used to approximate a given function of interest,

How do we learn (estimate) the parameters in the neural network?

This is where the method of gradient descent (GD) comes in. Gradient
descent involves differentiating the loss function of interest. Backpropagation
presented in Chapter f (Part 1) enables us to do so in an efficient way. The
backpropagagion algorithm can be implemented using automatic differentia-
tion, which we discuss in more detail in Chapter P4 (Part 2). In practice, sto-
chastic gradient descent (SGD) is being used, and we presented the principles
of SGD in Chapters [ and § (Part 1).

But an important question remains:
Does gradient descent or stochastic gradient descent converge?

The answer is yes, but it can be proven only under proper conditions. The
mathematical theory for that is developed in Chapters [[7 and [I§ for GD and
SGD, respectively (Part 2). This convergence theory is presented in Part 2 be-
cause it requires more advanced mathematical tools.

However, training of very large deep neural networks can become very ex-
pensive, making the need for computing power clear. Distributed learning is a
way to help in that direction; this is described in Chapter 3 of Part 2 because
it is conceptually and computationally more advanced.

4. Optimize Training of Neural Networks: Part 1 — Part 2.

Now that we have learned that neural networks are universal approximators
and we know how to train them,

How do we optimize training?

There are several methods to improve training, for instance regularization
methods (Chapter f in Part 1) and batch normalization (Chapter [I[( in Part 1).
Of course, we need to blend all of these with data and have a sense on how
to tune things and what features are important; these topics were presented in
Chapters [[1 and [[J in Part 1.

Last, but not least, is there only the vanilla SGD algorithm, or are there
more advanced algorithms? There are of course other optimization algorithms
and we present those in Chapter [I§ in Part 2 together with their properties.
They are presented in Part 2 as their analysis requires sometimes more ad-
vanced mathematical tools.
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5. Optimization in the Feature Learning Regime: Part 2.
The next natural question is:

Will the algorithms converge to the true answer, and will they perform well with
unseen data? Under which conditions will that be the case?

Note that a priori it is not clear that this would have been the case (due
to the training algorithm involved) even though neural networks are universal
approximators. This brings us to the convergence results of Chapters [[9 and
in Part 2. In Chapter [9 we study the neural tangent kernel (NTK) limit for
neural networks which, since it is derived using a linearization, is referred to as
the linear regime in this book. In Chapter 2g we discuss the nonlinear regime
and the mean field scaling. The development of this theory requires more ad-
vanced exposure to stochastic processes convergence theory, so we present it
in Part 2.

6. Selected Topics: Part 1 — Part 2.

The thematic units that we just described compose the main aspects of any
deep learning algorithm. However, in deep learning there are a number of
other topics of interest. We present a selection of these topics in either Part 1 or
Part 2 depending on the level of mathematical and/or computational maturity
required.

6A. Specialized Architectures (RNN, Transformer, CNN): Part 1. De-
pendent data, sequential data or image data may need more specialized archi-
tectures that take into account the nature of the data. This brings us to recur-
rent neural networks, transformers, and convolution neural networks which
were presented in Chapters [3 and 14 in Part 1. Even though RNNs, trans-
formers, and CNNs are more advanced architectures than feed forward neural
networks, we present them towards the end of Part 1 because these more ad-
vanced architectures are still within reach conceptually.

6B. Variational Inference and Generative Modeling: Part 1. In Chapter
[[3we present variational inference and generative adversarial networks which
have been very successful frameworks to generate data from desired (often un-
known) distributions; this is another very exciting area of research.

6C. Control Problems and Reinforcement Learning: Part 2. What if now
we want to learn how to control a dynamical system to achieve a certain goal?

Can we use deep learning to control a dynamical system? Will the algorithm
converge to the optimal control policy?
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The answer is yes and this is the field of reinforcement learning that we
describe in Chapter R1] in Part 2. In Chapter 21, we also present convergence
properties of reinforcement learning algorithms with neural networks which
is mainly why Chapter R1is in Part 2 and not in Part 1. Reinforcement learning
with neural networks is a very exciting area of research with a long history.

6D. Neural ODEs and SDEs: Part 2. In Chapter P2 we present the topic of
neural differential equations, which essentially amounts to using neural net-
works to learn dynamical systems, another very exciting area of research. It is
presented in Part 2 as its treatment oftentimes requires more advanced mathe-
matical and conceptual tools.
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Chapter 16

Universal
Approximation
Theorems

16.1. Introduction

In Chapter § we discussed feed forward neural networks. We demonstrated
there, via explicit basic constructions, that indicators of rectangles can approx-
imate generic functions.

In this chapter we demonstrate that this is part of a more general pattern
for neural networks. One of the main mathematical questions is:

Given a target function m, is there a vector of parameter values 6
and a neural network (shallow or deep) m(x; 6)
that is close to m(x) in an appropriate sense?

One of the reasons neural networks work well in practice is because they
are able to accurately approximate typical functions. In other words, neural
networks are universal approximators. In this chapter we present some of the
main results on the approximation properties of neural networks.

16.2. Basic Universal Approximation Theorems

In this section we focus on a single-layer neural network,

N
m(x;6) = Z c"o(w" - x + b"),
n=1

259
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260 16. Universal Approximation Theorems

where 6 = (¢, w", b")N_, € RE+2N js the parameter to be estimated, N is the
number of hidden units, o is the activation function, and x € R¢ is the input
data.

In this section, M(X) denotes the space of finite, signed measures on a
space X. C(X) is the space of continuous functions on X, and I?(X) is the space
of square-integrable functions on X. Typically, we shall take X = I; = [0,1]¢,
the hypercube in d dimensions.

In Definition we define what a discriminatory function is, which is a
key concept in the theory of universal approximation of neural networks.

Definition 16.1. Consider a measure u € M(I;) and a functiono : R - R.
Then o is called discriminatory with respect to the measure y if

/ o(w-x+b)u(dx)=0

Ia
for every (w, b) € R4*+! implies u = 0.

Definition 16.2. Consider a function ¢ : R ~ [0,1]. Then, ¢ is said to be
sigmoidal if
lim o(x)=0, limo(x)=1.
X—>—00 X—>00
A question that arises is what kind of activation functions are indeed dis-
criminatory? Proposition shows that this is a quite common property, and
in fact any continuous sigmoidal function is discriminatory in the sense of Def-

inition [16.1l.

Proposition 16.3. Let o be a given continuous sigmoidal function. Then o is
discriminatory with respect to all measures u € M(1y).

Proof. Let us start by fixing a measure © € M(I;). Let o be a continuous
sigmoidal function such that

/ o(w - x +bu(dx) =0 forall (w,b) € RI+L,
Ig

By Definition [[6.1, we would like to show that u = 0. For this purpose,
we define the function o,(x) = o(o(w - x + b) + q). Since o is assumed to be
sigmoidal, we will have

1, fw-x+b>0
gi_{?oop(x)= o(q), ifw-x+b=0
0, ifw-x+b<0.
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Slightly abusing notation, let us now set

1, ifxeBf,={x€ly:w-x+b>0}
0n(x) =q0(q), ifx€B,,={x€l;:w-x+b=0}
0, ifx€B,,={x€l;:w-x+b<0}

and note that lim,_, , g,(x) = 0,(x). By a bounded convergence theorem we
then have

0= tim [ g, = [ auCou(e
—o Jp,

Ia
= W(BYy) + o(@u(B, ).

So, we have deduced that ,u(B:{),b) + o(@)u(By, ) = 0. Taking now q — oo,
we obtain ,u(BL‘E,b) + u(By, ) = 0. On the other hand, if we take ¢ — —oo,
we shall have that u(B;} ,) = 0. Thus, we get u(B;, ;) = 0. But By, , = BZ, _,,.
Thus, u vanishes on the half-planes of R, which then implies that u = 0. Even
though the latter conclusion is not so obvious here because the measure u is a
finite signed measure (not necessarily a positive measure), it effectively follows

by the argument of Example [[6.8.

All in all, we have shown that o is discriminatory with respect to the arbi-
trarily chosen measure u € M(1;). ]

When a function o is discriminatory with respect to all measures u €
M(1y), then we will say that o is a discriminatory function. Proposition
shows that, at least, continuous sigmoidal functions are indeed discriminatory.

Proposition shows that neural networks with continuous and discrim-
inatory activation functions are dense in the space of continuous functions, i.e.,
they can approximate any given continuous function. In particular, Proposi-
tion shows that for any given g € C(l;), there exists a neural network such
that for a given € > 0, we have

|g(x) —m(x;0)| <e forall x € I,

which is the definition of density of the space of shallow neural network func-
tions in the space of continuous functions; see also Definition B.4.

Proposition 16.4. Consider a continuous discriminatory function o. Then func-
tions of the form

N
m(x;0) = Z co(w" - x + b")
n=1
with w" € R and ¢, b" € R are dense in C(I;), where I; = [0,1]%.
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Proof. We begin the proof by defining the space of all shallow neural networks

N
U= {m tm(x;0) = ) c"o(w" - x+b"),w" € RY, BT ER,x EI ¢

n=1

The assumption that o is continuous, means that the space U is a linear
subspace of C(I;). Let us now suppose that U is not dense in C(I;). Then, by
Lemma B.€ there is a measure u € M(I;) such that

N
Z c"o(w" - x + bMu(dx) =0 for all (c", w", b") € RI+2,

n=1 Id

By choosing the c’s appropriately, we get that for all (w”, b") € R4+, the
relation holds

f o(w" - x + bMu(dx) = 0.
Iq
Since o is discriminatory, we get that 4 = 0. This is immediately a contra-

diction, yielding the proposition. ]

Aswe discussed, Proposition shows that for any given g € C(I,), there
exists m € U of the form of a neural network such that for all e > 0, we have
that

sup |g(x) — m(x;0)| < e.

erd

The aforementioned results bring us to one of the first universal approxi-
mation theorems.

Theorem 16.5 ([Cyb89]). Consider a continuous sigmoidal function o. Then,
the finite sums of the form m(x; 0) = 22;1 c"o(w" - x + b™) with w" € R and
c",b" € R are dense in C(I).

Proof. This is a direct consequence of Propositions and [16.3. O

Another one of the early classical universal approximation theorems was
derived in [HSW89].

Theorem 16.6 ([HSW89]). Consider a continuous, nonconstant function
o : R R. Then, the set

N I,
U=1{m : m(x;0)= Z e Ha(wj" - x+bi"),wi"eR4, ", bi"eR, x ey
n=1 j=1

is dense in C(I).
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Proof. Since o is continuous, we can verify that the set U is an algebra on I,
see Definition B.8.

In addition, U separates points in I;. Since o is nonconstant, there exist
up,u, € Rsuch that u; # u, and o(u;) # o(u,). Next, we pick points x, y in
the hyperplanes {w - x + b = u;}and {w - y + b = u,}, respectively. Then, we
shall have that the function m(z;9) = o(w - z + b) separates x and y. Indeed,
we have that m(x;0) = o(w-x+b) = o(u;) and m(y; 6) = o(w-y+b) = o(u,)
with O'(ul) # U(U2).

Moreover, we have that U contains nonzero constants. Indeed, let b be such
that o(b) # 0 and choose w = (0,0,...,0) € R%. Then m(x;6) = o(b) # 0.

Hence, overall we have shown that U satisfies the assumptions of the Stone-
Weierstrass theorem, Theorem B.9, implying that U is dense in C(I,). O

Theorems and address the uniform approximation properties of
shallow neural networks in the supremum norm in C(I;). However, one may
be interested in approximations of certain target functions in other norms. For
example, one may be interested in approximating square integrable functions
g € I?(1y), i.e., functions for which Ji, If (x)|2dx < oo. To illustrate this point,
let us consider the following definition.

Definition 16.7. A function 0 < ¢ < 1 is called discriminatory in I? if for
f ey,

f ow-x+b)f(x)dx=0

Iq
for every (w, b) € R4*! implies f = 0.
Before presenting the uniform approximation theorem in this case, let us

see an example that not only is useful as a building block, but it also builds
useful intuition.

Example 16.8. Let us prove that the indicator function o(x) = 1,5y is dis-
criminatory in I?. Indeed, let us consider f € I*(I;) and assume that for every
(w, b) € R4+,

j ow-x+b)f(x)dx=0

Iq

= f)dx=0
{x:w-x+b>0}nIy

= fo)dx = 0.

{x:w-x>-binly
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Since, the last relation is true for every (w, b) € R4+1, it motivates the idea
that the integral of f(x) is zero over all intervals for w - x, and by linearity of
the integral, it will also be zero over unions of disjoint intervals. Let us make
this idea precise.

We view fId o(w - x + b)f(x)dx as the functional,

m@i/mwmw=fuwbwmw=f foo)dx

I Iq {x:w-x>-b}nly
for g(x) = 1jy.x>—p}- Then, since this is true for all b € R and since the integral
operator has the additive property, if U; are disjoint intervals in R%, then F(H) =
0 for H(x) = Zfil u;ly,(x) for u; € R. H is a simple function, and we know
that simple functions are dense in the set of bounded functions. Therefore, by
density, if g is a bounded function, we will also have that §(g) = 0.

Let us now calculate the Fourier transform of f. We have by definition

ﬂm=/kwwﬂmw

Iy

= | (cos(u-x)+isin(u-x)) f(x)dx
Iq

= (cos) + iF(sin)
=0,

because cos(x), sin(x) are both bounded functions. Here, i> = —1 is the stan-
dard imaginary number. Since the inverse Fourier transform of f is zero for all
u € R4, then f = 0 almost everywhere. This completes the derivation.

Then, we have the following theorem.

Theorem 16.9. Let o be discriminatory in I? according to Definition[16.7. Then,

the set
N
U= }m tm(x;6) = ) c"o(w" - x +b"),c" b"R,w" € RY,x € I
n=1

is dense in I?(1;). Namely, if f € I*(ly), then for every ¢ > 0, thereism € U
such that

f |f(x) — m(x;0)|?dx <.
Ig

Proof. The proof of this result is an application of the celebrated Riesz repre-
sentation theorem, Theorem B.1. Indeed, let us assume by contradiction that
the set U is not dense in I*(I). By a reformulation of Lemma [B.g, we get that
there will be a linear bounded functional H such that H # 0 on I?*(I;), but with
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H = 0 on U. Hence, by the Riesz representation theorem, Theorem B.T| there
is some f € I*(I;) such that

H(h) = f hGOf (R)dx,

Ig
and in addition ||H| = || f]l,-
In addition, for any m € U we shall have that H(m) = 0. This means that

f o(w-x+b)f(x)dx = 0.

Iy

Since o is discriminatory according to Definition [[6.7, we get that f = 0.
This, however, would mean that ||H|| = 0 which would be a contradiction since
we have assumed that H # 0 on I*(Iy). O

Since the fundamental works of [Cyb89, HSW89] there have been many
universal approximation theorems, and we will not cover all of them. Nev-
ertheless, we have gotten a good taste of the basic universal approximations
theorems here. In addition, we visit some more recent results in Section
using RelLU activation functions.

We conclude this section with a short detour on error bounds. In partic-
ular, we have seen that shallow neural networks are universal approximator
functions in C(I;) and in I*(Iy).

But how good really is such an approximation? To get a taste of such a
result, we will visit one of the classical results in this direction by [Bar94].
In order to state this result, we first need to discuss some properties of tar-
get functions having a Fourier representation. In particular, assume that the
target function m has the inverse Fourier representation (with m the Fourier
transform),

m(x) = f e“*m(u)du for x € R
R4
Let us now assume that um(u) is integrable and let us set
p(m) = [ JuliliGwid
Rd

where [ul; = X, [u;|. Then, we have the following result, which we present
without proof referring the interested reader to [Bar94] for its proof.

Theorem 16.10 ([Bar94]). Let o be a sigmoidal activation function, i.e.,

lim o(x)=0 and lim o(x)=1.

X——00 X—+0o0
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Let W be a target function with D(m) < oo and consider u € M(1;). Then, for

any N € N there exists a function m" (x; 0) = Yin—g Co(w™ - x + b") such that

12 .
( jI |m(x>—mN<x;e>|2u(dx>) s%.

Theorem says that the approximation error in the I? norm is of the
order of l/W .

16.3. Universal Approximation Results Using ReLU Activation
Functions

In this section, we visit some more recent universal approximation theorems
using deep neural networks based on ReLU activation functions.

Let us start by defining what a ReLU deep neural network (DNN) is. First,
we recall that a one-dimensional ReLU function simply is ReLU(x) = max(x, 0)
for x € R. Similarly if x = (x1,...,X;) € R%, then we define

ReLU(x) = (ReLU(x;), ..., ReLU(xy)).

Let us also establish some notation for linear tragsformations. With x €
R4, letussetfork =1,...,n, Ti(x) = w* - x+b* = 3 w*x; + b* and define
the mapping T : R — R" to be

T(x) = (Ti(x), ..., T(x)).

Now, we can define what a ReLU DNN is.

Definition 16.11. A ReLU DNN is a function m : R? — R" of the form
(16.1) m(x;0) = (Tpy10oReLUo Ty o -+- 0 T, 0o ReLU o T7)(x; ),

where x € R4, T, @ R = RY, T @ R s R% fork = 2,...,L,
Tr41 : RZ — R™ Here ¢ € Nfori = 1,...,L represents the widths of
the hidden layers, L + 1 is the depth of the network, and 6 is the vector with all
parameters (wy, ..., Wy 41, by, ..., br41) in the affine transformations Tj (x).

The depth of such a ReLU DNN is L + 1, the width is max{¢,,...,¢;} and

the size is Zle ¢;. L is the number of hidden layers.

A basic property of ReLU DNNs is that compositions and additions of ReLU
DNNs yield a ReLU DNN. Indeed, we have the following lemma.

Lemma 16.12 ((ABMM18]). The set of ReLU DNNs defined by Definition
is closed under the operations of addition and composition. Indeed,

(1) Let my, m, : R% — R" be two ReLU DNNs with depth L + 1 and sizes
s, and s,, respectively. Then m; + m, is a ReLU DNN with depth L + 1
and size s; + S,.
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(2) Letm; : R% » R"*and m, : R™ - R% be two ReLU DNNs with depths
L, + 1 and L, + 1, respectively, and sizes s; and s,, respectively. Then,
the composition function m; om, is a ReLU DNNwith depth L; + L, +1
and size s; + S,.

Proof. Both parts follow directly by the structure of a ReLU DNN via Definition
[[6.11]. The first part follows by combining the coordinates of the outputs while
the second part follows by noting that composition of affine transformations is
an affine transformation. 0

Lemma 16.13 ((ABMM18)). Let m,,..., m; : RY — R! be k ReLU DNNs with
depths L; +1 and sizes s; fori = 1,..., k, respectively. Then m : R? - R, defined
as m(x) = max{m(x), ..., my(x)} can be written as a ReLU DNN with depth at
most max{Ly, ..., Li} + [log,(k)] + 1 and size at most Zi;l s;+42k—1).

Proof. The proof proceeds by induction. The case k = 1 is trivial (and note
that a special case when k = 2 is shown in Exercise [16.4). For k > 2 define the
functions f; = max{ml,...,ml;fj} and f, = max{mlEJH,..., my}.
2 2

Let us first show the big-picture idea of the proof and then go into the more
detailed computations. Define the vector-valued function F : R? — R? by
F(x) = (fi(x), f,(x)) and the function T : R? i R by T(x;, X,) = max{x;, x,}.
By the second part of Lemma we have that m = T o F is indeed a ReLU
DNN.

It remains to clarify the appropriate depth and size formulas. Let us go back
to fi, f>- The induction hypothesis is that the claimed formulas for depth and

size hold for all m < k, and we want to prove the claim for the given k. Note that
both f; and f, represent a maximum of not more than k; = [SJ and k, = [g]

terms, respectively (both k;, k, < k). So, due to the induction hypothesis,
+ fiisaReLU DNN with depth at most max{L,, ..., Ly, } +[log,(k;)| +1
and size at most 2121 s; +4(2k; — 1).
« f,isaReLU DNN with depth at most max{Ly, 41,..., Li}+[log,(k;)|+1

k
i=ky+1 s; + 4(2k2 — 1)

This means that F(x) = (fi(x), 2(x)) can be written as a ReLU DNN
with depth at most max{L,, ..., Ly} + [log,(k;)| + 1 and size at most Zle s+
4(2k — 2). Next note that T can be written as a ReLU DNN with two layers and

size 4. The proof now is concluded by using the second part of Lemma
for the formulas for depth and size for the composition T o F. O

and size at most ),

Then, we have the following theorem.
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Theorem 16.14 ((ABMM18]). Any continuous piecewise linear function R4
R can be represented by a ReLU DNN of at most [logz(d + 1)] + 1 depth, and any
ReLU DNN R¢ + R represents a continuous piecewise linear function.

Proof. The fact that any ReLU DNN RY — R represents a continuous piece-
wise linear function follows immediately by Definition [[6.11. Indeed, the com-
position of continuous piecewise linear functions is a continuous piecewise lin-
ear function.

The converse now is trickier and it is based on Theorem 1 of [WS05], saying
that every continuous piecewise linear function f : R% - R can be written in
the form

p
@) = 2, s maxg;(x),
=1 S

where s; € {—1,1}, g3, ..., gk are affine functions and subsets S; C {1,..., k} for
k € Nand j = 1,..., p (not necessarily disjoint) where each S; is of maximum
cardinality d + 1.

Then, we notice that the functions MaXes, ; are piecewise linear convex
functions. In addition, each one of the functions MaXies; 8 has at mostd + 1
affine pieces. Hence, the formula for f : R¢ — R above says that any con-
tinuous piecewise linear function can be thought of as a linear combination of
piecewise linear convex functions with at most d + 1 pieces.

Recall that {g;} are affine functions. By Lemma each of the maxi-
mums maXes; 8; (each one with at most d + 1 terms) can be represented by a
ReLU DNN with at most [log,(d + 1)| +1 depth. By Lemma we have that
additions of ReLU DNNs each one of depth [logz(d + 1)] + 1 at most, can be
represented by a ReLU DNN with at most depth [log,(d + 1)] + 1, completing
the proof of the theorem. O

Theorem 16.15 ((ABMM18]). Let 1 < q < oo. Consider a function f €
LYRY), ie., f issuch that |flly = (faa |f(x)|qu)1/q < 0. Then, there is a
ReLU DNN with at most [log,(d + 1)| + 1 hidden layers that approximates f in
L1 to arbitrary accuracy.

Proof. By classical density results (see for example [RF10]) the space of con-
tinuous piecewise linear functions is dense in LI(R%) for any 1 < q < co. This
means that given f € LI(R%) and some given ¢ > 0 there is a continuous
piecewise linear function, say & : R? — R, such that

1) = h()lq < e.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



16.3. Universal Approximation Results Using ReLU 269

But, by Theorem we have that any continuous piecewise linear func-
tion RY — R can be represented by a ReLU DNN of at most [log,(d + 1)| + 1
depth. This concludes the proof. O

We conclude this section with a result by [Han19] that showcases aspects
of the tradeoffs between deep-and-narrow ReLU DNN and shallow-and-wide
ReLU neural networks.

Theorem 16.16 ([Han19]). Consider a ReLU neural network m : [0,1]¢ —» R
with input dimension d, output dimension 1, and with a single layer of width
n. Then, there exists another ReLU DNN defined as in Definition which
computes the same function and has input dimension d, output dimension 1, n+2
hidden layers, each one with width d + 2.

This result is interesting especially in the case of n > d. It basically says
that the width goes from n to d + 2 but at the expense of an increase in the
number of hidden layers from 1 to n + 2.

Proof. Let T) for k = 1,...,n be the affine functions computed by the hidden
neurons in the single layer of f. Namely, we set Tj(x) = Z?zl w*x; + bk, The
neural network m(x) (we ignore for notational convenience to explicitly denote
the dependence on the parameter 6) can be represented as

m(x) = ReLU (b + ckReLU(Tk(x))).
k=1

By continuity and since [0, 1]¢ is a compact set, there is ' > 0 large enough
so thatforallk =1,...,nand x € [0, 1]d,

k
T+ ). ¢l ReLU(Tj(x)) > 0.

i=1
Consider now the affine transformations
T(x) = (x, T (x),T),
Thio(x,y,2) =z—T +b,
Ti(x,y,2) = (x, Tj(x),z+cJ7y), j=2,...,n+1
These are the affine transformations that will define the new ReLU DNN

per Definition [[6.11. Let us confirm this. For the kth layer (k < n + 1), the
activation is

Mo (xX) = (ReLU o Ty o -+ o Ty o ReLU o T;)(x)

k-1
= (x, ReLU(T(x)), T + D] ciReLU(Y}(x))).

i=1
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So, for the last layer we shall have

il (y42)(X) = ReLU o Ty 5 0 (1t (y41))(X)

n
=RelLUo T}, (x, ReLU(T41(X)), T + )] ciReLU(T,-(x)))

i=1

= ReLU(T + ) ¢'ReLU(Tj(x)) — T + b)
i=1
= m(x),

which concludes the proof. O

Smooth functions can approximate to any given accuracy positive contin-
uous functions and therefore the same is true for ReLU DNNs with a single
hidden layer, see for example [MP16] for a related discussion. With that in
mind Theorem directly gives rise to the following result.

Theorem 16.17. Consider f : [0,1]¢ = R, to be a positive and bounded con-
tinuous function. Then, there exists a ReLU DNN with input dimension d, output
dimension 1, and width of hidden layer being d + 2 that approximates f to arbi-
trary accuracy.

We conclude this section with a result showing that for positive, continu-
ous, piecewise linear, convex functions f, the width upper bound is d + 1.

Theorem 16.18 ([Han19)]). Let f : [0,1]¢ = R, be the function computed by
a ReLU neural network with arbitrarily given width. Assume in addition that f
is convex. Then, there are positive affine functions g; : [0,1]¢ — R such that we
can write

f(x) = g(x) = max g;(x),
1<i<N
where g is a positive convex function. In addition, there exists a feed forward

ReLU DNN m : [0,1]¢ = R, with hidden layers width d + 1 and depth N that
computes f exactly.

Proof. The representation of f as the maximum of positive affine functions
follows by Theorem [16.14.

We want to show that f can be computed by a ReLU DNN that has hidden-
layer width d + 1 and depth N. For x = (x1,...,%4) € R%, x4,; € R, and
i=1,...,N,letus define

T; @ R s R with Ti(x, xg41) = (%, 8i(X) + Xg11)
and

T 1 RI s R with Ti(x, Xg41) = (X, —8i(X) + Xg41) -
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Next we compute that for x € R% and for any function x : R% — R,

T; o ReLU o Ti(x, x(x)) = T;(x, max{x(x) — gi(x), 0})
= (%, gi(%) + max{x(x) — g;(x), 0})
= (%, max{x(x), g;(x)}).

Defining now G; = T; o ReLU o T}, the latter relation implies that under the
mapping G;, the graph of x — x(x) is the graph of x — max{x(x), g;(x)} when
viewed as function on R4 .

Now that we defined Gy, ..., Gy, let us also set

Go(x) = ReLU(x,0),

IN+1(X, Xg41) = ReLU(xg41).

After these definitions, we are ready to construct the ReLU DNN represen-
tation of f(x) = g(x) = max;;<n &;(x). In particular, we see that we can write

lrgii‘)l{]gi(x) = (Gn+1°9n 20 G10Gp) (X),

which has input dimension d, hidden layer width d + 1, and depth N. O

16.4. Brief Concluding Remarks

In this chapter we presented the main uniform approximation theorems. The
main references here are [[Cyb89, HSW89, Hor91, KH91] for classical results
and [GWFM*13, ABMM18, Han19, Yar17, SH17] for some more recent de-
velopments using rectified liner units (ReLU) as activation functions. The abil-
ity of ReLU DNNs to represent continuous piecewise linear functions and re-
lated uniform approximation results was observed in [GWFM*13]. Later on,
[ABMM18]| improved upon those results with an upper bound on the depth of
such ReLU DNNs. [Han19] found width and depth upper bounds for ReLU
DNN representations of positive continuous piecewise linear functions. In
[Yarl7] it is shown that deep ReLU networks can have advantages when it
comes to approximation of smooth functions compared to shallow neural net-
works. In [SH17] the author shows that the depth (number of layers) of the
neural network architecture is important when it comes to ReLU activation
functions. It is shown in [SH17] that, for any network architecture satisfy-
ing a certain condition, one can obtain good approximation rates. See also
[Cal20] for a more extensive exposition to universal approximation theorems.
The proofs in Section are based on [Cyb89| and [HSW89]. The proofs in
Section are based on [ABMM18] and [Han19].
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16.5. Exercises

Exercise 16.1. Prove that the logistic function o(x) = f is discriminatory
ex

in the I?-sense.

Exercise 16.2. Consider the Heaviside function,
1, x>0

H® =10 r <o

(1) Show that the function H(x) is discriminatory in the I?-sense.
(2) Show that any function f € I*(I;) can be approximated by a one-layer
perceptron model of the form m(x; 6) = Zl,jzl c"H(w" - x + b") with
6 = {(c",w", b™)N_,} for N large enough.
Exercise 16.3. Let f be a continuous function f : [a,b] — R. Prove that
for every € > 0 there is an equidistant partitiona = x5 < x; < -- < xy =D

such that a piecewise linear function f* that passes through the points
{xn, fOxp)IR=y satisfies

sup [f(x) = f*(0)| <e.

x€la,b]

Exercise 16.4. Consider the function f(x,x,) = max{x;, x,}. By using the
X1+X; + |61 =3

that there are p € N, ¢!, wb, w>! € R so that

representation max{x;, x,} = , show in a constructive manner

P
f(x1,x5) =) ¢l ReLUwlix; + wix,).
i=1
Exercise 16.5. Prove that the function f(x;,x,) = max{x;, x,}, with x; € R
and x, > 0, is implementable by a ReLU DNN that has hidden layer width 2,
depth 2 and output dimension 1. Namely, identify the linear transformations
T, Ty, T; so that f can be written in the form ([[6.1) and establish that identity.

Exercise 16.6. Consider a one-layer neural network with ReLU activation func-
tion,

N
m(x;0) = Z c"ReLU(x + 6™) + b.
n=1
Let m € C([a,b]; R) be a target function. Show that for every € > 0, there
exist ¢, 0™ and N > 1 such that
sup |m(x;0) — m(x)| <e.
xela,b]
Exercise 16.7. Let y = m(x). The universal approximation theorem states that
for every € > 0 there exist a neural network m(x; 6) and a parameter choice
0* such that E¢x yy [|Y — m(X;0%)||] < €. If we estimate © using stochastic
gradient descent, will it converge to 6%, and why?
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Chapter 17

Convergence Analysis
of Gradient Descent

17.1. Introduction

Aswe have seen in the preceding chapters, we must search over classes of deep
neural networks to find parameters which best fit our ground-truth data. A loss
function helps us compare choices of parameters and (informally) leads to the
best parameters. Gradient descent algorithms, which (informally, again) itera-
tively improve upon parameter choices, provide the mathematical underpin-
ning of numerical methods to minimize the loss function.

In this chapter we present the classical theory of gradient descent-type al-
gorithms. In particular, we will quantify the convergence and performance of
gradient descent optimization. This will allow us to understand tradeoffs be-
tween various types of gradient descent algorithms.

Our goal in this chapter is to present the main results with an eye towards
the developments in Chapter [[§ where we study convergence properties of sto-
chastic gradient descent, which is what is typically being used in deep learning
algorithms.

The results of this chapter are informative. In reality, loss functions are
oftentimes unknown and very high-dimensional and may have degeneracies.
In Section we discuss the gradient flow and convergence properties under
convexity assumptions. Convergence results in the nonconvex case are dis-
cussed in Section [[7.3. Accelerated gradient descent methods such as Polyak’s
and Nesterov’s methods are discussed in Section [[7.4.

273
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274 17. Convergence Analysis of Gradient Descent

17.2. Convergence Properties under Convexity Assumptions
Consider a loss function A € C! and the ordinary differential equation
(17.1) 6 =—-VA(6), 6(0)=6,.

An easy calculation shows that

%A(G(t)) = 6(1VAB) = - [VAGBW); < 0.

Thus, we have that %A(G(t)) < 0 which means that as t increases, A(6(t))

decreases. This is a good thing! The relation ([L7.1) is gradient flow and A acts
as a Lyapunov function for the dynamical system (I7.1). However, the fact

that %A(@(t)) < 0 does not guarantee convergence. It only says that it is non-

increasing.
Now let us discretize (I7.1)) to get
(17.2) Ok+1 = Ok —nVA(Sy),

where 7) is the discretization step of the gradient flow and it is also called the
learning rate. 1t can also be viewed as the timestep size in a discretization of
the gradient flow. In fact, relation ([[7.2) is called gradient descent (GD). If we
know the structure of A, generally speaking, a good choice for the learning rate
7 is one that does not overshoot the minimum 6*, but we will come back to that
point shortly.

17.2.1. Convexity and Convergence Criteria. Consider a loss function A :
Re - R,a € [0,1] and 6,8’ € RY. Let’s start with some definitions.

Definition 17.1 (Convexity). We say that the function A is convex if
A@d+ (1 —a)f") <aA(©)+ (1 —a)A(E),
with a € (0,1), or equivalently if A € €!
A@") > A(B) +(VA(B), 8 —6).

Note that the second inequality above can be derived from the first inequal-
ity by rearranging the terms and letting « — 0.

Definition 17.2 (Strict convexity). We say that the function A is strictly convex
if
A@d+ (1 —a)f") < aA(©)+ (1 —a)A(E),
with a € (0,1), or equivalently if A € €!
AB') > A(B) +(VA(6),0" - 0).
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Definition 17.3 (Strong convexity). We say that the function A is strongly con-
vex if there exists 0 < y < oo such that A(6) — §||9||% is convex. Oftentimes, we
shall call refer to this as y-strong convexity.

Let us now discuss some facts and conditions related to optimality.

« We say that 6 is a local minimum if for every 6’ in the neighborhood
of 6, A(6) < A(E).

» Local minima are global minima for convex functions.

+ Global minimum is unique for strictly convex functions. Indeed, let
6, 6’ be two candidate global minima, and apply the definition of strict

convexity to 8” = e+Te' to get A(6") < é(A(G) + A(0")) = A(B). This
immediately gives us a contradiction.

« If 6 is a local minimum and 6 —~ A(6) is once differentiable, then
VA(B) = 0. The latter condition is sufficient for a global minimum if
A is convex.

Remark 17.4. Note that if A is convex the following hold for all 6, 6":
A() = A(6) +(VA(6),6" - 6),
AB) > A(0')+(VA(O'),6—-06").
By adding these two expressions we get that
(VA(B) — VA(E'),86 -6') > 0.

This is called monotonicity of the gradients and it says that the gradient of
A and 6 change in the same direction.

17.2.2. Newton’s Method. Let A € €2 and let 6, be an initial guess of a min-
imizer. Assume that A is convex around 6,. Using a Taylor series expansion,
we have

A(O) = A(6o) + (6 = 80)VA(Go) + %(9 — 60)2V2A(60)(6 — 60);

where the third-order term has been ignored.

At the same time, we also have by a Taylor series expansion again (ignoring
the error term),

(17.3) VAB) ~ VA(B,) + VZA(6,)(6 — 6;).

Recall that at a minimizer 6* of the objective function the gradient
VA(6*) = 0. Then, substituting 8* for 0 in the equation above yields

V2A(6,)6* =~ —VA(6,) + V>A(6,)b,.
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If in addition, we have that the matrix V2A(8,) is invertible (i.e., it does not
have zero eigenvalues), then

6" = 6, — (V2A(80)) ' VA(By)

gives the minimum of the quadratic approximation ([[7.3) to A(6). This obser-
vation motivates the update,

-1
Oks1 = Ok — (V2A(B)) ~ VA(6y),
which is called Newton’s method.

Newton’s method converges to the minimum of A faster than gradient de-
scent does, but it requires the computation of the Hessian at each iteration,
which can be a very costly step.

17.2.3. Convergence Rate Results for Gradient Descent. Let us now try
to answer some basic questions:

« How quickly does gradient descent converge?

« Can we pick learning rates without overshooting?

« How many iterations do we need in order to be within some given
distance of the minimum?

We visited some of these questions to a certain extent in the case of logistic
regression in Chapter J for original versus normalized data. In this section
we will consider these questions in a more general context. To answer these
questions, we first impose certain assumptions to at least be able to discuss
those questions in stylized settings. We assume that the parameter space is a
Euclidean space, 6 € © with © = R4.

Assumption 17.5. We assume that the loss function A is L,-Lipschitz in the
sense that for all 6,0’ € 0,

IA(6) — A(6)] < L.[I6 — &',
Assumption 17.6. We assume that the gradient of the loss function VA is
L-Lipschitz in the sense that for all 6,6’ € 0,

IVAE©) = VAE)]2 < L|IO — &',

Notice that Assumption implies that
(VA(B) = VA(6'),6 —6') < L[|6 - ¢'|I3.

Convex optimization and convergence of gradient descent for convex prob-
lems is a classical topic in the literature, see for example [Ber03, Nes04, Nes07].
Below we present some of the main results of the literature, building towards
the convergence results for stochastic gradient descent, which are discussed in
Chapter [[§. In this section we shall see two things:
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« In Lemma we show that for gradient descent under Assumption
with learning rate sufficiently small compared to the Lipshcitz
constant (nL < 1), we have that

k 1 %k
A(B) — A(O") < 277_k”6° — 613,

where 6* is a global minimum of the loss function A(:). This result

means that gradient descent will result in the loss function converging
to its minimum value as the number of iterations k — co.

« If in addition, we assume that the loss function A is strongly convex
(Definition [[7.3), then we get a rate of convergence. In particular,
as we shall see in Lemma [[7.14, if the learning rate is even smaller

(n< i), thenforA =1 — nﬂ < 1, we have that
L+y L+y

16 — €*113 < 21680 — 6*[13.

We first present a few preliminary results that will naturally lead to these
conclusions.

Lemma 17.7. Under Assumption we have for all 6,6' € O,
IA(6") — A(6) — (VA(6),6" - 6)| < %Ile’ — 6lI3.

In particular, we have that A(6") — A(6) < (VA(B),8' —0) + §||6’ - 03

Proof. Using Taylor’s theorem, we can calculate that
A©") —AO) = fl (VA + p(6' —0)),0" — 0)dp.
0

Subtracting (VA(6), 6" — 6) from both terms yields

A©") — A(B) —(VA(6), 8 —6) = fl (VA + p(6' —0)) — VA(B),0' — 0)dp.
0

Therefore, we obtain
|AE") — A(6) — (VA(D), 6" — 6)|

1
< f IVA(® + p(6" = 0)) = VAO)I, 16" — Ol dp
0

1
SL( f pdp) 16" — 6|32
0

Ly
=l - i3,

completing the proof. O
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Lemma17.8. Let Assumption hold. Consider the setting of gradient descent
and choose a learning rate 1 such that nL < 1. Then, we have

Air) = ABY) < —2I VA3

Proof. By Lemma we have that
A©') = A©) < (VA(B),6' — 8) + |6’ ~ 813,

Hence, using the update equation 6, = 6 —nVA(6) from the GD algo-
rithm, we get

L
AB41) = ABk) < (VA(BK), Orcs1 — Bi) + S 16k41 — Bkl
2 Ly 2
= VA3 + - IVAGWI3
< —IVAGYIZ + ZIVAGOI3

= -2IvA©OI3,

where we used the assumption nL < 1 to derive the third line. O

Lemma 17.9. Let Assumption hold and let 6" be the global minimum of
the convex loss function A(-). Consider the setting of gradient descent and choose
learning rate n) such that nL < 1. Then, we have

1
A(Ok+1) = A(EY) < b7 (I6x = 613 = 1841 — €°112).-

Proof. We begin by expanding the square
161 — 6* = VA3 = 16k — 6*[15 + INVABI3 — 2 (VAL Ok — €%),
which then leads to the identity

1 1
A C 6*>=_Enek_e*_’?VA(@k)”%'i‘%Hek - 9*||2+gIIVA(9k)II§'
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Then, Lemma (which uses the assumption 7L < 1) and the aforemen-
tioned formula for (VA(6y), 6, — 6*) yield

A1) — A7) < MG — A©) — ZIVAGI3
< (VA®Y. 0 — 0°) = ZIVAGOI3
1 1
= 316k =6 = nVAGI + 516~ I
+ 2IvA®VI3 - 2IVAGOI3
1 1
= ~3 16 =613 + 310~ 6°I3,

completing the proof of the lemma. Note that the second line above uses the
definition of convexity and the last line uses the gradient descent equation
Ok+1 = Ok —nVA(B). O

This leads to Lemmas [[7.10 and [7.11 which demonstrate that gradient
descent makes progress towards the minimum.

Lemma 17.10. Let Assumption hold and let 6* be global minimum of the
convex loss function A(-). Consider the setting of gradient descent and pick a
learning rate v such that nL < 1. Then, we have that

10k41 — €°112 < 16k — O°113-

Proof. The prooffollows directly by Lemma because, since 6* is the global
minimizer, A(6y,q) — A(6*) > 0. O

Lemma 17.11. Let Assumption hold. Consider the gradient descent update
equation 6y, = 6, — nVA(6y) with learning rate n) such that nL. < 1. Then, we
have that

* 1 *
A(Br) — A(6") < 277_k”60 - 6*3.

Proof. By Lemma we have that

1
A(6;) — A(6%) < o (I16;—1 — 6*[15 — ll6; — 6*[I3) -
Averaging over i € {1,..., k}, we then obtain
ZA(G ) — A(6") < Ik - Z (l6i—1 —€*15 — ll6; — 6*1I3)

< 5Ele =o'l
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where we have used a telescoping series and the fact that the final term
|6k — 613 < 0.
Since A(6y) < A(6;) for alli € {1,...,k} (see Lemma [[7.§) we have

1 k
A < ¢ Z}l A(8).

Therefore, we obtain

A — AE*) < 160 — 6|3,

)< 27 k
completing the proof of the lemma. O

Remark 17.12. The conclusion from Lemma is that to find 6* so that
A(B) — A(6*) < € for a convex loss function A, then we need O(1/¢) steps.

Lemma 17.13. LetAssumption [[7.6 hold. Assume that A is strongly convex, i.e.,
there exists y > 0 so that A(B) — = || 0|13 is convex. Let the learning rate 1) be chosen

such thatn < :. Then, we have that
Y

10 = 6713 < (1= 1725 ) 6 — 1.

Proof. Using the algorithm 6,,; = 6, — nVA(6;) and expanding the square,
we get

I18k+1 = €113 = 18 = nVA®K) — 6*[3
= 16k — 0*113 + * VA3 — 27 (VA(By), 6 — 6%).
For the last term, we use the definition of strong convexity of A to get that
(VAOi), 6 — 0) 2

IIVA(Gk)IIz 16k — 6°13.

L +’/L+

Hence, we can continue the expression for ||0;4; — 6*|3 to get
L 2
(B = €715 < (1= 2= ) 16— 6°1 +1 (1= 15 ) IVA@WIB

2yL
<(1-n7Z Jlec- el

where to get the last inequality we used the assumption 7 — f < 0. This
Y

concludes the proof of the lemma. O

Lemma 17. 14 Let Assumption [17.6 hold and assume that A is strongly convex.
Letn <= and defined =1 — 77 < 1. Then, we have that

16k — 6113 < /1"||60 - 6°[13.
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Proof. It follows by iteratively applying Lemma [[7.13. O

Remark 17.15. Note that strong convexity yields faster convergence than plain
convexity. Let ussetn = L%y Using the inequality

k k /L
#=(1-nfhs) = (1-4ghsp) e

Lemma yields the bound

— 4kt
6 — 6%[3 < e @716y — 6|3

Suppose we want error €. Then, with convexity we will need O(1/¢) steps.
On the other hand with strong convexity we will need O(log(1/¢)) steps.

. . . 2 .
Also, if we again consider 7 = P then going back to Lemma [[7.14, we
¥

have that
L 2
-—-1
2yL
A=1-1 YL _|r
4

Note that 4 is a decreasing function of % Hence the convergence is faster

L. L N .
when - is small. Large — means that some directions of the loss function A are
Y Y

highly curved whereas others are flat. So picking a small scalar 7 would not
work equally well for all regions.

If step size 7 is too large, then the algorithm will overshoot in highly curved
regions. If, on the other hand, 7 is too small, the progress of gradient descent
will be slow.

Allin all, the number 5 isimportant! We may also recognize the parameter

largest eigenvalue s .
= ZETIEW™ > 1 as the condition number for the Hessian of the loss
smallest eigenvalue

L
y .
function A.

17.3. Convergence in the Absence of Convexity Assumptions

Let us now return to the gradient descent algorithm ([17.2)
Ok+1 = Ok =V A(E)

and study convergence properties of gradient descent when A(6) is noncon-
vex. As we shall see, we will need to choose the learning rate 7 to decrease
in a specific way. In particular, the learning rate must satisfy the conditions
2:;1 Nk = oo and Zzo:l ni < oo (see [BT0Q]). This turns out to be a good learn-
ing schedule, and we will return to this in Section where we will study

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



282 17. Convergence Analysis of Gradient Descent

stochastic gradient descent. We note that an example of a learning rate satisfy-

o .
2 for finite constants 0 < Cy, Cy, C, < oo.
C+Cyk

We shall prove that with those choices for learning rates and, if we further
assume that Assumption holds and that there is some L; < oo such that
IVA(O)l, < L, then

ing these conditions is n;, =

I}im A(By) exists, and that
lim [VA@L)], = 0.

Note that we are not claiming that lim,_, , 6 exists. Building towards the
aforementioned result, we first write

1
A1) = AOk) — i f (VABk — s VABK)), VA(6)) ds
0

= A(Bk) — il VABII3

1
e f (VA@Ex — sTRVA©,)) — ABL), VABY) ds.
0

Then, if we set §,..; = —1k fol (VA(B — sni VA(BY)) — A(Bk), VA(By)) ds,
we can obtain the relation

ABk+1) — AOk) + i VAGI3 = &kt

Using the definition of &, ; and Cauchy-Schwarz inequality (see Appendix
B), we obtain

1
€ice1] < M / IVAGK — smiVA6K) — ABILII VA 2ds
0

1
<RLIVAGOIE | sds
0
<nmiLL},
where in the last inequality we used the assumed Lipschitz property of VA from
Assumption as well as the global boundedness assumption | VA(8)|, < L;.

Since we have further assumed that Zzozl ns < oo, we immediately obtain
that Z:;l |&x4+1] < o0, which is due to the fact that R is a complete metric space

. . . k . k
which gives that limy_, o, 3., _, §i exists. Letus set Ex = ), _, §i. Then, we
rewrite

ABk+1) — A6k) + Ml VAGI3 = Exq1 — B
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We know that & = lim,_, Ej exists. By definition, this means that that
for a given € > 0, there exists an K(¢) such that for k > K(e),

1T — Eoo| < €/2.

Therefore, for K(¢) < k; < k,, a telescoping series argument gives

A(ekz) - A(ekl) < |(Ek2 - :oo) - (E‘kl - E<>o)|
<e

Taking first k, — oo and then k; — oo yields that
lim sup A(6y,) < liminf A(6y,) + €.

k> kyi—
Taking now € — 0 we obtain

lim sup A(6y) < lillcn inf A(6),

k— o0

and since, trivially the reverse direction lim infy _, ., A(6) < limsup, _  A(6y),
automatically holds, we obtain that indeed lim,,_, ., A(B}) exists.

Let us next prove that lim_,, [[VA(6y)|l, = 0. We recall the relation
ABps1) = ABK) + MillVAGIE = Exyr — Ei-

Let us suppose that {_ = liminfj,_, o, [[VA(By)|l, > 0. Then, there is some
K(¢_) > 0 such that for k > K(¢_) we shall have

IVA@I > 5¢-

Using a telescoping series summation, we obtain

k-1

ABY) = ABke )+ D, lVAGKIB = Bk — Ex)-
k'=K({_)

Rearranging the latter relation gives

k-1 1. 3\2 k-1
> ome(56) < X melvAGI
k'=K(¢_) k'=K(¢-)

< (A(BK) — A(Bk()) + (B — Eg))
< |AGK) = Ak )| + |Ex — Bkl -

Therefore we have that

k-1
1
Y e < — A6 = ABk)| + [k — Bkl
")
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284 17. Convergence Analysis of Gradient Descent

Since now we have already established that lim;._, , A(6)) and lim,_, , B
exist and since by assumption Zzozl 1k = 00, we obtain a contradiction under
the assumption {_ > 0. Hence, we have obtained that

lilgn inf [VA(E)|2 = 0.

To conclude the proof, it remains to show that lim sup, ___[[VA()|l, = 0.
Let us on the contrary assume that

¢, =limsup |[VA(By)| > 0.

k—o0

Since liminf,_, ., |[VA(6y)|, = 0, we have that |VA(6,)|, has an infinite
number of oscillations above gg’ + and below %{ +- This means that there are

0 <ky <ki <k; <kj < ---such that
° limg_)oo kg_ = Hme_)oo kz_ = 00.
1
* IVAGI2 < S84
¢ 38 SIVAGOI < 3¢, for k7 <k < k.
2
* IVAGI2 > S84

We then write

k-1
D0 (IVAGK DIz = IVAG)IL) = IVAG)I2 = IVAGK)I
k'=k;
2 1
> §§+ - §§+
1
= §§+
On the other hand

VA DNz = VA2 = [VA(OKk11) — VABK) + VAGK)Il2 — [VAGK)I2
< IVABk41) — VAOI2
< L{|Oks1 — Okll2
< LnilIVAGW) 2
< LLyn.

Therefore, we have obtained that

kf-1

1
§§+ <LL, Z Nk -
k'=k;
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Note that
k-1
D7 el VAG)IE < — (ABkr) — AB)) + (Bir — Ex;)
ki=k;
< |A@kr) = ABk:)| + |kt — B |
and that
kf-1 kf-1 1 2
Y wlVA@IE > Y e (3¢) -
k'=k;+1 k'=k;+1
So, we have

2

ki-1 1 2
Z nk,(— +) < 1A — MG+ [Ei — Bl + i (384 ) -

which leads to
kf—1
Z Mo < = (|AB) = AB)| + |Exs — Bi=|) + k-
K=k (‘§+)

So we have

k-1

_§+ <LL, Z Nk
ki=k;

LL L ’
: L ('A(@k;) = A + Bt — Biz | + iz (§§+> ) '
(5¢+)

Since limy_, ., A(6k) and lim,_, ., & exist and lim_, ., 7 = 0, we have

IA

lim (JA) = A + [Bis — By |) = 0.

However, this is a contradiction to the assumption that there are an infi-
nite number of oscillations above gg”_ and below %g’ _. The latter then leads

to a contradiction to limsup,_, _ [[VA(E)ll, > 0. Therefore, we have indeed
obtained that

lim sup |[VA(B)|, = 0.

k— oo

So, all in all, we have obtained the following result.
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Theorem 17.16. Assume that Assumption holds and that there is some L, <
oo such that |VA(O)|, < L,. Assume that the learning rate 7, is chosen so that

> M =0 and Y, n% < co. Then, we have
%im A(By) exists, and that

Jim [[VA@L)Il> = 0.

We note that Theorem proves convergence to critical points of the loss
function in the case of the standard gradient descent algorithm. In Chapter [[§,
we will revisit this issue in the case of stochastic gradient descent, see Theorem

therein.

17.4. Accelerated Gradient Descent Methods

17.4.1. Polyak’s method. Polyak’s idea constitutes giving particles velocity;
see [Pol67]. Let v, = 6,1 — O be the velocity (change) in 6. Then, we can
write vy = Opy1 — O = —VA(O,). What about now employing Newton’s
second law of motion and giving particles some velocity?

We will see two derivations of Polyak’s method. Both derivations attempt
to account for velocity (change) in 6 albeit they have a different starting point.

In the first derivation, we can write as an approximation to the derivative
for z small

— 20k + 61
77 b
which, by rearranging, leads to (making the ~ sign to be an = sign)

Ok+1 = Ok —NVA(O) + (Ok — Ok_1)-

—VA(8y) ~ Ot

Now augment the latter by an additional hyperparameter p as
Oks+1 = Ok = nVABL) + p(6k — O—1)-
The latter can be written equivalently as

U1 = (1 + )6k — POk—_1,
Ok+1 = ux —VA(6k)
or, equivalently,
U1 = pug — VA(6),
(17.4) Ok+1 = Ok + Mgy

The second derivation (that is perhaps mathematically better motivated) of
Polyak’s momentum method is as follows. Let us start with gradient descent
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Figure 17.1. Anirregular road that naturally has many local minimums and
local maximums and many possible different directions of motion. This mo-
tivates the idea of considering particles with velocity to explore loss functions
with such characteristics. (Photograph by the second author.)

for the loss function A(6)

Ok+1 = Ok —nVA(Oy).

To avoid small fluctuations in the landscape of A (think for example of Fig-
ure [[7.1), we replace VA(O) by the exponential moving average

k
(17.5) Bis1 =6k — 7 D, PFK (1= p)VAGK).
k=0

At first sight this formula seems strange, but it relies on a rigorous math-
ematical result, oftentimes referred to as the Tauberian theorem. The Taube-
rian theorem connects exponential averaging and regular averaging. Note that
A(6) is a regular average. This is Lemma [[8.17 which is presented and proven
in Chapter [§. Lemma says that if {£; }xen 1S @ bounded sequence such
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288 17. Convergence Analysis of Gradient Descent

that

k
= def 1
= lim — E ,
g k,/ k =1 gk

is well defined, then we have that
lim(1 — k' y = _.
/1( p) k’z ;OP §=§

Hence, one can indeed motivate ([[7.5) as another approximation to a reg-
ular average. The next step is to add an auxiliary equation for the evolution of
the velocity of 8. For this purpose, we define

k
uger = (1 —p) Y, K VA@BK),
k'=0
with uy = 0. Then we have that
k—1
U1 = (1—p) kZO PFK VA + (1= p)VAGL)
k—1
=p(1—p) kzo PR Y AB) + (1 — p)VA(BK)

= puy + (1 — p)VA(6y).

We have thatif p ~ 1, then uy; & u; (representing the memory), whereas
ifp ~ 0, thenu,,; ~# VA(E) (update). Hence, we have arrived at the equations

U1 = pug + (1 — p)VA(E),
Ok+1 = Ok — Milk41
with ug = 0. We can of course rescale and define u; = —ukﬁ, in which
-
case we get (for p # 1)
Uy 1 = puy — VA(Gy),
Oks1 = Ok + 0ty q,

where we define the new learning rate ' = 7n(1 — p). Essentially the latter is

the same as ([7.4).
Note that by defining il = n'u;_the latter can also be written equivalently
as
Gy = Pl — 7' VA(B),
(17.6) Ok+1 = Ok + k1.
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Remark 17.17. An analysis similar to the plain GD method shows that if we
want an error of order €, then Polyak’s method requires O (1 /\/E) steps for con-

vex loss functions A and O ( % log(1/ e)) steps for strongly convex loss func-

tions A. However, Polyak’s method may be unstable and not converge because
when the iterates overshoot the global minimum, the inertia is different than
the gradient.

17.4.2. Nesterov’s method. This is an improvement of the classical momen-
tum’s Polyak method which tries to remove the oscillations when we are close
to the global minimum, see [Nes83, Nes04]. The idea is to include damping
(i.e., friction) in the motion. In particular, the effective force reduces the veloc-
ity without slowing down the weights much. To be exact, let us recall Polyak’s
method in the form (7.6) (ignore now the hat and prime notations):

Uprr = pute = NVA(6K),
Ok+1 = Ok + Uy

The idea is to approximate the next step in the gradient. Therefore, we

replace VA(6y) by an approximation of the next (probably better) point
VABr41) = VA + uky1) = VA (6 + puy —nVA(GK))
~ VA + puy).

Nesterov’s idea in the latter calculation was that VA(8) + puy) gives better
performance near the minimum where VA = 0. Note that the term VA(6; +
puy) computes the gradient at the current velocity which prevents overshoot-
ing in the neighborhood of the global minimum. So, we have the algorithm

Ok+1 = Ok + Upy1,
Ugy1 = pug — NVA(Ey + pug).

If we now define 8, = 6, + pu,, then we get the alternative representation
of Nesterov’s algorithm

61 = Ok + p(Upyr — Uk) + Upp1,
Ugs1 = puk — NVA(G)).

Some related remarks are in order.

Jm

Remark 17.18. A typical choice is to set p = \/_—: where m = % is the condi-
m

tion number. In practice we do not know the condition’s number m. A typical
value is p = 0.9 in most deep learning libraries. This choice is motivated as
follows. If m = 1, then p = 0 and no inertia is needed. If m > 1, the Hessian
of the loss function is badly conditioned and a value of p ~ 1 would be needed.
So, choosing a value for p close to 1 is well motivated.
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290 17. Convergence Analysis of Gradient Descent

17.5. Brief Concluding Remarks

There are many excellent sources that cover in depth the classical topic of con-
vergence theory for the gradient descent algorithm and related optimization
results; see for example [Ber03, Nes04, Nes07] and the lecture notes [Cha22],
which also partially motivated aspects of the presentation and proofs of lemmas
of Section on convergence rates for gradient descent. In this chapter, our
goal was to present the main results paving the path towards Chapter [L§ where
we study convergence properties of stochastic gradient descent (SGD), which
is the foundation of many deep learning algorithms.

17.6. Exercises

Exercise 17.1. Consider the algorithm x;,; = x; — nVA(x,) with » > 0 and
A a continuously differentiable function. Show that

(1) If the sequence {x} converges, then VA(x;) — 0.
(2) Iftheseries Z:; o VA(xy) converges, then the sequence {x } converges.

Exercise 17.2. Consider the classical gradient descent problem with learning
raten > 0,

Xjer1 = X = NV A(X),
where A a continuously differentiable function.

(1) Let k = nA; and n = AA,. Show that as A; — 0, the continuous time
formulation of the gradient descent algorithm is the ordinary differ-
ential equation x; = —AVA(x;).

(2) Let A(x) = %lle — b||3, where A € R™*™2 and b € R™. Show that
the corresponding continuous time problem converges to the least
squares solution (ATA) 'ATb as t — co.

Exercise 17.3. Let A : R™ — R be a convex function with minimum at 6* €
R™. Assume that 6(t) solves the gradient flow ODE,

6 = —VA(9),
6(0) = 6,.
Show that
8o — 0° 3
INCORINCOPS i

Exercise 17.4. Assume that A(0) is strongly convex. Prove that the gradient
descent update always decreases the objective function.
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Exercise 17.5. Assume that the gradient of the loss function VA is L-Lipschitz,
and let 6* be the global minimum of the loss function A(-). Prove that for any
0 €0,

A~ A®) < 5 IVA@)I.
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Chapter 18

Convergence Analysis
of Stochastic Gradient
Descent

18.1. Introduction

Gradient descent, whose convergence we analyzed in Chapter [[7, calculates
the gradient on all available data samples at each optimization iteration and
thus becomes computationally expensive when the number of data samples is
large. For large datasets, gradient descent becomes computationally infeasible
since a single optimization iteration may require calculating the loss gradient
for millions or even billions of data samples. This motivates the method of sto-
chastic gradient descent, which at each optimization iteration only calculates
the gradient of the loss on a randomly selected subset of the dataset. For large
datasets, stochastic gradient descent has a substantially lower computational
cost than gradient descent. Stochastic gradient descent can be viewed as us-
ing a noisy, stochastic estimate of the direction of steepest descent for the true
objective function (which is evaluated on the entire dataset).

The key idea is at each optimization iteration (i.e., for each parameter up-
date) to use a different randomly selected subset of the dataset. Thus, after the
stochastic gradient descent algorithm has run for long enough, most likely all
data samples in the overall dataset would have been used multiple times, and
thus on average the effect should be the same as that of using the full dataset
in gradient descent. Due to the fact that we randomly select a subset of the
full dataset for every parameter update, the algorithm now is called stochastic
gradient descent (SGD) instead of gradient descent (GD).

293
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294 18. Convergence Analysis of Stochastic Gradient Descent

We discussed SGD in Chapters [] and § without studying its theoretical as-
pects. In this chapter we elaborate on the convergence properties of SGD, we
examine how SGD compares with classical GD, and we also present and dis-
cuss more sophisticated SGD methods such as SGD with momentum, AdaGrad,
RMSProp, ADAM, and AdaMax.

18.2. Preliminary calculations

Assume we have data (X,Y) taking values in R x R and a model m(x;6)
where 0 is the parameter of the model we want to estimate. We use the no-
tation Ay, ,)(6) to measure how close the model’s prediction m(x;6) is to the
actual observation y. We assume that we can sample data D = {(X,;, ) M1}
from the distribution P of (X, Y). The loss function is

AO= 5 3 A
(x,

y)ED

Oftentimes we may write A5 (6) to emphasize the dataset D. Then, we will
naturally choose 6* = argmin,_g A(6). We recall that 4, ,(6) can be thought
of as the per-data-sample loss and A as the average loss.

As we discussed in Section [[7.2, gradient descent takes steps in the direc-
tion of steepest descent, recall (17.2)

Ok+1 = Bk — NV A(Bk).

Notice now that a Taylor series expansion yields (ignoring the higher-order
error term)

Ak =AG) & (YA, (Bir—0)+ 5 Os1—01)T V2AG) Or1 ~60)
= “nIVA@I + 57 (VA©) V2AGITAGY).

This shows that if 7 is sufficiently small, then A(6y,;) — A(6x) < 0. This
indicates that—if 7 is selected to be sufficiently small—then the objective func-
tion loss for the gradient descent training algorithm is monotone decreasing.
That is, the training algorithm is making progress towards a minimizer.

Next we notice that for a given finite dataset D we shall have that

Vers®) = Vorzr % Aay®@ =151 2 [Vedu(®)].
(x,y)eD (x,y)eD

If now 2’ is a randomly selected subset of D, then we write

def
Ap@F = Y Ay(®
| | (x,y)eD’
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to emphasize that the computed loss function is on the randomly selected sub-
setof D, i.e.,on D; C D. SGD ignores the expectation and follows a noisy (still
unbiased) descent direction

Ok+1 = Bk — Ve Ao, (6p),

where a new random data subset 2, is selected uniformly-at-random at each
parameter update iteration k.

The term —7VaA gy (k) is an unbiased estimate of the direction of steepest
descent for the objective function A(6;). The fact that it is unbiased follows
from the assumption that (x,,,y,) € D) are ii.d. samples from P. Indeed,
notice that under the i.i.d. assumption and given that at each given iteration
we first choose the dataset 2, and then we apply the gradient operator, we
shall have for a given dataset D, C D that

1
Dyl

E[VeAny(0)] = E Y [Yolixy)(©)]

(x,»)ED;
= E[Vod(x,v)(6)] = E[VoAp(6)].

Online learning typically corresponds to choosing D’ with cardinality
|D'| = 1. Before we proceed with the analysis of SGD let us summarize some
practical messages which we will develop from the analysis that will follow.

Remark 18.1.

(1) GD needs to compute gradients for each data sample in the dataset
at every iteration, which is very computationally expensive for large
datasets. SGD is computationally cheaper and is typically advanta-
geous when the size of the dataset M is large. When M is large, we
would sample a much smaller subset |D’| < M at each iteration.

(2) The learning rate n = 7, determines the size of the parameter update
step. It needs to decay appropriately in order to average out the noise

in the SGD step.
(3) Typical requirements are Z:’:l N = oo and 2:;1 12 < o0; see [RM51,
BTO00]. As an example consider the choice 5, = z f‘é - where 0 <
1 2

Cop, C1,C; < o0 are constants.
(4) A choice that is typically used in practice is to define a priori constants
0 < Cy, Cy,Cy,C5,C4 < o0 and then consider the step function
Co» k<C;
0.1Cy, Ci<k<GC
0.01Cy, C,<k<CGC;
0.001C,, C, <k <C,.

Nk =
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296 18. Convergence Analysis of Stochastic Gradient Descent

(5) Note that too small of a learning rate leads to slow convergence,
whereas too large of a learning rate means that the algorithm oscil-
lates and overshoots.

Note that GD can use larger learning rates than SGD. In regards to SGD, this
can be partially addressed by using minibatches, which use batches of random
samples to reduce the noise. In particular, a minibatch is created by letting
some M, < M, a randomly selected subset D’ C D of cardinality |D’'| = M,
and setting

1
(18.1) VA (8) = 7 Y Vodixy)(©):
(x,y)eD’

To simplify notation and emphasize the cardinality of the randomly se-
lected subset D’ C D, we shall write GM-)(g,) = VAp (6) in the SGD update
equation for 6

(18.2) Bics1 = Ok — nGM(6y).

We emphasize that at each iteration k of the algorithm in (I8.2) a new ran-
dom subset D, C D of cardinality M, is selected.

Note that GM-)(9) is less noisy than G()() for M, > 1. Indeed, we can
calculate

1
Var(G<M°><ek>|ek)=Var<F > Veﬂ«x,w(@k))@k)
|Dil (x,y)eD’

= IZDL’l Var<Ve/1(xj,y,-)(ek)|6k)

< Var(Vexl(xj,yj)(Gk)‘Gk)
= Var(G(l)(Qk)|6k) )

where the data sample (x;, y;) is selected uniformly at random from the dataset
D. The above inequality shows that the minibatch SGD gradient estimate is
less noisy (lower variance) than the classical SGD gradient estimate (M, = 1).

Remark 18.2 (Training epochs). Related to the latter statement for the vari-
ance is also the notion of an epoch. An epoch, similar to the minibatch size,
is another hyperparameter to be chosen. The number of epochs refers to the
number of times the learning algorithm goes through the entire training data-
set. Therefore, having completed one epoch means that each sample in the
training dataset has been used in the algorithm. Naturally, one epoch can be
composed by one or more minibatches and the number of epochs completed
during training is typically large. Rigorous minibatch learning may take a long
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time to see all datapoints. On the other hand, unbiased estimation of the gradi-
ent of the loss function sort of depends on rigorous sampling of the data. Stan-
dard SGD with a large number of epochs tries to find a reasonable compromise
between these two situations.

Essentially, we randomly partition D = U1k<=1 D, with |Dy| = |D|/K.
Then, foreachn € Nand k € {1,2,...,K}, we apply SGD

6nK+k = 9nK+k—1 - 77VAD,/((9}1K+k—1)-

By breaking gradient descent into epochs, after completing one epoch, each
sample in the training dataset has had the opportunity to be used in the algo-
rithm. However, we do note a bias issue. Even though, VAD{(Q) is an unbiased
estimate of VA g), the remaining VAD;((G) will be biased because Dj has al-
ready been chosen.

This issue of bias can be addressed by simply running SGD using uniform-
at-random sampling (with replacement) from the dataset 2 and considering an
epoch to be the number of minibatch SGD updates such that the total number
of data samples used equals the size of the overall datasets |D|. Note that it is
not guaranteed that in a single epoch every data sample in D will have been
trained on though.

18.3. Convergence Results for SGD

18.3.1. Convergence of SGD for Convex Loss Functions. Let us consider
a convex loss function A(0) per Definition [[7.1. Recall that A, ,, (6) denotes
the per-data-sample loss.

Before proceeding with the convergence results for SGD for strongly con-
vex loss functions, let us perform some initial calculations motivated by our
analysis of standard GD. We recall that the standard update in GD is given by

@72
Ok+1 = B — NV A(Ey).
Substituting the above equation into Lemma yields
Ak41) — ABk) < =7l VABI3 + LTnZIIVA(@k)II%
(183) = —1(1- 2) 19A@IE
This relation means that if » is sufficiently small and, specifically, if n <

2/L, then GD will typically be making progress towards the global minimum.
However, this is not necessarily guaranteed for SGD. In the case of plain SGD,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.
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the update is given by (18.2) with |D’| = 1, i.e.,
Bis1 = 6 —1GV(6))
= ek - nva(xik,yik)(ek),

where the index i, is randomly sampled at the kth iteration. Substituting 8’ =
Ok+1, 0 = O, and the aforementioned SGD update into Lemma and then
taking a conditional expectation produces the following lemma.

Lemma 18.3. Under Assumption we have that
E[A(Ck+1) — ABr)[6k]
<7 (L—ZU[E |1V, v, @OIBIEK | = (VA©L. E [V/%xik,yik)(@k)lek]»
=”G§Eﬂvhmywwwﬁwd—WVAwmﬁy

where the expectation is taken under the index iy sampled by the SGD algorithm
at the kth iteration and we have used the fact that VA(6) = E [V, ()] (i.e.,
the stochastic gradient estimates are unbiased).

Lemma shows that without extra assumptions, SGD updates may not
monotonically decrease the value of the average loss function. In the last line,
the first term (which is positive) may potentially be larger than the second term
for a fixed learning rate . However, it should be highlighted that there always
does exist an 7 > 0 (which will depend upon ;) such that the last line is neg-
ative when ||[VA(6,)||3 > 0. Furthermore, we observe that 7 must be smaller
when |VA(6))||3 is smaller (which typically means 0y is closer to a local mini-
mizer) to guarantee that the last line is negative. This suggests that we should
reduce the learning rate n during training. Specifically, the learning rate should
be 5y, a function of the number of parameter update iterations, where 7, — 0
as k — co. Consequently, as 6, approaches a local minimizer (and ||VA(6))||3
becomes smaller), the learning rate will also become smaller.

Let us now try to improve upon Lemma [18.3. We will use the following
assumptions.

Assumption 18.4. Let us assume the following.

« VA(6) = E[VA(x, )(6)]. i.e., that stochastic gradients are unbiased.
« There are constants x;,x, < oo such that

2
E[VA(xy O, < 11 + 52| VA@)I3,

i.e., that the second moments of SGD and GD are comparable in mag-
nitude.
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Some comments are in order. The first part of Assumption will hold if
the sampling distribution of the index is uniform, which is the standard sam-
pling method for SGD and which we have previously used in our analysis, in-
cluding in Lemma [18.3. The second part of Assumption states that the sec-
ond moments of the stochastic gradient are of a magnitude similar to the square
of the full gradient. Combining the second assumption now with Lemma [18.3,
we immediately have the following result.

Lemma 18.5. Under Assumptions and we have that

E[AGr) — AGIO < 7/(12t - (1- 7722 ) [VAGOIR),

where the expectation is taken under the index i, sampled by the SGD at the kth
iteration.

Lemma shows that in order for the right-hand side to be negative
(i.e., in order for SGD to be making progress towards the global minimum),
we need to select the step size 7 in such a way that the combined term
nﬁ - (1 - nﬂ) [VA(6,)|3 is negative.

In addition, note that Lemma shows that if x; = 0 and x, = 1, i.e., in
the absence of stochasticity, we recover the result of standard GD, i.e., the decay
(L8.3). If the stochastic gradient is noisy, i.e., if k; # 0, then there is not neces-
sarily a monotonic decay of the difference E [A(6y1) — A(6k)|6k] because for
every iteration k € N, there is the positive term 72— 2K ot the right-hand side
bound.

As it is then shown in [BCN18], under Assumptions and stronger
results can be obtained. Note that even though we assume in the next lemmas
that x, > 1 from Assumption [[8.4, this is done with loss of generality, as one
can always use a larger upper bound if necessary. We next present the related
theory.

Lemma 18.6. Let Assumptions and with x, > 1 hold, and in addition
assume that A is y-strongly convex (Definition [[7.3). Assume that the learning

1
rate is chosen according ton < T where L is the Lipschitz constant from As-
sumption [[7.6. Then we have the bound

(1 -k (A(eo> A6 -

E[A©)] - A©") < T 7).

2y

The aforementioned upper bound converges t s

Proof of Lemma [I8.4. First, we notice that by y-strong convexity, we have for
all6,0' € ©

A®) > A6) +(VA(0),0" — ) + £ ||e/ ol°.
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As a function of €', the right-hand side (a quadratic function) has the
unique minimizer

é=e—%Vwa
further yielding

(18.4) A©) > A6) - 217||VA<6>||%.

Set A* = A(6*). By Lemma and y-strong convexity (in particular, ap-
plying (L8.4) with 6’ = 6* and 6 = 6., we have for all k € N

Lx Lx

E[A©ks) — @I < (1 - 772 ) IVAG@OIE + 772

7 Lx

< =5 IVAGOIE + 7=+

2 2

Lry
>
The next step is to subtract A* from both sides and then to take an expecta-

tion. Doing so, we obtain

< —ny(ABy) — X) + 1

Lx
E[A(O+1) — X < (=) (E[ABK) — A + 77
This yields
«1_ WLxy N ,Lxy L,
— i S G - -
E[A@) = N1 = 1 < (L= m)(EINGY) - K] + 725 - T
Lx
(18.5) = 1 - (1@ -~1- 52,
Recall now that we have chosen 7 < i This means that
2
4 4
<—<L =KL
0<77y_LK2 <7 <1,

the latter being true because we assumed x, > 1 and because it must hold that
y < L (recall that y is the strong convexity constant of A whereas L is the global
Lipschitz constant for the gradient of A). Therefore, ([8.3) is a contraction and
the result follows by applying (8.5) iteratively in k € N. This concludes the
proof of the lemma. O

Lemma shows that we must select 7 to be small in order to hope to
eventually reach the global minimum. However, if 7 > 0 is chosen to be very
small, then the algorithm will take a long time to converge, and we will still be
O(n) away from the global minimum.

So, the question is: how can we guarantee that the SGD algorithm con-
verges? The answer is to let the learning rate #» gradually decrease over time,
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18.3. Convergence Results for SGD 301

see Remark [[8.1. We will specifically discuss the necessity for decay in the
learning rate in the next Section [18.3.3. We will prove in Lemma that SGD
converges to the global minimizer for strongly convex functions if the learning
rate appropriately decays as the number of update steps — oo.

Lemma 18.7. Let Assumptions and with x, > 1 hold and in addition
assume that A is y-strongly convex (Definition [[7.3). Assume that the learning

rate is chosen according ton = n, = % withyCy > 1, C; > 0, and n; <

L—, where L is the Lipschitz constant from Assumption [L7.6. Then, the following
X

bound holds:

EIA@)] - A6) < g

where T = max{ﬂ, (C, + D(E[AB))] - A(G*))}.
2(yCo—1)

Proof of Lemma [I8.7. The proof of this lemma is similar to the proof of

Lemma [18.6. Set A* = A(6*). By Lemma and y-strong convexity, we have

forallk e N

Lx 5 Lx
E[A©ke1) ~ A@OI] < =i (1= 752 ) IVA@RIE + 7p -

Lx
< -ZIVAGOIE + RS

5 Lx;
< =iy (AO) — &) + i+

where in the last display we used ([18.4) with 6’ = 6* and 6 = 6.

The next step is to subtract A* from both sides of the latter expression fol-
lowed by taking expectation. We then obtain
LK
E[ABk+1) — AT < (1= mier)(E[AB) — ] + =+

2
Next, we proceed with an induction argument. The statement holds for

k = 1 directly by the definition of z. Then, let us assume that it holds for some
integer k greater than 1 and prove it for k + 1. We have

. Coy ) T CiLx,
— < —
EAGks) - A < (1 C +k)C +k T 2(C,+ k)2
_Gi+k—Cy CiLx,
(Cy + k)2 2(C; + k)2
_GHk—1_ [ Gr—1_ CiLxy
—(C + k)2 (Cy+ k)2 2(Cy + k)2
T
<
“C+k+1

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



302 18. Convergence Analysis of Stochastic Gradient Descent

where in the latter calculation we used that the term in the bracket
Cor—1 _ C¢Lx,
(C; + k)2 2(C, + k)2

due to the definition of 7 and the fact that
(Cy+k)?>(C;+k+1)(C, +k—1).

<0

This concludes the proof of the lemma. O

Some remarks on Lemmas and are in order. First, it is interesting

to note that the choice of the learning rate = 7, = ccik
1

tions Z:’ 1 Mk = coand Z:’ 1 Nz < oo. (In fact, a slightly more general learning

rate of 7, = CorCk could be used.) This turns out to be a good learning rate

schedule. We already demonstrated this in the case of gradient descent in The-
orem d and we will return to this in Section [18.3.3 for the case of stochastic
gradient descent.

Second, the strong convexity constant y > 0 is seen to play an important
role for both statements in Lemmas and [18.7. However, it affects the step
size in different ways in the two lemmas. For the case of constant stepsize of
Lemma the stepsize is not affected by y, even though the optimality gap
is. On the other hand, in the vanishing stepsize case of Lemma the choice

with

of the learning rate is affected by y. Indeed, we have chosen 7, =
Co > 1/y.

Third, in the case of vanishing learning rate of Lemma [[8.7, the choice of
the initial point affects the optimality gap through the parameter 7 via the term
A(6;) — A(6%). However, with an appropriate choice of the learning schedule,
the effect of this term can be diminished. We refer the reader to [BCN18] for
more details on this issue.

Ci+k

Fourth, let us comment on the effect of choosing a minibatch of size M, > 1
as seen in ([18.1)-(8.2). Note that in that case, Assumption changes to

E ||Vpi(9)||§ < % + :72||VA(9)||%. This then leads to the statement of Lemma
becoming )

E[A(Bk+1)] — AB7) < zy& +QQ =)k (A(GO) — A(6*) — M)

2yM,

and the requirement for the learning rate to change to n < Lﬂ This means
X,

that a larger choice of the learning rate is allowed. If we do choose the largest
allowed constant rate, the term UVM will not be affected by M,. However, the
term (1 — ny)* will be affected by it and in particular increasing the learning
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rate to L£ will lead to faster decay of that term by a factor of M,. However,
K.

we need to keep in mind that the choice of the minibatch size also requires M,
calculations of the gradient.

18.3.2. Convergence of SGD for Nonconvex Loss Functions. As is typi-
cally the case, many important machine learning models lead to nonconvex
optimization problems. In particular, neural networks are nonconvex. Even
though the analysis of nonconvex functions trained with SGD is more com-
plicated than the analysis in the convex case, one can still obtain meaningful
results. We will follow the presentation of Section by first presenting
bounds for a constant learning rate and then for a decreasing learning rate.

Lemma 18.8. Let Assumptions and hold. Assume that the learning

: : 1 : : .
rate is chosen according ton < I where L is the Lipschitz constant from As-
X

2
sumption [[7.6. In addition, assume that the sequence of iterates 6, is contained
in an open set over which A is bounded below by A*. Then we have the bound

2(AB) = )

M,
1 o
|E [M : : ”VA(em)”%] S ULKI + Mc’77

° m=1
The aforementioned upper bound converges to nLix; as M, — .
Proof of Lemma [18.8. Asin Lemma [18.6, we have for all m € N,
E[AGma)] — E[AGR)] < = (1= 7722 | EITA@,I + 7?22t
< ~TEIVAGI3 + P,

The result now follows by summing over all m € {1,...,M,} and using the
assumption that the sequence of iterates 6,, is contained in an open set over
which A is bounded below by A*. This completes the proof of the lemma. [

Lemma 18.9. Let Assumptions and hold. In addition, assume that the
sequence of iterates 6y is contained in an open set over which A is bounded below
by A*. Assume that the sequence of learning rates satisfies Zzzl N = o0 and

> Ma < co. Then, we have
M,
li 2
Jim E [ > nmum(em)uz] <o,
m=1
and consequently

M,
. 1 1
lim E [ZM— D 77m||VA(em)”%] =0.

M,— o0
m=1 Nim m=1
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Proof of Lemma .1 The condition Zzzl n%, < oo implies that 7,, — 0, s0
we may choose 7,,, < I Then, proceeding as in the proof of Lemma [[8.8,
2

E[A @)~ EIAC)] < 1 (1= T2 EIVAGIE + 7 5

Lx
< —TRE|VAGWIE + 5t

Next, we sum over m € {1,..., M,} to obtain

1< Lr, &

N —E[AG)] < =5 D) mmEIVAGIE + = D) min-
Rearranging this statement leads to the first claim of the lemma. The sec-

ond claim follows by the first statement and the fact that Z;zl N = 0. This

concludes the proof of the lemma. O

Lemma leads to the following important theorem.

Theorem 18.10 ([BT00, BCN18]). Let Assumptions and hold. In ad-
dition, assume that the sequence of iterates 6y is contained in an open set over
which A is bounded below by A*. Assume that the learning rate is chosen accord-
ing to ny. satisfying Zzozl Nk = oo and 2?:1 n < oo. Then, we have

lil£n infE [[VAEL)|3] = 0.

Note that this result includes a limit infimum result. Under stronger con-
ditions this can be that reduced to limy ., E [|[VA(6y)||3] = 0. This is Theorem
and was proven in [BT00] and under a somewhat different set of condi-
tions in [BCN1§].

18.3.3. Why Should the Learning Rate Decrease? Letusnow demonstrate
with a formal argument as to why the learning rate needs to decrease. We recall
that we have already seen instances of this phenomenon in the cases of linear
and logistic regression, Chapters P and B, where we show that overshooting oc-
curs if the learning rate is too large. The fully rigorous treatment in the general
case of this result can be found in [BT00]. For simplicity we will focus on the
case of plain SGD where |D’| = 1. We have

Or+1 = Ok — M Vol(x,,y,)(6k)
= Ok — MkE [Vodx,v)(61) | + 1k (E [ Vod(x,v)(0k)] — Vol (xy.y0)(Ek))
= O — M Vo A(Br) + Mk (E [ Vol x, vy (61) | — Vol (k) -
Let us set Ry = (E[Vedex,v)(6x)] — Vod(x.y)(Bk)) Which represents

the randomness in SGD. We would like to prove that in the appropriate sense
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limy_, R = 0. Now, let us assume that 1 € @i’z. Using Taylor expansion we
obtain for some k; > k,

kl k1
ABk,) = ABK) = = 2 millVeA@IE + . 7 (VaA®)' R;

ky
+ >, n? X (higher order terms).
i=k

If Ziio n? < oo, then we have that for every ¢ > 0 there is a k < oo such

that Zi K n? < €. Assuming that the higher order terms are bounded, we then
obtain that for this chosen k

ky ky
Z n?(higher order terms) < C Z n? < Ce.
i=k i=k

In addition, we shall have that

2

kq
E (Z 7 (VaA(6))" Ri)
i=k

ky
= > 7 (V3 AG) (Ex,y (Volox.r)(Bk) = Vodin,y(60))))
i=k

ko Kk
+ Z Z nimiE (VeA6)) (Ex,y (Vodix,yv)(61) — VoA(x,y)(61)
i=k j=k, j#i

X VoA(6)) ([EX,Y (Ve/l(x,y)(ej) - Vel(xj,yj)(ej)))))
kq

<cyn
i=k

< Ce.

In the calculation above we used the tower property of expectation to real-
ize that

E (Ex,y (Vodex,v)(6)) — Vefl(xj,y,-)(ej)) %) =0,

where 7; is the filtration at time j, i.e., all of the information on the random
variables at steps 0, 1, ..., j.
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Thus, by Chebyshev’s inequality we have that for every €,6 > 0 there is
k,; > k so that
2

ky
P (Z m(veA(ei))TRi) >e| <8
i=k

In fact, by the Borel-Cantelli lemma, one actually has

2 (VoA(6;))' R; » 0 almost surely.
i=k

Thus, if k is large enough, we have
ki
ABk,) = M) ~ = 3, mill VeA@)I3 < 0.
i=k
In fact, if || VoA(6;)]3 > A > 0, then we have that
ky
A(6,) — AB) < =2 ) 1 = —co.
i=k
But, by assumption 6 — A(6) is bounded function, so the last display can-
not happen. Thus, there is i > k so that | VoA(6;)|3 < A. What we just derived
is a heuristic derivation of the following classical result.

Theorem 18.11 ([BT00]). Assume VoA(6) is globally Lipschitz and bounded.
Assume A(6) is bounded and that the learning rate is such that Z:J:l N = 00

and Y., m < oo. Then we have that

I}im [VoA(B))ll, =0 almost surely.

Remark 18.12. Neural networks do not typically satisfy the assumptions of
Theorem because the gradient of the loss function will typically be nei-
ther globally Lipschitz nor globally bounded. Regardless, SGD on neural net-
works has been proven to be very effective in practice and the message of the
theorem has empirically been shown to be valid, i.e., the learning rates should
progressively decrease for convergence to occur but not too fast.

18.4. Comparing SGD with GD

18.4.1. SGD Is Like GD with Noise. Let us now investigate how SGD and
GD are related to each other. Comparing the analysis in Sections and
legitimately raises the question as to why we should use stochastic gradient
descent versus gradient descent. After all, if one has a strongly convex function
to minimize, GD is much faster to minimize it than SGD. Typically, in order
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to reach an € neighborhood of the global minimum, GD requires O(1/¢) steps
whereas SGD typically requires O(1/¢2) steps.

When making these comparisons however we should keep in mind that
the empirical loss we are minimizing consists of M terms. So, taking M into
account, GD actually requires O(M/e) steps whereas plain SGD still requires
O(1/€?) steps.

Thus, if € < 1/M, then GD is superior to SGD. However, if € > 1/M, then
SGD wins! Thus, if the sample size is large and we cannot afford to have a tiny
€ accuracy, then SGD will typically be less costly and preferable to GD. This is
one of the main reasons why SGD is well suited for machine learning.

Let us next investigate a more direct relation between GD and SGD. We
will see that SGD is basically GD with noise. Let us consider for now a fixed
learning rate 7. Let us recall that

M
1
Or+1 = 6k — nVeqs D7 Ay k-
m=1

Now notice that

M
1
E (61 = Bk16k] = —1E | Vo1 2 Alxmoym 61)|B
m=1
= 1V A(6k)

The last display shows that the average change in weights of 6, is propor-
tional to the full gradient Vo A(6}), which is exactly what GD gives.

What about the change in the variance? We have

2 M
Var[Bi41 — 0l6] = 5 > Var[ Va6, (m(xm; 6,)I6k]
m=1

2
= X_/I Var[VoA(6y)|6k]

which follows because we sample uniformly which in turn means that the ran-
dom variables €, (m(x,,;6)) are i.i.d.

The previous discussion motivates us to model the transition probabilities
P(6k4+116k) as a Gaussian random variable. In particular,

2
Gues = B + £, where £ ~ N (=1eA(00), I Var [ToA@0)IB).

So, on average SGD is like GD plus noise that decreases as M increases!
Now, this allows us to approximate

Bis1 = O — NVoA(B)) + —LA/Var[VoA(B)]Z, Where Z, ~ N (0,1)i.i.d.
VM
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308 18. Convergence Analysis of Stochastic Gradient Descent

This observation is the basis for continuous time approximation of SGD
by stochastic differential equations (see Appendix [Al for a quick discussion on
stochastic differential equations and further bibliographical remarks). In par-
ticular, we have the following result.

Theorem 18.13 ([HLLL19]). Let T < oo be fixed and let us assume that A is
such that Z|a|$7 |ID?A|, < C < oo for some finite constant C < oo (D*A is the
ath-order derivatives of the A function). Let (xy, yi) be a sequence of i.i.d. random
variables sampled from some distribution (X,Y) ~ P. Let © be the solution to the
stochastic differential equation

6() = (—VAB®) — 2VIVAGOIR) + 71 Varge vy [FAa (@)W (D)

where W (t) is a standard multidimensional Brownian motion. Then with p = 2

forany ¢ € eﬁ“’*”, there is C < oo and 7 > 0 such that

[E¢(6k) — E(O(kn))| < CnP forall k < T/n and n € (0,7,),
where O satisfies O = Ox_; —NVA(x,,y,)(Ok-1)-

This theorem says that ® approximates the sequence {6, } with weak order
2. As a matter of fact if we ignore the term —%VlVA(@(t))F, the approxima-
tion above yields the same result but with p = 1, i.e., a weak error of order 1
approximation instead of 2. With or without the correction term, we can view
O as the SGD diffusion approximation to the discrete algorithm for 6.

18.4.2. Momentum methods and SGD. In Section we explored mo-
mentum kinds of methods for gradient descent. As was discussed there, mo-
mentum methods can be expected to lead to acceleration of gradient descent
methods due to the use of inertia of particles. The natural question is whether
momentum methods would be expected to accelerate convergence of SGD as
they do with GD. It turns out that the answer to this question is not necessarily
yes.

To this end we recall that SGD is a noisy approximation of the full gradient
of the dataset. This means that the gradient will always be incorrect in SGD
and as such one does not expect that the velocity in the next iteration will be
accurate. In fact, it is shown in [LB20, KNJK18] that a standard application
of either Polyak’s or Nesterov’s momentum methods does not always lead to
acceleration. For instance, as demonstrated in [LB20] in the case of the mean-
square error loss problem (a strongly convex problem), Nesterov’s momentum
method when applied to SGD leads to the estimate

IE[ABD)] — A©")] < e m|A®©y) — A©")]
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for k large enough, where m = L is the condition number and C > 0 is some

Y
constant. Comparing this to what one gets in the standard gradient descent
problem for the same problem

IE[AG)] — AGY)] < e~ A8y) — AGY)],

we conclude that the only effect of momentum method to SGD is the multi-
plicative factor for C. It is worthwhile to mention here that standard GD with-
out momentum would lead to the bound

[E[A@))] - AE")] < ¢ T |A(6o) — A6,

which means that momentum does accelerate GD, since when m > 1,
— > 2. Even though, we will not investigate this in further depth in this
m

\/ﬁ

book, we mention the following for completeness.

« Modifications to the momentum method to provably accelerate SGD
have been recently proposed, see for example [LB20].

« A standard way to accelerate stochastic optimization methods is
through the use of control variates, see [RSB12].

Momentum methods, such as Nesterov’s method, are used in practice in
conjunction with SGD to train deep neural networks with great success. So,
the natural question is why do they work so well when the theory suggests
that one should not necessarily see acceleration? One answer to this question
is that while training deep neural networks, the SGD gradients are very close
to the GD gradients (see [CS17]) for which we know that Nesterov’s method
leads to acceleration. In particular, as discussed in [CS17], many deep learning
applications to datasets lead to weights of the neural network that have similar
gradients with each other. So, even though stochastic gradients are computed
on different batches of gradients, they are very similar to each other and thus
to the full gradient. We refer the interested reader to [[CS17] for a more detailed
discussion on this.

18.4.3. GD and SGD for Linear Regression. In Chapter P we visited linear
regression. We return now to this topic making connections with gradient de-
scent and stochastic gradient descent. Consider the simple setting of the one-
dimensional least square regression problem.

M
1
A(D) = i z (Wx,, — ym)? 6O=weER.
m=1
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310 18. Convergence Analysis of Stochastic Gradient Descent

It is relatively easy to see that each term of this sum is minimized at

* Ym *

W = Let us now set wy;, = min{wy,,m = 1,...,M} and wj,x =

Wo > Whax OF Wy < Wrins

then after a few number of steps of SGD, say k number of steps, we will even-
tually have that wy € (Wi, Whax)- The region (wy iy, Whax) iS sometimes
referred to in the literature as the confusion zone.

%

As soon as wy € (Wg,i,» Wiax) then there is no convergence for SGD. For a
fixed learning rate and because the weights are sampled uniformly, the weights
will move either to the left or to the right of the confusion zone depending on
which value was used to compute the gradient. This is because SGD samples a
different point at each iteration. Consequently, SGD will oscillate in the con-
fusion zone.

However, the objective function used in linear regression is convex, as the
sum of convex functions, and there is a unique global minimum. The global
minimum is

M
w" = M 5

which we recognize as the least squares estimator. In contrast to SGD, GD
(which uses the gradient evaluated on the entire dataset) will converge to the
global minimum!

18.5. Variants of Stochastic Gradient Descent

In this section we discuss some popular variants of stochastic gradient descent.

18.5.1. AdaGrad. AdaGrad (adaptive gradient) was introduced by [DHS11).
We define

k
-
G = ), VA(B) (VA®Y))
i=1
and then we consider the update

Ok+1 = Ok — 1G P VAB)).

In high dimensions G, 2 js hard to compute. Therefore typically the up-
date is done using only the diagonal elements of the matrix. In particular, the

diagonal elements of Gy are (Gy); ; = Zf:l((VA(Gi))j)2 and we have

Oice1 = Bk — 1)~ diag(Gi %) VA(S).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



18.5. Variants of Stochastic Gradient Descent 311

Note that essentially AdaGrad is an adaptive learning algorithm where the
adaptive learning rate is 7 - diag(G,;l/ 2).

AdaGrad was conceived in order to deal with sparse and unbalanced data.
So, it makes sense to use different learning rates for different coordinates. Also
note that AdaGrad has a vanishing effective learning rate 7 - diag(G,; v 2), so it
will typically converge.

Remark 18.14. When applied in practice, AdaGrad usually takes the following
equivalent form

U1 = Ui + VAGK) © VA(Ey),
1
Ok+1 = Ok — n———— O VA(by),
€+ Ukt
where division and square root are applied elementwise and € > 0 is there
to avoid instabilities in the denominator when a region of small gradients is
reached by the algorithm.

18.5.2. RMSProp. RMSProp (root-mean square propagation) was developed by
[TH12]. A drawback of AdaGrad, presented in Section [[8.5.1], is that it treats
all past gradients equally. It would make sense to use decaying weights for past
gradients. One relatively simple way to do so is as follows.

Let 6 € (0,1) be the factor controlling the exponential forgetting rate.
Then, with ¢ © 8 = (a1, --.,agP4) as the elementwise multiplication of two
d-dimensional vectors a, §, we set

Upy1 = Oup + (1 —)VA(By) o VA(Ey),
Bs1 = Ok — 1 Uyl © VA(By).

Note that by iterating the update rule for u;,;, we have

k+1
U1 = 8 Flug + (1= 8) D) S1IVA()) © VA(®H)).
Jj=1
Since we have
k+1
Sk+1 4 1-96) 2 Skt1-j — 1,
j=1

we get that u; ,; is the weighted average of u, and all the elements of VA(6;) o
VA(;) until step k + 1. Notice that the most recent updates are more heavily
weighted than the earlier updates.
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312 18. Convergence Analysis of Stochastic Gradient Descent

Remark 18.15. When applied in practice, RMSProp usually takes the following
equivalent form

Uje1 = Sty + (1 = 6)VA(Ok) o VA(Ey),

1
Or+1 = O — n——= O VA(6y),

VE+ Ukt

where division and square root are applied elementwise and € > 0 is there
to avoid instabilities in the denominator when a region of small gradients is
reached by the algorithm.

As an example, let us consider the convergence properties of RMSProp in
the case of A(6) = %ll@”%. For simplicity, we shall focus on the one-dimensional
case and we will consider 6, > 0. In this case, the update rule for u; becomes

k+1
Uppr = 8 lug + (1= 8) D) sk+1-J|g;|2
j=1

The update rule for 6, becomes
Ok+1 = 6k (1 —muci?).

The latter relation immediately implies that if

: -1/2 -1/2
0 < min (1 —nuy?) < max(1—ui}?) <¢ <1,

then we will have that
ek € (Oa eng)y
which subsequently implies (recall that we have claimed that { < 1) that

lim Gk = 0,

k—o0
i.e., we have established convergence to the global minimum of the loss func-
tion A() = §||e||2.
It remains to discuss when the claim
. -1/2 -1/2
0 <%1€1’{11(1—17uk+1)Srggé(l—nuk+1><§< 1

holds. Note that this requirement is equivalent to requiring that
2

2 i < _n_
7 < sl < maxiud < (72
holds.

First, let us address why 7% < minyey |ux| can be assumed to hold. If 6 —
0, then there is nothing to prove. So, let us assume that 6, does not converge
to 0. This means that there are 7 > 0 and k such that for all k > k,, we have
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|6k] > t > 0. Without loss of generality, we may in fact assume that for all
k > 0, we have |6;| > t > 0 (by potentially adjusting 7). Then, we obtain

k+1
Uppr = FFlug + (1= 8) D) sk+1-J|g;[?
Jj=1
k+1
> 5k+1u0 + T2(1 —6) Z Sk+1-j
Jj=1
- 5k+1u0 + T2(1 _ 5k+1)
= §k+1(yy — %) + 72

> 72,

if (uy — 72) > 0. So, we will then obtain that if ? < 72, then we indeed have
that forallk € N, 7% < 2 < uy. This calculation shows that even in the case
where it is assumed that 6; does not converge to 0, then if u, is sufficiently
large and 7 is sufficiently small, we will indeed have that 7? < u.
2
The inequality maxgcy |ux| < <17)_§> is equivalent to requiring that the

sequence uy is uniformly bounded in k € N. This is effectively a consequence
of the first inequality. Indeed, since we can indeed choose things so that 0 <
7% < uy, assuming that 6, > 0, we shall have that

Ok+1 < Ok < By < - < .

Thus, if 8, < K, we shall have that

k+1
Upyr = FFlug + (1= 8) D) sk+1-J|g;|2
j=1
k+1
< §F+lug + K2(1 - 8) ) sk+1-
j=1
- 5k+1uO +K2(1 _ 5k+1)

<ug +2K?,

providing a uniform upper bound for u;,; and thus proving the claim.

Let us conclude this subsection with a useful, general purpose result
that can be of use beyond RMSProp. As a matter of fact, a number of algo-
rithms, such as RMSProp, depend on exponential moving averages. Suppose that
{€,}nen 1s @ bounded sequence of real numbers. Fix § € (0,1) and define

E‘O = 0,
Ept1 =08, +(1—-08)¢,,1, ne{o,1,...},
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314 18. Convergence Analysis of Stochastic Gradient Descent

where E,,,; is a convex combination of its prior value (memory) and the new
data €. As§ \\ 0, E forgets is prior value (no memory), while if § / 1, E has
full memory, and the new data is discarded. It is easy to check that we explicitly
have

B, = 1—5)25" ne

n’'=1
for all n € N. The sequence E is often referred to as the exponential moving
average of the £,’s.

Let’s investigate this. A continuous-time Tauberian theorem suggests the
connection between exponential moving averages and regular averages.

Lemma 18.16. Assume that f € B(R,) (i.e., f is a bounded function on R, ) is
such that

7Y Jim = f f(ode
is well defined. Then
lim A “Af(Hdt = f.
tma [ eipioar= 7
Proof. Define r
Fn e [
t=0

for T > 0. Integrating by parts,
T T

F(T)e T = -2 / e~ MF(t)dt + f e~ f(t)dt.
t=0 t=0

def
By assumption, | f|| = SUD,(0,00) |f(#)] is finite; thus
|F (T)I

(18.6) <l

for all T > 0. Consequently,
lim F(T)e=*T = 0.
T/

Rearranging and multiplying by 4 and then changing the variable of inte-
gration, we have that

A f e~ Mf(t)dt = A2 f e MF(t)dt = f wte_tdt.
t=0 t=0 t=0 //1

In light of ([8.6), dominated convergence implies the result. O

This implies a corresponding result for exponential moving averages.
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Lemma 18.17. Assume that {£, },cn is a bounded sequence such that

is well defined. Then
i — n = 3
}Slg}(l 5) n§=0, 6", =¢§

Proof. Let’s rewrite the sum as an integral and make the change of variables
A= —Ind (so that § = e~*). Then

(1 — 5) Z 5n§n = (1 — 5)] 5m§mdt = (1 — e"l)/‘ e"lmé'mdt.
n=0 t=0 t=0

The asymptotic § ' 1 is equivalent to 4 \, 0. Rearranging so that we can
use the previous result, we write

1-3) Z 518, = (1 - e~) f M expl=A(1t] = )] & dt

_ 1—e"1

7 {ALO —/ugmdtwlftzo At{exp[/l(t—[tj)]—1}§'mdt}.

By the above standard Tauberian theorem,

) T

1 _

111’1’1/‘{'/‘ e"“é‘mdt = lim —f g[tjdt = g
t=0 T/ T t=0

ANO

We of course also have that

By assumption, ||&]| o sup,,.y 1€,/ is finite. Using this and rescaling,
[ e explat— 10D~ ] <181 [ e lexpls = 2l - 1 s
t=0 s=0

Since [x] < x < |x|+ 1forall x > 0,
[s/a] < sfa < |s/a] +1;
multiplying by 4 and subtracting,
0<s—A3H] <A
Hence, we obtain

lexp[s — Al3/2]] — 1] = exp[s — A|s/a]] = 1 < e* — 1,
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which then leads to

: —At _ _ < 1i =S (LA _

lim |/1/t=06 {exp[A(t = [¢t])] 1}§mdt| < lim €] fszoe (e* —1)ds
—1i A _
= }l\mo I€N (e* = 1)

=0.

Combining things together, we get the claim. ]

18.5.3. ADAM. ADAM (adaptive learning method) was introduced in [KB15].
ADAM combines RMSProp (Section [[8.5.2) and the momentum method. ADAM
uses exponential moving averages to estimate first and second moments of the
gradient and then applies bias corrections. We initialize m, = u, = 0, consider
the exponential decay rates 8, d, € (0,1), and define the updates

My = Symy + (1 = 61)VA(Ey),
U1 = Ouy + (1 = 6)VA(Or) © VA(Ey).

The moments my,; and uy,; can be thought of as biased estimates of the
first and second moments of VA(8) dictated by exponential moving averaging.
In particular, by iterating the updates above we get

k+1
My = (1= 81) Y, 5THTIVA6)),
i=1
k+1 )
ueer = (1= 8,) Y, 8571 7IVA(6) © VA(S)).
i=1

Next, we take expectations on the left and right-hand side of the formulas
above. As done in [KB15], assuming that the first and second moments of
VA(6;) are stationary, we would get that

k+1
Emp =E|[(1—68) ). 85 7IVA(6)
| i=1

= (1 - &*HEVABk+1);

k+1
Euger = E[(1—68,) D, 85T 7'VA(6) © VAG)
i=1

= (1= 85)E[VAGks1) © VAGs1)].
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This calculation motivates the introduction of the bias-corrected first and
second raw moment estimates,
. _ 1
M1 = 1_—5i{+1mk+1,

. 1
Uk+1 = o7 Uk+1-
1— 5£€+1

With that in mind the final recursive formula for 6y, is defined to be

M1

Ok+1 =6k —N—= ,
Uy + €

where € > 0 is there to prevent dividing by zero. Typical values suggested by
the authors of [KB135] for the parameters are §; = 0.9, §, = 0.999, ¢ = 1078,
and 7 = 1073, ADAM is very popular for neural networks.

18.5.4. AdaMax. AdaMax (adaptive maximum method) was introduced in
[KB15]. AdaMax is a variant of ADAM using the infinity norm. Before
presenting the method, let us first comment on the connection with ADAM. In
ADAM, the update of uy, is

k+1
e = (1—8) D, 8 7IVA®6) © VAE)).

i=1

This can be thought of as the update rule for individual weights scaling
their gradients inversely proportional to a scaled I* norm of the individual cur-
rent and past gradients. One can envision generalizing the I? norm based up-
date rule to an LP norm based update rule. As we will see next if we take p — o
one obtains a simple and stable algorithm, [KB15].

In particular, let us consider
k+1 (et 1)
+1—i
uhyy = (1= 85) 3 5P IVA@)I-
i=1

Next, we see how this update behaves as p — co. We get

1/p
k+1
. 1/p . k+1—i
s = lim (i) = lim ((1 —o8) Yy, ah* "nvzx(ei)nﬁ)
(o] — 00 l:l
1/p

k+1 ) D
= lim (Z (s D 1vacenl,) )

= max{65 | VAB)lleos 85 IVAEB s -+ » 82l VA o | VAGK41) o -
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318 18. Convergence Analysis of Stochastic Gradient Descent

The latter now can be written as
Upe1 = max{Suk, [VAGk+1)l o}
with uy = 0 and there is no need to correct for initialization bias in this case.

Thus summarizing, we initialize my = uy = 0, consider the exponential
decay rates 6;, 5, € (0,1) as in Section [18.5.3, and define the updates

Myy1 = 61my + (1 — 8;)VA(Ok),
ue = max{&ruye_1, [ VAGK) -
Then the parameters are updated as

1 M1
1— 8k uy

Oks1 =6k — 7

18.6. Brief Concluding Remarks

The proofs of Theorems [8.6, 8.7, 8.8, and [[8.9 are based on [BCN18]. Some
of the first main convergence results appeared in [BT0(]. The book chap-
ter [Bot12] contains much practical advice on how to implement and make
use of SGD in practical applications. Momentum methods with SGD are dis-
cussed in [LB20, KNJK18]. The variants of SGD, such as AdaGrad, RMSProp,
ADAM, and AdaMax, all of which are routinely used in practice, were introduced
in [DHS11], [TH12], [KB15], and [KB15], respectively. The books [BPM90,
KY03] cover a range of topics in stochastic approximation and adaptive algo-
rithms in general.

18.7. Exercises

Exercise 18.1. Consider the stochastic gradient descent update
Xep1 = X — N(VA(xy) + &),
where n < 1, ¢, ~ N(0,1) i.i.d., and A(x) = §||x||§. Show that as t — oo, Xx;

242
converges in distribution toa N (0, %) . Can you interpret the effect of the
injected noise o¢;?

Exercise 18.2. What are the effects of the different hyperparameters in the
RMSProp algorithm? What is the advtantage of the RMSProp algorithm over
the AdaGrad algorithm?

Exercise 18.3. Suppose we randomly initialize a neural network m(x; 8) and
train it for a long time with the final parameter estimate being 6'. Suppose, we
again randomly initialize the same neural network model m(x; 6) and train it
again with the final parameter estimate being 62. Will 6! and 62 be similar and
why?
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Exercise 18.4. Suppose we randomly train K neural network models
m(x; 0Y),..., m(x; 6%)

using stochastic gradient descent. Furthermore, each time we train a new
model the initial parameter is randomly initialized. Therefore, the trained
0l,...,0K arei.i.d.

. K
Is it correct to use the ensemble model m (x; % > k=1 Gk), and why?

Exercise 18.5. Consider an example where the neural network will not train
(i.e., the gradient with respect to at least one of the parameters will always be
zero). It is sufficient to consider mean-square error, a single data sample (x, y),
and a single ReLU hidden unit.

Exercise 18.6. Provide the details of the proof of Lemma [8.3.
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Chapter 19

The Neural Tangent
Kernel Regime

19.1. Introduction

The uniform approximation theory for neural networks that we explored in
Chapter [[d shows that artificial neural networks with sufficiently many hidden
units can approximate any reasonable function. With that in mind, we can ask
the following natural questions:

+ Towhere does the optimization of artificial neural networks converge?
« How does the loss surface of artificial neural networks look?
« Why do neural networks typically generalize well? Namely, why do

neural networks tend to yield good results on unseen data?

A number of results in the literature (see [CHM*15,PDGB14, PB17]) sug-
gest that

« Finding bad minima, i.e., local minima with a much higher cost than
global minima, is a low probability event as the number of hidden
units increase.

« For large size networks, good local minima are equivalent, yield sim-
ilar performance, and are easier to find than bad local minima.

In this chapter and in Chapter R0, we will visit the questions posed above
through the lens of scaling limits for neural networks. As we shall see, proper
scaling of the neural network can lead to a well-defined limit as the number
of hidden units grows to infinity. In turn, this limit can be analyzed and offer

321
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322 19. The Neural Tangent Kernel Regime

valuable information on how both the limiting loss function and the limit of
the scaled neural network behave.

Before we dive into the different scaling limits, we motivate why appropri-
ate scalings make sense through an investigation of the weight initialization
scheme suggested by [[GB1(] in Section [9.2. The neural tangent kernel (also
called the linear) regime describes the limit of the trained neural network that
we get when the parameters are initialized motivated by a square-root weight
initialization. The neural tangent kernel (NTK) is presented in Section [[9.3. In
practice during the training phase, time is discrete and SGD is used. The exact
mathematical analysis, convergence to, and convergence properties of the NTK
limit (the linear regime) are then presented in Sections [9.4-9.7. In Chapter
we will study a different scaling regime, the mean field scaling regime (also
called the nonlinear regime).

19.2. Weight Initialization

In this section, we discuss weight initialization. Weight initialization plays an
important role in avoiding (to a certain degree) the vanishing and exploding
gradient problems. The discussion that follows is largely heuristic, but it is
indicative of how one can think about this issue and also represents what is
often being done in practice.

In particular, we will go over the mathematics behind the so-called Xavier

initialization [GB10], which has been very influential for weight initialization
during training of neural networks; see also Remark [19.1].

Let N,_; be the number of hidden units in the (¢ — 1)-th layer. Let us start
by considering the standard feed forward neural network

Np_y
) _ (&) ¢ 7(6-1) )
Hj _U(Zl wi’jHi +bj )
1=

(¢-1) Ner  (0) 74(6-1) (@)

Let us see why randomness at every layer in the initialization is needed and
why proper scaling makes sense. We will make use of the following approxi-
mation. Consider a smooth function g and a square integrable random variable
X. A linear approximation of X about EX, using a first order Taylor expansion,
suggests

(19.1) Var(g(X)) ~ (g'(EX))* Var X.
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For the sake of this heuristic discussion, let us assume momentarily that

ff), bj(e) are deterministic. We would then obtain
2N,
Var(HJ@) z( (Z w(g)[EH@ D b]('f))) (Z ( (6’)) Var(Hw 1)))
[ i=1

Applying now the Cauchy-Schwarz inequality and assuming that ||o’| <
C < o0, we get

by © & (o) (e-1)y)?
Z (Var(H )) <ct Z (wij ) Z (Var(Hj )) i
J i,j i=1
2
Thus, if Z;VH ( fj)) is small, then ZJJ.VH (Var (HJ@)) may decrease when ¢
increases. So, in that case after passing through a few layers the signal becomes
insignificant.

If, on the other hand, |w(€)| are large in magnitude, then with o(x) = x we

©) (®
U’bJ

Var(HO) = 37 (ul?) var(HE),
i=1

get that (assume momentarily that w; are deterministic)

which suggests that in that case Var (HJ@) can increase with €.

If o(x) = % is the sigmoid function, then large |w§;})| means large

Nev @ gye-1)
Z:l gll ij H
gradient problem.

, in which case o becomes saturated leading to the vanishing

This then brings up the question of how do we initialize the weights in a
way that would avoid the issues just described. The idea is to find weight values
for which the variance remains fairly unchanged as the signal passes through
each layer.

The analysis will be done in two steps, the forward pass and the backward
pass. The general assumptions we will make here are the following.

« All inputs, all layers, and all weights at initialization are independent
and identically distributed.

« The inputs are normalized with zero means, i.e., [EH(O) = 0. All

weights have mean zero at initialization, i.e., [Ew(g) =0.

« The activation function ¢ is an odd function (o(—x) = —o(x)) such
that o’(0) = 1. For example o(x) = tanh(x) satisfies these constraints.

« To simplify the algebra, let us also assume that the biases are zero, i.e.,
bf =0 forall j, ¢.
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324 19. The Neural Tangent Kernel Regime

19.2.1. Forward Pass. We start by applying formula ([9.1)) to the activation
function o. Since o is assumed to be an odd function with ¢’(0) = 1, we may as-
sume that g(x) ~ x close to zero. Recall that w('“p)H (¢=1)
zero at initialization.

will be by assumption

We have the following calculations

Ny
= Z Var(ng)HJ@_l)) W (g D are independent)

= 3 [ ) V(=) var () (e (1))

+Var(w)) var(H )|

(variance of product formula for two random variables)

=3 [Var(w?) var (¢ )]
i=1
(smce by assumption [E( f])) ( HY 1)) = O)
=N,_ I[Var( ('“p))Var(H(g 1))] (i.i.d. assumption).

Requiring now that the variance of the different hidden layers is the same,
we immediately obtain that we should choose

Var (wfj)) = ﬁ.

19.2.2. Backward Pass. The starting point is the desire to maintain the vari-
ance of the gradient of the cost as it propagates through layers, in particular,

we would like to have
oA oA
Var(azw—l) ) B Var(aZ@’) ) '
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19.2. Weight Initialization 325

Starting with the chain rule, we have the following computations:

oA ©) 1(7€=1) ,
Var ( ) Var (Zw ( 5° o'(Z;" )| (chainrule)

aZ(g 1)
N,
A
I~ Z Var(w%?%)

(by independence, o(x) ~ x around x = 0 and [E(Zi(g_l)) =0)

Hfere{) el ()

+ Var( (6)) Var oA
3z
(Variance of product formula for two random variables)
= Z Var( (5)) Var oA
3z

(by assuming [E( (5)) = [E( oA ) =0)

az?
=N, Var( (6)) Var oA
— Ve w; J aZ(g)
. oA oA .
So eventually requiring that Var(aZ (H)) = Var(%) leads to the choice

Var(ng)) = Nig.

(i.i.d. assumption).

19.2.3. Conclusions and Motivation for Scaling Limits. The forward and
backward calculations suggest that the variance of weights should be chosen
to be inversely proportional to the number of hidden units in the given layer
and in the previous layer too.

Even though these two expressions do not agree in the case N, # N,_i,
one can replace them by the requirement that the variance of the weights is
proportional to the average of the two, i.e.,

©) 2
Var(u®) = —2—,
in which case the essence of the message coming from these calculations is still
maintained. Namely, a principled choice for the weights is to initialize them
so that their variance is inversely proportional to the number of layers of the
current layer and/or of the previous layer. Even though these heuristics may
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326 19. The Neural Tangent Kernel Regime

not be solving the vanishing or exploding gradient problems, they are at least
improving upon this issue.

For example, the following are then viable choices based on this frame-
work.

« If w;; are Gaussian, then we are led to choose

2
s~ NI1O, ————— ).
Wij ( Ne+Ne—1>

« If w;; are uniform, then we are led to choose

w Uniform | — 6 6
Y No_1+Npy’\| Npoy +Npy |

The latter calculation stems from the fact that if W ~ Uniform (—a, a),
then Var(W) = %az and then we set %az = and solve for a.

N,+N,_,
Remark 19.1. In addition to the Xavier initialization that we presented

here, another popular initialization scheme is the so-called He initialization
[HZRS15] (sometimes also referred to Kaiming initialization). The He initial-

ization suggests the choice of %Ng Var(wgf)) = 1, which leads to a zero-mean

Gaussian initialization with standard deviation 4/2/N,. The biases bj@ are ini-
tialized at zero. The difference between He initialization and Xavier initial-
ization is that while the derivation for the Xavier initialization is based on the
linear activation function, the derivation of He initialization takes into account
ReLU activation functions.

The next natural question to pose is how a neural network that incorpo-
rates such initialization behaves in the limit as N,_;, N, — o0. We visit this
question in the next section and the analysis gives rise to what is referred to
in the literature as the neural tangent kernel, [JGH18]. As we shall see in the
next section, weight initialization can be thought of being equivalent to an ap-
propriate scaling of the neural network. This way of thinking gives rise to other
kinds of scaling, such as the mean field scaling that we will explore in Chapter

20.

19.3. The Linear Asymptotic Regime: Neural Tangent Kernel

The neural tangent kernel (NTK) was initially introduced in [JGH18] and has
been quite influential on how one can think about limiting theory and related
analysis for training neural networks. The motivation for the formulation that
follows comes from the weight initialization scalings that we saw in Section
[9.2. In order to simplify the presentation and introduce the ideas in a more
pedagogical setting, we restrict our attention to the shallow neural network
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19.3. The Linear Asymptotic Regime: Neural Tangent Kernel 327

case. An induction argument then directly gives the limit in the case of deep
neural networks.

In order to introduce the ideas, consider the simplest possible setting of a
shallow neural network where we set

2

mN(x;0) = Z nG(W" - x

with C" € R, W" € R%, x € R4, and o(-) : R - R. The number of hidden
units is N. We note that even though we do not include the bias term, i.e., we

consider the model m"(x;8) = C"a(W" - x) instead of m"(x;0) =

1 N

W Zn:]

N . .

% anl C"o(W".x+b™"), we do so without loss of generality. Indeed, one can

always consider the vector x to have the first element being equal to 1 which
then immediately incorporates the bias term.

This formulation is slightly different from the discussion in Section [9.2,
where one would typically have no scaling of — and instead sample C, W from

VN
mean zero normal distribution with variance of order —. We do note here that
scaling the variance of C by 1/N without any scaling in the neural network is
the same as scaling the neural network by 1/\/N and sampling C from mean
zero normal distribution with unit variance. The current formulation though
is key in order to obtain a consistent asymptotic behavior as N — co.

This section demonstrates how the neural network behaves as N — oo and
shows how the NTK arises. In order to motivate things, we shall treat time in
this section as being continuous, even though in reality time evolves discretely.
In this section we also use gradient descent. In Section we switch gears
and we will rigorously derive the evolution in discrete time and using stochastic
gradient descent instead of gradient descent.

Let us assume that we have M datapoints and that the loss function is

11 & 2
AN©) = 5 27 (= N (x30)) -
2M
m=1
Assuming that parameters 8, = (C},...,CN,W,...,WN) € RNx(1+d)

evolve in continuous time based on gradient descent, we have the following
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328 19. The Neural Tangent Kernel Regime

update equations:

Ctl = (ym - mN(xm; et)) O'(I’th : xm)a

1

(19.2) W = (m — mN (x,36))) CPo’' (W - X)X s

2l s
=i~

b <[ =

Mz iz

1

mN(x;6,) = \/iﬁ > Cro(Wy - x),

with 7 > 0 a given learning rate. At time ¢t = 0 we initialize the parameters 6,
in an i.i.d. fashion, from some distribution u, with at least two finite moments.

Let us next define the empirical measure sitting on the learned parameters
6,

1 N
==Y
NE

Differentiating now in time the model m"(x;6;) and using the update
equations from ([[9.2), we obtain

o mN(x;6,) = —N Z [Clo(W" - x) + Cl'a’ (W - X)W}" - x|

n=1

N
_%Z Z (ym_m (% t))
n=1

x [o(W" e o ) ICHE R 270 (W )1 x]
M

Z (Vm — MmN (X, 6,))

m 1

X (o(w - X)o(W - X) + 20" (W X,y)T" (W + X)Xy - X, o ).
If we now set
A(x,x" ;1) = (o(w - x"o(w - x) + o’ (w - X))o’ (w - X)x" - x, 1),

we see that for a given measure u, the matrix A with elements A(x;, x s w) for
i,j =1,...,M is a symmetric and positive semidefinite matrix, see Corollary

[[9.6. Hence it defines a kernel and is the basis for the NTK. In particular, we
can write

g™ 0500 = 57 25 (Om = mY Gomi 00) A, i 1)

M=
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19.3. The Linear Asymptotic Regime: Neural Tangent Kernel 329

At time ¢t = 0, i.e., at initialization, the i.i.d. assumption on the random
variables 6, shows that for a given x (this is the standard central limit theorem
for i.i.d. random variables, see Appendix [A]),

¥ (x: 86) > N0, (Jeo(w - )% o))-

Let us denote the limit Gaussian distribution N(0, {|co(w - x)|2, uo)) by
G(x). For a finite dataset D, we shall write G for the vector with elements G(x).

The next step is to investigate the behavior of the empirical measure uN
as N — co. We claim that u¥ actually converges to the distribution at initial-
ization, i.e., ,ultv — Hop as N — oo. Namely, we claim that as N gets large, the
distribution of the parameters remains very close to their distribution at initial-
ization. To see this, let us fix a smooth and bounded function g € Ctl)([Rd“)
and study the evolution in time of the pairing (g, ulN > Using (19.2), we have

d d 1
aieHi) = altNZ 8(Ces W)

1

Z|

N
3 [8eg(CP WDCT + Viug(CPR W) - W]
n=1

7 N 1 M
= 35 M 27 O = mN (3 6))
n=1 m=1

X [acg(ctn’ Wn)U(Wn : xm) + ng(ctn’ I/th) : Ctno"(I/th : xm)xm]

\/—M Z (ym_m (xm’e))

< cg(C: w)a(w : xm) + ng(c’ w) ' COJ(x ' xm)xmuu]tv> .

Assume now that the activation function is o € Cj. The latter expres-
sion and boundedness of the components on its right-hand side (which can be
derived similarly to the corresponding statement in discrete time, see Section
[[9.5.1) immediately show that as N — oo

(& ut') = (g ko)
Hence, we then get as N — oo that for fixed x, x’
AQx, x5 up) = A(x, X' o).

This last statement says that for large N, the scaling of the neural network

by 1/\/ﬁ leads to the kernel A being constant over time and to the distribution
of the trained parameters being close to their distribution at initialization.
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Let us now set mY = <mN (x1),...,mN (xM)>. The preceding calculations

show that mN — m as N — oo where m satisfies
M b
mO = 97

with Y = (31, ..., ya)-
Therefore, m; is the solution to a continuous-time gradient descent algo-
rithm which minimizes the quadratic objective function,

. 1, T &
J(Y,my) = E(Y —m;) A(Y —m,).

Therefore, even though the prelimit optimization problem is nonconvex,
the neural network’s limit will minimize a quadratic objective function.

Then as we shall see in Theorem [[9.4, given that under the proper assump-
tions A is positive definite by Corollary [[9.6, we have that

m =Y+ (G- ¥)e A,

showing that m, — Y ast — co exponentially fast. That is, in the limit of large
numbers of hidden units and many training steps, the neural network model
converges to a global minimum with zero training error. Namely, in the limit
as N — oo and t — oo, the algorithm recovers the true (at least in-sample) data.

19.4. The Linear Asymptotic Regime in the Discrete Time Case

In this section we rigorously derive the NTK analyzing the algorithm in discrete
time which is also what is actually implemented in practice. We also show this
result for the stochastic gradient descent algorithm.

To simplify the discussion we shall consider the simplest possible setting
where we set

N 1 al
mV(x;6) = — ) C"a(W" - x),

n=1

where C" € R, W" € R4, x € R?, and o() : R — R. The number of
hidden units is N and the output is scaled by a factor % (the widely used

Xavier initialization [GB10]). We note that the analysis that follows can be
generalized to feed forward neural networks of arbitrary depth with a little bit
more additional work.
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The objective function is

M
AO) == 3 (= MV (x;0))

m=1

where y,, € R, x,,, € RY, and the parameters 8 = (C1,...,CN,W',...,WN) e
RN*(1+d) " For notational convenience, we may refer to mN (x; 8) as mV(x) in
our analysis below.

The model parameters 6 are trained using stochastic gradient descent. The
parameter updates are given by

U

VN

n /
Wi, = W+ = — mY (x))Cla’ (W - xp)x,

VN

1 N
— > CRa(W - x),

\/N n=1

fork =0,1,...,|TN| where T > 0. We use 77],;’ as the learning rate (which may
depend upon N, k or both). The data samples are (X, yx) and are assumed to
be i.i.d. samples from a distribution 7(dx, dy).

Cir1 =Ci + Ok — my () (W - xp),

(19.3) mpy(x) =

We impose the following assumption.

Assumption 19.2. We have the following:
« The activation function o € CZ(R), i.e., o, is twice continuously dif-
ferentiable and bounded with bounded derivatives.

+ The randomly initialized parameters (Cg, Wy") are i.i.d., mean-zero
random variables from a distribution uq(dc, dw).

« The random variable C{ has compact support and (||w||, o) < 0.

« The sequence of data samples (xy, V) is i.i.d. from the probability dis-
tribution 7(dx, dy).
« There is a fixed dataset of M data samples (X,,, y,,,)™_, and therefore

1 M
m(dx,dy) = I Zm:l O(x,,,y,)(AX, dY).

Note that the last assumption also implies that 7(dx, dy) has compact sup-
port.

We will study the limiting behavior of the network output m¥ (x) for x €
D = {xq,...,xp} as the number of hidden units N and stochastic gradient
descent steps k = | Nt] simultaneously become large.
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In particular, we view the network output mf}{,t |(x) as a stochastic process.
We shall prove that it converges in distribution to the solution of arandom ODE
as N — oo.

For this purpose, we define the empirical measure

L N
N _— —
Yk =N Z 5C1?7W1?’
n=1
and we observe that mY can be written as the inner-product
mf:](x) = <ca(w . x),\/ﬁvfw.

For each fixed for x € D, Assumption allows us to use the standard
central limit theorem (see Appendix [A]) to obtain that as N — oo,

m () S 5(x),

where G € RM is the Gaussian random variable N(0, (|co(w - x)|%, uo)). For
the same reasons, the standard law of large numbers also gives

NP
Vo — Vo = Mo-

Next, we define the scaled processes
hltv = mﬁ’\m,
e =V
where ml¥ = (m¥ (x)),..., mY (xp)), AN = (WN(xy), ..., hN (xpr)), where we
set hpY (x) = m{ly (X).

We observe that (1N, hN) is a pair of stochastic processes. We are interested
in its behavior as N — oo. For this purpose, we will study its convergence in
distribution as N — oo in the space Dg([0, T]) where E = M(R'+9) x RM,
Dg([0, T]) is the Skorokhod space (see Section [A.4 for definitions) and M(S) is
the space of probability measures on S.

We prove in this chapter that a neural network with Xavier initialization
and trained with stochastic gradient descent converges in distribution to a ran-
dom ODE as the number of units and training steps become large. In addition,
the convergence analysis will also address several interesting questions:

+ The results provide a rigorous convergence guarantee for Xavier ini-
tialization (i.e., the % normalization factor), which is almost uni-
versally used in deep learning models. A priori it is unclear if the
neural network mllj (x) will converge as N — oo since, for k > 0,
the C"o(W™" - x) is correlated with C/o(W/ - x) and therefore a limit
may not exist. If a limit did not exist, this would imply that the neural
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network model could have poor numerical behavior for large N. We
prove that a limit does exist.

« Although the prelimit problem of optimizing a neural network with
respect to its parameters is nonconvex (and therefore the neural net-
work may converge to a local minimum), the limit equation mini-
mizes a quadratic objective function when viewed as a function of the
limit empirical measure of parameters.

« We show that the matrix in the limiting quadratic objective function is
positive definite, and therefore the neural network (in the limit) will
converge to a global minimum with zero loss on the training set.

The main convergence results are presented below and their proofs follow

in Section [19.7.

Theorem 19.3. Assume that Assumption holds and choose the learning
rate to be 7)1,2’ = % for 0 < n < oo, a fixed constant. Then, the process (uN, hl¥)

converges in distribution in the space Dg([0, T} as N — oo to (u;, h;) which
satisfies, for every f € CH(R'*%), the random ODE

h(x) =ho(x)+7n | (¥ —=h(x))(o(w - x)o(w - x'), u;) 7(dx’, dy)dt
axy

+ nf (v — hy(x") (o’ (w - x")o' (w - x)x - X', gy w(dx’, dy)dt,
XY

ho(x) = §(x),
(19.4)
(fome) ={f> o)

Recall that G € RM is a Gaussian random variable with elements
9(X) ~ N(0, <|ca(w : x)lz’lu0>)-

In addition, note that i, in the limit equation ([[9.4) is a constant, i.e., u; =
Uo for t € [0, T]. Therefore, (19.4) reduces to

t
he(x) = ho(X) + 1 f O = hs(x)) (o(w - X)a(w - x"), ko) 7(dX’, dy)ds
0 Jaxy

t
+ nf (v — hy(x")) (2o’ (w - x")o’(w - x)x - X', o) 7(dx’, dy)ds,
o Jaxy

(19.5)
ho(x) = G(x).

1Dg([0, T]) is the set of maps from [0, T] into E which are right-continuous and which have left-hand
limits. Here, we have E = M(R*%) x RM and M(R+9) is the space of probability measures in R1*? (see
also Section A4).
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Since ([19.3) is a linear equation in Cgm ([0, T]), the solution k; is unique.

Equation ([[9.3) can be written more compactly in terms of the matrix A €
RM*M where
7
M
where x, x" € D. A is finite-dimensional since we fixed a training set of size M
in the beginning. A is called in the literature the NTK and notice that it is fixed
in time, i.e., it does not change dynamically. Note that we can write

A, x') = 1540w - X)a(w - x'), o) + 7 (26" (w - )" (w - X)x - X', go)

t
h(x) = 5(x) +f A(x, x")(y — h(x"))m(dx’, dy)ds.
0

Then, (19.5) becomes
dht = A(Y - ht>dt,
hO = 9’

where Y = (1, ..., Yp)-

Therefore, h, is the solution to a continuous-time gradient descent algo-
rithm which minimizes a quadratic objective function.

dh, 1

- _EVhJ(Ya h;),
I,y =(y—h) A(y - h),
h‘O == 9

Therefore, even though the prelimit optimization problem is nonconvex, the
neural network’s limit will minimize a quadratic objective function.

The question of global convergence then translates to whether h, — Y as
t — oo or not. That is, in the limit of large numbers of hidden units and many
training steps, does the neural network model converge to a global minimum
with zero training error? The answer to this question is yes!

Theorem shows that indeed we have that h;, — Y ast — oo if A
is positive definite. Then Corollary demonstrates that, under reasonable
hyperparameter choices and if the data samples are in distinct directions (see
[Ito94]), A will be positive definite.

Theorem 19.4. If A is positive definite, then
hy-»Y as t— oo.
Proof. Consider the transformation i, = h, — Y. Then,
dﬁt = _Aﬁtdt,
EO = 9 - Y
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Then, /; — 0 (and consequently h, — Y)ast — oo if A is positive definite. [J

Under the proper assumptions the matrix A is positive definite. This is the
content of Corollary [19.6. Before stating that result, we need to introduce the
notion of data samples being in distinct directions following [I[to96].

Definition 19.5 (Distinct directions). For x € R? nonzero, define the line L, =
{y € R : y = tx,t € R}. The vectors x¥) are said to be in distinct directions if
they are not zero and if the lines L,y meet at the origin only.

Corollary 19.6. Assume Assumption[19.2. A sufficient condition for A to be posi-

tive definite is o(-) is non-polynomial and slowly increasing (i.e., lim,._, ., 2 _
X

for every a > 0), u, is positive when evaluated on sets of positive Lebesgue mea-

sure, and the data samples x\) are in distinct directions, per Definition [[9.5.

Examples of activation units o(-) satisfying the conditions in Corollary
include sigmoid functions and hyperbolic tangent functions. Using a normal
distribution for the initialization of the parameters in the neural network is a
common choice in practice (covered by the requirements of Corollary [[9.6).

Remark 19.7. For presentation purposes we have not explicitly denoted the
bias term in the model. However, it is clear that this can be handled by requir-
ing the first component of the vector x to be equal to one for example. This
would result in the neural network taking the form

N
1
mN(x;0) = — > C"a(W" - x + b").

n=1
19.5. Preliminary Bounds and Existence of a Limit

19.5.1. Preliminary Bounds. Before we begin with the preliminary bounds,
let us first define a notation that will be frequently used in this and in the sub-
sequent chapters.

Definition 19.8. For a sequence of random variables {Ay}nen and a sequence
of real numbers {Sx}nen We Will write:

« ANy = Op(Bn) if AN/Bn is stochastically bounded. This means that
for arbitrary € > 0, there is M < oo and some N, < oo large enough
so that

P(’ﬂ| >M) <¢ forall N > N,.
AN

« Ay = O(By) if AN/Bn is bounded. This means that there exists a
finite constant C, < oo, which is independent of N so that

Ay| < C,By forallN € N.
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The first a priori bounds we establish involve the parameters (CJ*, W})).

Lemma 19.9. Let T < oo be given. There is a universal constant C, < oo, such
that for alln € N and all k with k/N < T,

ICZl < Cy < 0,
E|We < C, < 0.

Proof. The unimportant finite constant C, < co may change from line to line.
Recall the choice 771,;’ = % for 0 < 7 < oo a constant. We first observe that

|CRal S ICRI+nNT32 ka — m”(xk)l lo(W* - x|

|yk|
<IC + =3 N2 Z |CP,

where the last inequality follows from the definition of ml,;’ (x) and the uniform
boundedness assumption on o(-).

Then, we subsequently obtain that

gl = Icg] + Z [|c"| - Icl|

k N

C , Co
< |C61| + le N3/2 N2 Z
J: n=1

k
c, C
(19.6) <ICH+ =+ x5 2
This implies that

1

N . . i
Let us now define y5 = ~ 2 a—1 [CEl. Since the random variables C; take

values in a compact set, we have that % Zn Co I+ = \/_ < C, < . Then,

c. kX
VIJcVSCo‘FﬁOZVinl-
j=1
By the discrete Gronwall lemma and using k/N < T,
") <G,
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We can now combine the bounds ([[9.7) and ([19.6) to yield, for any 0 < k <

TN,
c, C &
ICRI < IC 1+ —=+ =3 D, Vi
N N Jzﬂ !
k
c, C
<|ch+ =2 4+=2%¢
N szﬂ °
<|ICH+ —=+C,
\/ﬁ
(19.8) <c,,

where the last inequality follows from the random variables C§ taking values in
a compact set. Note that the constant C, < co may depend on T and it changes
from line to line.

Now, we turn to the bound for || W;* ||. We start with the bound (using
Young’s inequality),

C,
Wk I <l W Il + 555 (kal +—= \/— Z |Gk )ICkIIU W= xil Il x|l

n=1

<l W | +Co( Vil® + 57 Z ICRI? + —ICk|2 Il Xk |I2)

N
1 1 1
<l W i +Co< ykl> + = N2 |C1'¢1|2 + N|C1?|4 N Il xi ||4),

foraconstant C, < oo that may change from line to line. Taking an expectation,
using Assumption [[9.2, the bound ([19.§), and using the fact that k/N < T, we
obtain

E [l W 1< Co < oo,

for all i € N and all k such that k/N < T, which concludes the proof of the
lemma. 0

Note that for any given T < oo, the bounds of Lemma are uniform
in k/N < T and N € N. Using the bounds from Lemma [19.9, we can now
establish a bound for m’,;’ (x) for x € D.

Lemma 19.10. Let T < oo be given. There is a universal constant C, < oo, such
that for all k € N such that k/N < T, and any x € D,

[E[lmllz’(x)lz] < C, < 0.
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338 19. The Neural Tangent Kernel Regime

Proof. The firststep is to represent the evolution of the network output ml,;’ (x).
In particular, we notice that

N 1 N
Z Chep10(Wy - X) — Z Cro(W" -

1
\/N n=1 N n=1

my, (X)) = my (x) +

N
= )+ 3 (CRao0H ) - CLoH )
= my (%)
1 N
TN Z (Gl = R -2+ (GOHE, - ) = oW - x)C)
= my (x)
1 N
= 20Ol = D[ )+ O x|
(19.9)

! 1 ” 5Kk 2
o 0 W = W+ 5" RS -0 (W - W) - k)

L |

for points W;"* and W, in the line segment connecting the points W;" and
Wi, Recall that 771,;] = % Substituting ([19.3) into ([9.9) yields

N
miYy () = ) + 2 ) (= m (K)o (W - xido (W - )
n=1

(19.10)

N
e W ' 2 _
+ 3 21 o' (W - )k — my (e’ (W' - xi)x - x(C)” + ONT2),
n=

where we recall Definition for the remainder term O(N~3/2),
This leads to the bound

N N

2

[m 1 (O] < YOl + 205 3 Iy = mY Gl + 5 D, e — m Gel(CF)
n=1 n=1

Co
N3/2
C C
< |ml =2 |ml =2,
< |m ()| + N [y ()l + N
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We now square both sides of the above inequality.

C Co\2
i P < (Jmi o)l + 57 mid Gl + )

C C C C
< |m’;¥<x)|2+z|mN<x)|<—°|m§§(xk>|+ﬁ0>+(ﬁ°|m§§<xk>|+ﬁ°>2

Co
< MY+ 2 mY (0 +2,

where the last line used Young’s 1nequality Therefore, we have

C,
M, (I = [mF (O < Imk Gl + -
Then, using a telescoping series,

k

MNP = [mY P + 2(|mN<x>|2 |m§V_1(x>|2)

=

< Jmy Gl + Z(—hnj Gl + )

< [my (0 +C, +—Z|mJ (-

Taking expectations,

E|lm¥ )I? | < E|[mg' )| +C, +—Z m Gl |-
] <€l mcor] i |

Taking advantage of the fact that x; is sampled from a fixed dataset D of M
data samples,

19.11)  E[[mYCoP | < E[lmbeor |+ ¢+ 2 X X gm0 |

j 1 x'eD
and therefore

T elmr| < 3 e imicor] ,+ SM S 3 el o)

b ==
(19.12) <)§D [|m (x)|2]+C %ﬁjz [|m§\’_1(x)|2].
Recall that
N 1 al
mp (x) = T; Cra(Wy' -
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340 19. The Neural Tangent Kernel Regime

where (C{l, Wy") are i.i.d., mean-zero random variables. Then,

2

e[ imicor] < (L 3 et ) |

<G i e[cpr]
v

Combining this bound with the bound (19.12) and using the discrete Gron-
wall lemma yields, for any 0 < k < TN,

3 [|m’,f<x>|

xeD

<G,

Substituting this bound into equation ([[9.11]) produces the desired bound

e[ lm o] < c,
forany0 < k < TN. g

19.5.2. Tightness of the Scaled Empirical Measure. The first step into es-
tablishing that the family {(ul¥, hN),t € [0, T]}yen has a limit as N grows to
infinity is to prove a form of compact containment, which in our case translates
into showing that there is a compact set that contains (u¥, hN) for all N € N
and t € [0, T]. Recall that (uY, hN) € Dg([0, T]), where Dg([0, T]) is the set of
maps from [0, T] into E which are right-continuous and which have left-hand
limits, E = M(R*%) x RM and M(R!*9) is the space of probability measures
in R1*4 (see also Section [A.4).

Lemma 19.11. Foreach 6 > 0, there is a compact subset X of E such that

sup PN, hN) ¢ K] < 4.
NeN,0<t<T

Proof. For each L > 0, define K; = [—L,L]'*¢. Then, we have that K| is a
compact subset of R'*¢, and for each t > 0 and N € N,

N
1 C
E[u R*N\KD] = = 3 P[ICyl+ | Wiy 12 L] < 22
n=1

where we have used Markov’s inequality and the bounds from Lemma [9.9.
We define the compact subsets of M(R!*4)

K, = {v D V(RMEN\ Ky jy) < ! - forall j € N
+J
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and we observe that

P{ulN ¢ K| < Z pp (RN Kpy ) >

1
N

. i [ RN\ Ka )]

= \/L—"‘J

< <

- Z‘ L+J)2/\/ﬁ - ; L+J>3/2

Co
J=1(L+))32
exists a compact set K; such that

Given that limy _, Z = 0, we have that, for each § > 0, there

NIO')

sup  Plul ¢ K] <
NeN,0<t<T

Due to Lemma and Markov’s inequality, we also know that, for each
§ > 0, there exists a compact set U = [—B, B]M such that

sup  P[hN ¢ U] <
NeN,0<t<T

NIO'z

Therefore, for each § > 0, there exists a compact set KL x [-B,B]M c E
such that

sup  P[(uf,h}) & Ky, X [-B,B]M] < 6. O
NeN,0<t<T

The next step is to establish regularity of the process u in Dyyw1+ay([0, T).
Define the function q(z,, z,) = min{|z; — z,|, 1}, Where 21,2, € R. Let #N be
the o-algebra generated by {(C), Wi)}Y., and {x]} NU=1 e FN contains the

information generated by {(C§, Wg)}L, and {x;} JN” 1.

Lemma19.12. et f € Cﬁ(RHd). Foranyé € (0, 1), thereisa constant C, < oo
suchthatfor0<u<6,0<v<5Atte[0,T]

E[q({fs ubens) » (fs 1 DA 1l Y (fr il oDIFN] < Co + 1\5’;/2
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342 19. The Neural Tangent Kernel Regime

Proof. We start by noticing that a Taylor expansion gives for0 < s <t < T,

[(Forly = (o) [ = 1 vl = (£ 7o) |
1 N
<N Z |f(Cinep Wine) — F(Clnsp Wins))
N
Z 9cf (Cinep Wine)lIClive) = Clivs|
1 N
(19.13) + 5 Zl | Vo f (Clivepy Wiep) 1 Wikee) = Wik |l
n=

for points (C", W") and (C", W") in the segments connecting Cﬁ\,s | with Cﬁ\,t |
and W/, with Wy, , respectively.

Let’s now establish a bound on |Cy;; — C{yy | fors <t < Twith0 < ¢—s <
d<1.

eI - il
=|Ns]|
INt]-1

Ik — MY (X)) =5

[th 1
| - [E[| (- PR |
%

NSJ Ns/z

INt]-1

2, G

k=|Ns|

IA
Z‘H

3/

S}

IA
H

N( N3/2

Co

Co
< WS + N3/2°

(19.14)

where Assumption was used as well as the bounds from Lemmas and

19.10.
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Let’s now establish a bound on || Wy, — Wy, [l fors < ¢ < T with
0 <t—s<9d <1 Weobtain

INt]—1

el 1l Wi - A =e 1% o -w ||
k=|N's|
INt|—1
<l 3 1m0k - mi o) CE ]
k=|N's|
LIS
S_ Z CO
N3 4 =
C,
<
=N N3/2
G,
(19.15) "5

\/— N3/2°

where we have again used the bounds from Lemmas and [19.10.

Now, we return to equation (I9.13). Due to Lemma [[9.9, the quantities
(éﬁVtJ’ Wl’}wj) are bounded in expectation for 0 < s < t < T. Therefore, for
0<s<t<TwithO<t—-s<d<1,

E[1 () — (£ Y] < Cob + =2

where C, < oo is some unimportant finite constant that may depend on
the magnitude of the first partial derivatives of f. Then, the statement of the
lemma follows. U

G
N3/2°

We next establish regularity of the process hY in Dgu ([0, T]). For the pur-
poses of the following lemma, let the function q(z,z,) = min{||z; — z,|, 1},
where z;,z, € RM and ||z|| = |z;| + -+ + |zpm]-

Lemma 19.13. For any § € (0,1), there is a constant C, < oo such that for
0<u<dé<L0<v<dALte]O,T]

C,
E [ haChY R )IFN] < o8 + 2.

Proof. Recall that
my, (%) = mY (x)
1 Y ;
+ = 3 (s = IO -3+ 'O -0 (W — WEICE )

\/ﬁ n=1
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344 19. The Neural Tangent Kernel Regime

Therefore,
AN (x) — A (x) = myp; (X) — g ()
[Nt]
= > (M, (x)—my(x)
k=[N
Ny, N
= 2 = 3 (ot - 0+ 0% - (W, =R ).
k=|Ns] VN n=1

This yields the bound

[Nt]

N ) — RN < D) Imy,(x) — my (x)]
k=[Ns|

N N

< —_—
k%\lsj \/N n=1

where we have used the boundedness of ¢’(-) (from Assumption [9.2) and the
bounds from Lemma [9.9.

Taking expectations,

(1 = i+ I - i)

%ww—ww@ﬂ
L NN
N [ e T
]

N n=1 k=|Ns

Using the bounds (19.14) and (19.13),
N
1 C C
s =2 (Fee-9+15)

(19.16) = C,(t —5) + —=2.

@Wm—ww|

The bound ([19.16) holds for each x € D. Therefore,
el I - 2|

C,
ﬁN] < Co(t—s)+ﬁo.
The statement of the lemma then follows. O

Last step is to combine the compact containment and regularity results in
order to claim that the family of processes {(uN, hN),t € [0, T]} has a limit as
N — 0. Indeed, we have the following lemma.

Lemma 19.14. The family of processes {uN, hN }nen is relatively compact in
Dg([0, T]).
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19.6. Alternative Representation of the Prelimit Process 345

Proof. Combining Lemmas [19.11 and [[9.17 and the results of Section [A.4
proves that {u¥ } ey is relatively compact in Dy(wr1+a)([0, T]) (see also Theorem
8.6, Remark 8.7 B, and Theorem 9.1 of Chapter 3 of [EK86] as well as Theorem
4.6 in [Tak86] and Section 3 of [Led16]).

Similarly, combining Lemmas and proves that {hV}y <y is rela-
tively compact in Dgm ([0, T]).

Since relative compactness is equivalent to tightness, we have that the prob-
ability measures of the family of processes {uN}yey are tight. Similarly, we
have that the probability measures of the family of process {hN }ycy are tight.
Therefore, {uN, KN}y is tight. Then, {uV, hN }yey is also relatively compact.

O

19.6. Alternative Representation of the Prelimit Process

Let us now build towards identifying the limit in Theorem [9.3. Recall that
ny = % and equation ([[9.10), which describes the evolution of m} (x),

N
mi () = mi(x) + % Z Wk — my (x))a(W - x1)a(W - x)
n=1
N
+ 25 20 0 (W )0 = m (o))’ (W - xixi - x(CR)” + ON12).
n=1

We can rewrite the evolution of ml,j (x) in terms of the empirical measure

N
Vi »

(0 = mi () + 20k = mY (0) (0w - xiJo(w - x), %)

(19.17)  + %(Yk — my (x))xy - x {0’ (W - x)o’ (W - xx)c, vy ) + ONT3/2).

Using ([9.17), we can write the evolution of hY for t € [0, T] as

INt|—1
N N N N
h. =h0+ Z (mk+1_mk)
k=0
INt]-1

]
=B+ 3 0= m ) (o - xio(w - ), )
k=0
[Nt]-1
+ 2 2 0= m G x (07w - 0)0'w - xe 1)

(19.18) + O(N~12).
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346 19. The Neural Tangent Kernel Regime

Next, we decompose the summations into a drift and martingale compo-
nent:

h{vzhé\]+% I{Z:: '/y;xy(y my (X)) (o(w - x")o(w - x), vy Y 7(dx’, dy)
INt]-1

+% Z fx (v —m(x))x - x' (o' (w- x)o’(w - x")c?, v{) 7(dx’, dy)

1% Z ((yk— mf (xi) (o(w - x)ow - x), )

- f (v —my (X)) {o(w - x")o(w - x), vy ) w(dx’, dy))
XxXY

INt]-1
) (0= MY e - ('@ 00" - 10
=0
- G-mDx-x (o'W 00’ (W - x)e?, vi) m(dx, dy)>
XxXY
+ON~V2),

For convenience, we define the martingale terms (the third and fourth
terms in the equation above) as M, ! and Mt respectively. The equation
for hN can be rewritten in terms of a Rlemann 1ntegral and the scaled measure

ul, yielding
t
he = hg + 77[ f v — hN(x)) (o(w - x")o(w - x), uY ) 7(dx', dy)ds
0 XY

t
+ nf (v —hY(x)x - x' (o' (w - x)o"(w - x")e?, ul¥) w(dx’, dy)ds
0 Jaxy

(19.19)
+ MM 4 MN? 4 O(N12),

In addition, using conditional independence of the terms in the series for

MM and MN? as well as the bounds from Lemmas and [[9.9, we have for
a finite constant C, < oo that

[E[(MgN’l)z] < %
[E[(Mf"’z)z] < %
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We can also analyze the evolution of the empirical measure vﬁ] in terms of
test functions f € C,f(lR”d). Using a Taylor expansion, we find that

(F) = (£ ) Z (f(Cf:H, W) - FCE W)

2

N

NZ O f (C WEN(Cri — CiO + Z Vo f (C WD T (W — W

2

Z 9 f (i, Wi)(Cieyy — Ci)?

Ck+1 CI?)Vcwf(é]?: ﬁ/kn) ’ (VVkr:Ll - I/an)

||M2 [I§

(19.20)
N

1 S
v 2 Wy = W) - VR AR, Wi (W — W)
n=1
for points (C}t, W), (CFt, W), and (C}, W) in the segments connecting Cy,
with C}! and W', ; with W}"*, respectively.
Substituting ([19.3) into (9.20) yields

N
(fvis) = (£ 9) = N2 37 0 F(CRE Witk = mi (xi))o (W - i)

n=1

N
+ N-5/2 Z Nk — m]}g(xk))cgo./(%n . xk)Vw‘f(CI?’ ‘/an) c Xk + Op (N—Z)
n=1
= N732p(yy — ml,f(xk)) <acf(0, w)o(w - xi), VJID
+ N=32p(y, — mllzf(xk)) <ca’(w - X ) Vi fe, w) - xp, Vﬂ]) + O, (N_z) )

where we recall Definition for the definition of O, (N ‘2). Therefore, we
have
Nt|-

<f’:ut > f ,uo Z ( Vk+1 <f’Vlly>>

Nt]-

= (f.ud) Z Nk — my (xi)) (8ef (e, w)o(w - x), vy )
[Nt]-1 -
+N732 3 n(ye — my (x) (co’ (W - xi) Vi f (e w) - xpe, VR )
pr

(19.21) +0,(NTY).

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



348 19. The Neural Tangent Kernel Regime

19.7. Proof of Main Convergence Results

Intuitively, the limit then can be seen to be the claimed one by taking N — oo to
(19.19) and (19.21). Let us now study how to rigorously claim the convergence
result.

Let 7N be the probability measure of a convergent subsequence of the se-
quence {(,uN ), t<T}. Each 7 takes values in the set of probability mea-
sures M (DE([O, T])_)._ The established relative compactness implies that there
is a subsequence ¥k which weakly converges. We must prove that any limit
point 7 of a convergent subsequence 7Nk will satisfy the evolution equation

([9.4).

Lemma 19.15. Let 7Nk be a convergent subsequence with a limit point . Then,
7 is a Dirac measure concentrated on (u,h) € Dg([0,T]) and (u, h) satisfies

equation ([19.4).

Proof. We define a map F(u,h) : Dg([0,T]) —» R, foreacht € [0,T], f €
CR(R™), gy,...,8, € C,(R™¥), qy,...,qy € Ch(RM),and 0 < 5y < -+ < 5, <
t.

Flta ) = [ (o) = (o)) X (810, ) X - X (gt )

+ 30 |00~ o)

xeD

t
=7 f O = hs(x) (o(w - X)o(w - x"), ug) 7(dx', dy)ds
0 Jaxy

t
— 77/ (v — hy(x")) {c*c’(w - x" )" (w - x)x - X', ) 7(dx, dy)ds)
0 Jaxy

X ql(hsl) X X Qp(hsp)
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Then, using equations ([[9.19) and ([19.21]), we obtain

Eqn[F(u, W)] = E[F(u", h™)]

p
= E|0,(N2) x T T {0 )|

i=1

p
+E |(M§V 14 MY 4 O, (NY2)) x [T quhY

i=1

1

<c,(E[mrrop]| +e[mevop]

<C<L+l)
—_ [0} \/ﬁ N ’

where we have used the Cauchy-Schwarz inequality, see Appendix B.

[SHC

) +ON"Y?)

Therefore,

Allim E, ~[F(u, h)] = 0.

Since F(-) is continuous and F(u™N) is uniformly bounded (due to the uni-
form boundedness results established earlier),

Ex[F(u, )] = 0.

Since this holds for each t € [0, T], all f € Cg([R”d), and for all functions
gis-->8p>q1s---»qp € Cp(R*%), we obtain that (u, h) satisfies the evolution
equation ([9.4). O

Proof of Theorem [19.3. We now combine the previous results, tightness and
identification results to prove Theorem [[9.3. Let 7 be the probability measure
corresponding to (u, h™V). Each 7N takes values in the set of probability mea-
sures M (DE([O, T])). Relative compactness implies that every subsequence
7Nk has a further subsequence 7Vkm which weakly converges. By the iden-
tification results any limit point 77 of 7Vkm will satisfy the evolution equation
(19.4). Equation ([[9.4) is a finite-dimensional linear equation and therefore
has a unique solution. Therefore, by Prokhorov’s theorem, 7N weakly con-
verges to 77, where 7 is the distribution of (u, h), the unique solution of ([[9.4).
That is, (uV, h'V) converges in distribution to (u, h). O

Let us now prove Corollary [9.6, which shows that under reasonable hyper-
parameter choices, the matrix A in the limit equation will be positive definite.
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350 19. The Neural Tangent Kernel Regime

Proof of Corollary . We first show that A is equivalent to the covariance

matrix of the random variables U = (U(xl), ey U(xM)>, which are defined as

U(x) = \/%G(W -X)+ \/%CO"(W - X)X,

where (W,C) ~ uy and x € D. Due to the fact that C is a mean zero random
variable and independent of W, we have

[E[U(x)U(x’)] - [E[%G(W X)W - x') + %Czo’(W )T (W - x)x - X'
= A(x, x").

To prove that A is positive definite, we need to show that zTAz > 0 for
every non-zero z € RM.

zTAz = zT[E[UUT]z

= [E[(ZTU)Z]
- %E[(é 2, (6(x,, - W)+ Ca'(W - xm)xm)>2].

The functions o(x,,-W) are linearly independent since the x,,, are in district
directions (see Remark 3.1 of [Ito96]). Therefore, for each non-zero z, there
exists a point w* such that

Z0(Xy, - W*) # 0.
1

Mz

Consequently, there exists an € > 0 such that

M 2

( Z Zm0(Xp - w*)) > €.

m=1

Since og(w - x) + co’(w - x)x is a continuous function, there exists a set
B ={(c,w) : |lw—w*| + |c|| < x} for some x > 0 such that for (c,w) € B,

M 2
( Z Zm (0(x, - W) + Ca' (W - xm)xm)) >

m=1

N @
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Z (60X - W) + Ca" (W - X,0)X,,) )2]

( % 2 (0%, - W)+ Ca'(W - X)X 1) )21WeB]

m=1

for some constant K > 0.

Therefore, for every non-zero z € RM,
zTAz > 0,

and A is positive definite, which concludes the proof of the corollary. O

19.8. Brief Concluding Remarks

Some results on the shape of the energy landscape associated with neural net-
works can be found in [CHM *15,PDGB14, PB17]. He initialization [HZRS15]
and Xavier initialization [GB10] have both been very influential initialization
schemes. Their practical success led to the NTK development (the linear
regime) that was first developed in [JGH18] and shows the convergence of
trained neural networks to the ground truth. Related results on the NTK can
also be found in [ADH*19, DLL*19].

The linear regime is further explored in [MM23, MZ22, BMR21]| where
generalization bounds are also established. In those works one can also find
bounds addressing how wide a neural network should be so that the test error
is well approximated by the infinite-width limit.

The presentation of the linear regime we followed in this chapter as well as
the proofs of the results in Sections [[9.5, 9.6, and [[9.7 are based on the articles
[SS19,S8S22].

19.9. Exercises

Exercise 19.1. Consider a one-layer neural network with sigmoid activation
function. Assume that the input is X ~ N(0, 1) and the output is

N
Y = Z co(w"X + b").

n=1

Find a formula for the variance of Y in terms of {c¢", w", b"}f,;;l.
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352 19. The Neural Tangent Kernel Regime

Exercise 19.2. Consider a shallow neural network with the bias term present.
Namely, consider the neural network model

N
mV(x;0) = L Z C"a(W" - x + b™).
n=1
€9)] Prove that for all i € N and all k such that k/N < T, we have that
Elbi| < C.
(2) Rework the arguments to state the limit problem analogously to what
is in Theorem without the bias term.

(3) Is Corollary now true? Justify your answer.

Exercise 19.3. Let now y € (1/2,1) be a given parameter and consider the
model

N
1
N(y.0) — .
m (x,@)—Ny nélC"o(W” X),

where 6 = (C!,W!,...,CN, WN) and with loss function

1 M 2
A®) = 357 2, Oim = m(xmi ).
m=1

(1) Write down the SGD updating equations for this model that are anal-
ogous to (19.3).

(2) Choose the learning rate to be 771,;’ = 5/N20-1) with n € (0, o). Derive
the evolution equation for the analogous kY of equation ([9.18) but
for this model.

(3) Prove thatifwe choose the learning rate tobe nY = 7/N?1=1 withy €
(0, 00) some constant, then the statement of Theorem remains
true for any given value of y € [1/2,1).

Exercise 19.4. Consider the single layer neural network model

N 1 y
mN(x;0) = — ) C"a(W" - x),

n=1

where 6 = (CL,W!,...,CN, WN) and with loss function
1 M 2
A®) = 5z mZZI Om = M3 0))”

We train the model parameters 8 using continuous-time gradient descent,
ie,
do;
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where n > 0 is the learning rate. At time t = 0, 6, are initialized as i.i.d.
Gaussian random variables.

(1) Show that the Euler discretization of the continuous-time algorithm
(19.22) is the standard gradient-descent algorithm.

(2) Prove that t — A(6;) is monotonically decreasing.
(3) What is the limit of m(x; 6y) as N — o0?
(4) Using the chain rule derive a system of ODEs for the vector

AN(£) = (m(xy30,), ..., m(xpr3 6y)) -

(5) Show that hN(t) converges as N — oo to the solution h(t) of a system

of linear ODEs. Compare your answer to ([19.4).

(6) Let A(h) = ﬁ 21nv11=1 |V, — h,y|> Where h,,, is the mth element of the

vector h. Show that lim,_, ., A(h(t)) = 0.

(7) Explain how the analysis above shows that the neural network con-
vexifies as the number of hidden units tend to infinity.
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Chapter 20

Optimization

in the Feature
Learning Regime:
Mean Field Scaling

20.1. Introduction

In Chapter [9, we studied the so-called linear asymptotic regime, i.e., the limit
as N — oo of the single layer neural network

N 1 <
mY(x;0) = — Z C"o(W" - x).

n=1

As we saw in Chapter [[9, this limit gives rise to the neural tangent kernel
and can be thought of as the linear regime given the linear nature of the limit

([19.3).
The goal of this chapter is to study the so-called nonlinear regime which

rises when we scale the neural network by 1/N instead of 1/\/ﬁ . In particular,
let us consider

N
1
mV(x;0) = N r;l C"o(W" - x).

Interestingly enough, as we shall see below, this scaling regime exhibits
different behavior than what we have seen in Chapter [[9, leading to a genuinely
nonlinear limiting behavior with good generalization properties.

355
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356 20. Optimization in the Feature Learning Regime: Mean Field Scaling

20.2. Preliminary Thoughts

Generally speaking, we can think of the model

G 6) = & 37 90
s - N i ) s

where 1(x; 6) could for example be
k
(1) a radial basis function (x; 8) = e~z 1* I,

(2) ashallow neural network ¥(x; 8) = ca(w - x + b), where 6 = (¢, w, b).

(3) a deep neural network ¥(x;0) = co(w,o0(w, - x + b,) + b;), where
0 = (¢, wy, Wy, by, by).

For the sake of concreteness, let us consider the (population) loss function
to be the quadratic error loss

Aop(8) = SE[ () - mV(X; )7,

where m(x) is the target data. Notice that we deliberately expressed the loss
function in terms of the expectation operator E associated with the underly-
ing probability measure P. This is the so-called population loss function, as
opposed to the empirical loss function that has been the object of study in the
vast majority of the book so far. We study the population loss function here
as it makes some of the subsequent argument easier to present. However, as
we shall see in Section 0.3, where we analyze the mean field scaling using
the actual empirical loss function (which is what is used in practice), the in-
tuition developed in this section working with the population loss function is
consistent with what is seen when working with the empirical loss function.

For concreteness, let us focus on the shallow neural network case. Notice
that we can write

1 N , 1 N L
ANyp(0) =D - N Zﬂi o) - 55 'Zl K(8},6)),
i= i,j=
where D = %[E|ﬁ1(X)|2, h(0) = CE[m(X)ao(W - X)], and
K(6',67) = C'CIE [o(W' - X)o(W/ - X)].

Gradient descent in continuous time takes the form

N
6 = V(e — 3 3 VaK(0},0))
j=1
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As it turns out if we set
L X
mV(x,6) = - 3 $0x 60,
n=1
then limp_ ., mY(x, t) = m(x, t), where m(x, t) satisfies
(20.1) m(x,t) = — f A, xD(m(x', ) — m(x"))m(dx").
x

Here m(x) is the target data and A;(x, x") is a positive semidefinite kernel,
explicitly defined in (0.3). Some remarks are now in order.

Remark 20.1. Itis interesting to contrast this with the 1/\/ﬁ normalization of
Chapter [9 where the limit is effectively as above but with the kernel A,(x, x") =
A(x,x") being constant in time. In that case we have the linear regime and
A(x,x")iscalled the NTK. However, in the 1/N scaling case, the kernel A;(x, x")
truly depends on time ¢ and it corresponds to the nonlinear regime.

Define the empirical measure
L N
uy = N > .
n=1
Note that the neural network output can be written as the inner-product
L N
mN(X; et) = ﬁ Zl C:lo'(u/tn : x) = (ca(w : x)’:ult\]> >
n=

which is an affine function of the empirical measure . It also turns out that
,uﬁv converges in the appropriate sense to a measure i, whose density, say q;(6)
with 6 = (¢, w), will satisfy the partial differential equation

(20.2) 3,q:(6) = V - (VoK (6,9,)q:(0)),
where R(6, q;) = —h(6) + f,, K(6,6")q,(6')d6".

What about the loss function? Notice that AN (8) can also be seen as a func-
tion of the empirical measure u¥. Indeed, we see that

Afop(® = 5E| (000 = mNex: 07|
— S (00 = (eow - X042

So, let us write Agop(e) = Apop(,uf’ ) to emphasize the dependence on the
empirical measure uY. Now, the convergence ul¥ — i, implies

Apop(:ultv) — A(@;), as N — oo,
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where

A@E) =7 f () = (eo(w - X), 4))7(d)

X

A simple calculation shows that
d . _ 50A ~ \I2e
GiAE) = = [ 196K (@.a)lB(d8) <0,
e

Remark 20.2. The latter shows that the function ¢t = A(&,) is non-increasing.
While this does not guarantee convergence of A(,) to zero, it is at least in the
right direction! In fact, as we shall see in Theorem for a deep neural net-
work with mean field scaling, if it converges during training, it must converge
to the global minimum (and not a local minimum). A similar result is true for
shallow neural networks.

In order now to see, at least heuristically, that (20.1) holds, we will use
(0.2). Consider the function p(6, x) = co(w - x) and recall that 6 = (c, w). We
have

5em(x. 1) = 8, (p(-+ ). i)
- f Vep(6,x) ( f Vap(6, x') (m(x', ) — (x')) n(dx'))/zt(dm
® X

=— f A (e, x") (m(x', t) — m(x")) m(dx"),
x
where in the last part we integrated by parts and defined
203 A ) = [ Vap(6x)Vap(6.3)7(d0),
e}

which is a symmetric, positive semidefinite kernel. Hence, the key is to estab-
lish (0.2). In fact, under the proper assumptions, it can be shown that the flow
converges to the target, i.e.,

lim mN(x,t) = m(x),
N,t—>o00

namely in the limit as N — oo and t — oo the algorithm recovers the target
data. These points are made rigorous in the sections that follow. Section
compares the scaling of Chapter [9 and of this chapter.

20.3. Mean Field Limit for Shallow Neural Networks

Let us consider the simplest possible setting where we set

N
1
N/, — n n.,
m (x,@)—NnélC a(W" - x),
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20.3. Mean Field Limit for Shallow Neural Networks 359

where C"* € R, W" € R%, x € R%, and o(-) : R — R. The number of
hidden units is N and the output is scaled by a factor - ; the so-called mean
field scaling.

We turn to the empirical objective function, and we have

N©) = 537 X (i =m0 )

Ym € R, x,, € R? and the parameters 8 = (CL,...,CN,W',...,WwN) €
RN*(+d)  Eor notational convenience, we may refer to m™ (x; 8) as mN(x) in
our analysis below.

The model parameters 8 are trained using stochastic gradient descent. The
parameter updates are given by

Cim=Ci+ —(}’k — mp (X))o (W - xp),

Wi = W' + —(Yk — my (x))CRo’ (W - Xp)Xk,

(20.4) ml (x) = Z Clo(W - x),
N =
fork = 0,1,...,|TN| where T > 0. 77’,;’ = 7 is the learning rate (chosen to
be constant). The data samples (xi, y) are i.i.d. samples from a distribution
m(dx, dy).
We impose the following assumption.

Assumption 20.3. We have that:

« The activation function o € CZ(R), i.e., o is two times continuously
differentiable and bounded. Additionally, we shall assume that o has
two bounded derivatives.

« The data (X,Y) € X x Y is compactly supported.

« The sequence of data samples (xy, y;) samples are i.i.d. from a distri-
bution 7(dx, dy)

+ The randomly initialized parameters (Cg, Wy") are i.i.d., mean-zero
random variables with a distribution u,(dc, dw) that has compact sup-
port.

As we shall see in Remark 0.7, Assumption can be weakened consid-
erably, but we will present the rigorous arguments under the stronger Assump-
tion 20.3. We study the limiting behavior of the network output mj (x) for as
the number of hidden units N and stochastic gradient descent steps k = |TN|
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360 20. Optimization in the Feature Learning Regime: Mean Field Scaling

simultaneously become large. Let us now make this precise. Define the empir-
ical measure

LN

N _

Vi =N 2;1 Scpwp-
n=

Note that the neural network output can be written as the inner-product
my (x) = (co(w - x), WY ),
i.e., it is linear in the empirical measure vﬁ’ . Define the scaled processes
uy = Vﬁ]\m-
Note that under Assumption 0.3, the initial empirical measure satisfies

d
uY = @, as N = co. In addition, due to our assumption on the distribution of

the (xy, yx) data and of the initialization (C}, WJ"))_,, the joint distribution of

(Cr, WY, € (R1*9)8N s exchangeable and, consequently, v} is a Markov
chain in the space of probability measures on E.

We are now ready to discuss the main result of this chapter.

Theorem 20.4. Assume that Assumption holds, and let the learning rate be
given by 771,;’ =1 for0 < n < o0, a fixed constant. The scaled empirical measure
ulN converges in probability to a limit measure i, with valuesin Dg([0, T]) asN —
oo (where E = M(R*9)). Forevery f € CE(RY*9), 1 is the unique deterministic
solution of the measure evolution equation

(f+ae) = {f> o)
—_ ’ ’, , _s . ac ,_S d ’d d
+/(; (/y;xyn(y (c'o(w’ - x), &) ) (o(w - X)3,f, fis) m(dx y)> s

t
+£ (\/g;xy 77()’ —{(c'a(w’ - x),,as>)<Co"(w - X)X - wa’las> 7(dx, dy))dS

= ([ fo)
(20.5)

t
+ /0 <-lcxy 77()’ —{('o(w’ - x),ﬂs>)<V(CO'(w - x)) - Vf, i) w(dx, dy))ds,

where Vf = (0.f, Vi, f).
Corollary 20.5. Assume Assumption holds, and for a given q(t, c, w) set
v(6,q(t,-))

=f ((y—/ c’a(w’-x)q(t,c’,w’)dc’dw’)ca(w-x))n(dx,dy).
xXxY R1+d
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Suppose that fi, admits a density qy(c, w) and there exists a unique solution to
the nonlinear partial differential equation

@ = —ndivg (q(t, ) Veu(6, q(t, )))

(20.6) q(0,0) = qo(0),

where divg is the divergence operator with respect to the variable 6 = (¢, w) and
q(t,c,w) vanishes as |c|, || w ||— oo. Then, we have that the solution to the mea-
sure evolution equation (20.3) is such that

f(dO) = q(t, 0)de.

Remark 20.6. Theorem and Corollary imply that the objective func-
tion AV (9) satisfies

(20.7)
lim ANop(@wep) = Aa(t, ) = 5 f (v — m(x: q(t, ) w(dx.dy),  where
N- sy

m(x; q(t,-)) = f co(w - x)q(t, c, w)dedw.
R1+d

Classical results in the literature (see, e.g., [AGS08,CMV03,JK098|) show
that the PDE (R20.6) is a gradient flow for the limiting objective function (20.7)
in the space of probability measures on R*? endowed with the Wasserstein
metric. This means that the trajectory’s t — q(t,-) goal is to minimize the
limit objective function A(q) as defined by (20.7). More details on the optimal
transportation theory as related to the problems of interest here can be found
in [AGS08, CB18].

Remark 20.7. We note that, as [SS20b] shows, Theorem holds with the
considerable weaker Assumption instead of Assumption P0.3. In particu-
lar, the compact support assumption of the distributions under which the data
samples and parameters at initialization are generated is not needed and can
be replaced by appropriate moment conditions.

Assumption 20.8. We have that:

« The activation function ¢ € CZ(R), i.e., o is bounded and twice con-
tinuously differentiable. We further assume that it has two bounded
derivatives.

+ The randomly initialized parameters (Cg, Wy") are i.i.d., mean-zero
random variables with a distribution uy(dc, dw), such that for some

0 < q < 0o, we have Ee9C < oo and E |[W||” < .

+ The sequence of data samples (x,,, y;,) is i.i.d. from the probability
distribution 7z(dx, dy) such that Ex}, + Eyj}, < co.
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We present the proof under the stronger Assumption in order to focus
on the main ideas and main intuition. We refer the interested reader to [SS20b]
for the more involved technical details in the case of the weaker Assumption
instead of Assumption 20.3.

Proof of Theorem 20.4. Let us assume that we can indeed show relative com-
pactness of the family {u"N }yen in Dg([0, T]) where E = M(R'*+9) (this follows
exactly along the lines of the calculations in Section and the calculations
are included in Section £0.3.1). This will guarantee that the family {uN } 5y in-
deed has a limit as N — co. Consider a test function f € CZ(R!*4). By Taylor
expansion, we shall have that

N
() = () = 2 (Flek e = riefoup)

1 N 1 N
=~ 2 Sef (el wide s — ) + 5 25 Vo (e i)Wty — wi)
n=1 n 1

N
1 -
+ 5 2 O e — )’
n:
N
+lZ(cn — Ve f(E, WHWP, , — wh)
N k+1 k/ Yew k* "%k k+1 k

n=1

1

z
M=z

(wﬁﬂ - wﬁ)TVL%f(C_ﬁ, wg)(w£+1 - wﬁ)’
n=1

for points ¢}, w}} in the segments connecting cy,; with ¢} and wy,; with wy,
respectively. Notice now that the uniform bounds of Exercise and the re-
lation (R0.4) imply that as N gets large

(fovks) = (F) = 13 Z Ocf (cfts WYk — N (i 6o (Wt - xi)
N
" 1% Zl i = mN (s O))cko” (Wi - xi) Vo f (g W) - X1 + Op (N72),

where we recall Definition for the notation O, (N~2). The term O, (N~2)
is a result of f € CZ, the bounds from of Exercise 0.1, as well as the moment
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bounds on (xg, yi) from Assumption 19.2. We next define the components

ppN = N n(y — (co(w - x),vY ) ) {o(w - x)3.f, vy ) w(dx, dy),
Xy

Di’N = % n(y — {co(w - x), v )) {co’(w - x)x - Vi, f, v} Y (dx, dy),
Xy

1
MmN = N77(yk —{co(w - x), VM) ) (o(w - )V f, vY ) — DY,
1
MY = N77(yk —{co(w - xp), VR ) ) {co’ (w - xp)x - Vi f, VR ) — pN,
which leads to the expression
(Fok) = (F) = DN + DY + MY + MY + 0, (N72).

Next, we define DV'N, DN MLN and M?N as sums over indexes k €
{0,...,|Nt] — 1} of D,lc’N , Di’N , M;’N ,and M, i’N , respectively

[Nt]-1 INt|-1

DNy = > bV, D¥Nwy= > DY,
k=0 k=0
INt]-1 INt]-1

(20.8) MY = > MmN, MANo = D MY
k=0 k=0

The scaled empirical measure can be written as the telescoping sum

(Foil) = (o) = (Vo) = (F00)

=% (o) -

Therefore, the scaled empirical measure satisfies, as N grows,

INt]-1

()= (= 3 () = (o))

k=0

INt]—1

= > (D}{’N + DN + MY + MY ) + 0O, (N7

k=0
= [ ([ = oot 0)) (otw - 0% 4wt ) ds

0 \Jaxy

t
+ / (f n(y — (co(w - x), ulY y ) (e’ (w - X)x - Vi, f, 1l Y w(dx, dy))ds
0 \Jaxy

(20.9)

+MEN () + MPN () + 0, (N71).
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In fact Exercise claims MYN(t) and M?N(t) converge to 0 in I? as
N — oo. Tightness together with relation (20.9) shows that (20.3) is the limit
equation, similar to the proof of Theorem [19.3.

In particular, let 7V be the probability measure of a convergent subse-
quence of {uN} _ . Each 7 takes values in the set of probability measures
M(DE([O, T])). The established relative compactness implies that there is a
subsequence 7Nk which weakly converges. Then, as in Lemma [[9.13, we get
that if 7Vk is a convergent subsequence with a limit point 7, then, 7 is a Dirac
measure concentrated on & € Dg ([0, T]) and & satisfies equation (20.3).

Lastly, it remains to show uniqueness of the solution to (20.3). This is

proven via a contraction argument, as detailed in Section 0.3.2. This com-
pletes the proof of Theorem P0.4. O

An important consequence of Theorem is that the neural network has
the propagation of chaos property. This is the content of Theorem R0.9, pre-
sented here without proof.

Theorem 20.9 ([SS20b]). Assume that Assumption holds. Consider T < o
and let t € (0, T]. Define the probability measure oY € M(RA+DN) here

pr(dxt, ..., dxN) = P[(clyp Winey) € dx's..., (g wiky)) € dXN].

Then, the sequence of probability measures pV is ji.-chaotic. That is, for k € N

k
(2010) 1\1]1_1;1; <f1(x1) X X fk(xk)’ P~N(dx1: R de)> = H <ﬁ’ la> s
i=1

forall fy,..., fi € CAH(RI*9).

Theorem implies asymptotic independence of the particles as N — 0.
Indeed, by (20.10), as N — oo, the dynamics of the weights (cf(, w;'{) will become
independent of the dynamics of the weights (c{{, wi) for any i # j in the limit
as N — oo. It is perhaps interesting to remark here that the dynamics (ci, w})
are still random due to the random initialization. Let us finally discuss insights
from the mean field limit of Theorem 20.4.

Remark 20.10. As N — oo, the neural network converges in probability to
a deterministic model. This is despite the fact that the neural network is ran-
domly initialized and it is trained on a random sequence of data samples via
stochastic gradient descent.

Remark 20.11. For finite N, » must decay with the number of iterations in
order for stochastic gradient descent to converge. Despite this, the noise disap-
pears and the neural network’s parameter distribution converges to a determin-

istic evolution equation. This is due to the normalization of % in the hidden
layer replacing the role of the learning rate decay.
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Remark 20.12. As it also discussed in Remark 0.6, the partial differential
equation (0.6) is a gradient flow for the limiting objective function (20.7) in the
space of probability measures on R'+4 endowed with the Wasserstein metric.
Hence, the target of the limiting law of large numbers result is to minimize the
limit objective function A(q) as defined by (20.7).

20.3.1. Tightness in mean field scaling. The process for establishing tight-
ness here is parallel to the process we followed in Chapter [9. The first step
into establishing that the family {u,t € [0, T]}yey has a limit as N grows to
infinity is to prove an appropriate form of compact containment, and, in our
case, it is enough to show that there is a compact set that contains {u¥ } for all
N € Nand t € [0,T]. Recall that ¥ € Dg(]0, T]), where Dg([0, T]) is the
set of maps from [0, T'] into E which are right-continuous and which have left-
hand limits, E = M(R'*%), and M(R'*9) is the space of probability measures
in R1* (see also Section [A.4).

Lemma 20.13. Foreach & > 0, there is a compact subset K of E such that

sup  PlulN ¢ x] < 6.
NeN,0<t<T

Proof. Given the a priori bounds established in Exercise 0.1, the proof is com-
pletely analogous to that of Lemma [[9.11]. O

Next we establish regularity of the family of measures {u : t € [0, T]}nen-
Asin Chapter[[9consider the function q(z;, z,) = min{|z;—z,|, 1} with z;,z, €
R. Recall that 7 is the o-algebra generated by {(C}, Wg)}L, and {x; }}ﬁ’f}‘l, ie.,

FN contains the information generated by {(C}, W)}, and {xj}JLZf,J_l.

Lemma 20.14. Let f € Cﬁ(R”d). Forany p € (0,1)and 6 € (0,1), thereisa
constant C, < oo such thatfor0 <u<95,0<v<35Att€]0,T],

E [qC( ) (F DA 1) i DIF] < Cob? + S
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Proof. The proof is parallel to that of Lemma of Chapter 9. A Taylor
expansion givesfor0 < s <t < T

<

[(ford) = (fo) |

I
—~

i) = (F- %) |

lf(Clnep Wine) = F(Cinsp Wins)l

IA
Z|~
M=

S
1l
—

|acf(cﬁ\ltj’ W{Jl\lt])llcﬁwj - C[YJLVsJ|

IA
Z| =
M=z

Mz~

S
Il

(20.11)

+
zZ|=

I Voo f (Clivey Wikep) Il Wik — Wik, I

S
1l
—

for points (C", W") and (C", W") in the segments connecting Clj with Clj,,
and W/ with Wy, , respectively.

The next step is to establish a bound on |C{y,| — C{iys/| for s <t < T with
0<t—s<d<1. Forp e (0,1)we have

INt|-1

3§V]==E[| Sy - D
k=|Ns]|

INt|-1

1
D I — mlzj(xk))ﬁﬁ(%" - X1
k=N

E Iy = il |

<e|

%N]

INt]-1

1
S T Z Co
N k=|Ns]|

C
SCO(t—s)+ﬁ°

< Co(t - S)plt—s<1 + Co(t - S)pTl/plt—szl +

C
(20.12) < C,0P + ﬁ"

G
N

where Assumption and the bounds from Exercise were used. Also,
0 < C, < oo is an unimportant finite constant that may change from line to
line.
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Let’s now establish a bound on || Wy, — Wy, [l fors < ¢ < T with
0 <t—s<9d <1 Weobtain

INt]-1

A= 1 > ong-wo

E| | Wiy = Wik 2
=|Ns

9;N]

|INt|-1 1
2 - mf(xk))ﬁcﬁd'(%” - Xp)% ||
k=|Ns]|
1 |INt|-1
S T Z Co
Nk:[NsJ

C
5%&+ﬁ,

o

s—zN]

where we have again used the bounds from Exercise R0.1].
Thus, going back to (20.11)), due to the a priori bounds from Exercise 20.1],

the quantities (C{y;, W|k,) are bounded in expectation for 0 < s < t < T.
Therefore,for0 < s <t < Twith0<t—5s<d<1

() - (£ 1Y) < .07 + 32,

where C, < oo is some unimportant finite constant which may depend on the
magnitude of the first partial derivatives of f. This concludes the proof of the
lemma. ]

We can now establish that the family of processes {uN,t € [0, T]} has a
limit as N — o0. Indeed, we have the following lemma.

Lemma 20.15. The family of processes {uN}yen is relatively compact in
Dg([0, TD.

Proof. Combining Lemmas 20.13 and R0.14 and the results of Section A.4,
proves that {uN}n¢y is relatively compact in Dy(gi+ay([0, T]) (see also Theorem
8.6, Remark 8.7 B and Theorem 9.1 of Chapter 3 of [EK86]], as well as Theorem
4.6 in [Tak86] and Section 3 of [Led16]). O

20.3.2. Uniqueness in mean field scaling. The goal of this section is to
prove uniqueness of the evolution equation (20.5). The strategy is to set up
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368 20. Optimization in the Feature Learning Regime: Mean Field Scaling

a Picard type of iteration and prove that it has a unique fixed point in the ap-
propriate space through a contraction mapping. To this end, notice that

(fse) = (f> Ro)
—_ ’ r, , _s . ac , _S d ’d d
+‘/0. (/j;xyﬂ(y (c'o(w’ - x), fis) ) {o(w - x)8.f, fis) m(dx y)) s

+/(/'n@—@wmﬂmﬂoanwxk%JﬂomMAwﬁ&
0 XXY

(20.13)
t
=Uﬂw+/<ﬂz@%J%VL%M&
0

where for z = (¢, wy, ..., wy) € R4, Q(a, x) = (co(w - x), 1) we have
G(Z’ Q(la’ )) = (Gl(z’ Q(laa ))’ GZ(Za Q(ﬂ, ))) € R1+da

with

cmme»=/'n@—mmwwm»wﬂwﬂweR

XY

Ga(2,Q@, ) = f 7(y — Q(, x)ca’ (w - )xm(dx, dy) € R

XY

A solution to (20.13), &., is associated to the nonlinear random process Z;
(see for example [Kol14]) satisfying the random ordinary differential equation

t
z=%+fc%@%»m,
0

ZO ~ la(oa ¢, LU),
(20.14) ,at = LaW(Zt).

This ODE is random due to the random initial data. Let us define the
mapping F : Dg([0, T]) = Dygi+ay([0, T]) such that for a path (R;);ejo,r] €
Dg([0, T]), we have F(R.) = Law(Y.) where Y. is given by

t
Y=Y+ [ GO%R)ds
0
Yo ~ (0, ¢, w).

Next, define the map L : Dygi+ay([0, T]) = Dg([0, T]) taking a measure
valued process u, and mapping it to Q(u;, x) = L(u), where

Q(u, X) = {ca(w - x), 4e) »
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20.3. Mean Field Limit for Shallow Neural Networks 369

and the map H : Dygi+a)([0, T]) = Dyg(ri+a)([0, T]) via the composition of
the mappings F and L, i.e., we set H = F o L. Oftentimes, if we want to empha-
size the dependence on T, we may write Hy for H.

The discussion above show that if (u)¢[o,7) is a fixed point of H, then
Law(Z;) = H,(u.) is a solution to (20.13). In the reverse direction, if (Z),e[o, 1]
is a solution to (20.14), then its law will be a fixed point of H, implying that
Law(Z;) = H,(u). It is also a fact that if u is a weak measure valued solution to

(0.13), then it must be a fixed point of H, satisfying (20.14) and consequently
proving our result.

We next show that H is a contraction mapping for ¢t € [0, T]. For this pur-
pose, we first show that in order to study the fixed point of H, it is enough
to consider H : C([0, T]; M(R'*9)) — C([0, T]; M(R'*%)). Then this will al-
low us to work in C([0, T]; M(R*4)) instead of working in the larger space
Dywr+ay([0, T1), which in turn simplifies some of the arguments.

Therefore, we derive in Lemma appropriate a priori bounds for the
parameters ¢; and w; and study their regularity in time. If we denote by E the
expectation operator taken with respect to the measure governing the evolution
of parameters (notice that here (x, y) are considered to be integration variables)
we have the following system of random ODEs.

t
¢t =cCo+ / a (y — E[cso(wy - x)])o(ws - x)7(dx, dy)ds,
o Jaxy

t
wy = W + f a (y — E[ego(wg - x)Dego’ (wy - x)x7(dx, dy)ds.
0 xXxXY

(20.15)
(co> wo) ~ A0, ¢, w).

Lemma provides us with the necessary a priori uniform bounds on
the parameters and also shows that there is regularity in time.

Lemma 20.16. There is a constant C, < oo, depending on T, such that

sup (leg+ [l we [1) < Co,
te[0,T]

and forevery 0 < s < t < T we have that

lee = sl+ Il we — ws [|< Co(t = 5).

Proof. Let’s examine c, first and establish a bound on its growth. The finite
constant C, < oo may change from line to line, and it may also depend upon
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370 20. Optimization in the Feature Learning Regime: Mean Field Scaling

the final time T.

c;=Co+ f 77/ (y — E[cgo(wy - x)]o(wg - x)(dx, dy)ds.
0 rxy

cio(w; - x) = a(w; - x)cg

t
+o(w; - %) f . f (y — Eleso(w, - )])o(w, - x)(dx, dy)ds.
0 XxY

(20.16)
t
ciow; - )] < Colco| + C f f (v = Eleso(ws - ©)o(ws - x)lr(dx, dy)ds.
0 XxY

We have used the fact that o(-) is bounded. Now, we will use the facts that
co, X, and Y have compact support.

t
leo(w; - )| < Co +C, f / Elleso(ws - )l1(dx, dy)ds.
0 xXY

xXY x'ex

t
lc;o(w; - x)| < Cp + CO_[ f sup E[|c;o(wy - X")|]|7(dx, dy)ds.
0 Jx
t

sup E[|c;o(w; - x)|]] £ C, + CO_/ sup E[|c,o(wg - x)|]ds.
0

XeX x'ex
Therefore, by Gronwall’s inequality,

sup E[|c;o(w; - x)|] < C,

xex

for 0 <t < T. Therefore, going back to (20.16) and recalling Assumption [19.2,
we get that uniformly in t € [0, T,

e < Co.

Similarly, now from (R0.15) we also obtain that there is a constant C, < oo,
uniform in ¢ € [0, T] such that

| wy (1< Co.

The latter statements imply the first statement of the lemma. Let us now
prove the second statement of the lemma. Similarly to the calculations above
and using the uniform bounds on ¢; and w, together with Assumption [[9.2, we
have

el =] [ 7] - Elestw, Dot - orxdyds
S XY

< Cy(t —5).
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20.3. Mean Field Limit for Shallow Neural Networks 371

The corresponding statement | w; —wy ||< C,(t—s) follows along the same
lines, concluding the proof of the lemma. O

As a consequence of the regularity result in Lemma P0.16, (20.13) is a con-
tinuous process. Therefore, we can prove a contraction in C([0, T]; M(R!*%))
(instead of studying the process in the larger space Dg1+a)([0, T])).

Now that we have established this a priori boundedness and regularity re-
sult, let us go back to the proof of uniqueness. Notice that Lemma shows
that ¢, and w; are bounded on [0, T]. Motivated by this fact, let us define the
bump function b(z) € C*, which is one for |z| < B and zero for |z| > 2B. If,
for example, sup,, 7 l¢:| < Co, then we set B = 2C,. Lemma allows us
to do so.

Let us define for notational convenience Cy = C([0, T], R'*4) and let My
be the set of probability measures on Cy. Consider an element x € My. Moti-
vated by the discussion before Lemma P0.16, let us set Law(Y) = H(x.), where,
slightly abusing notation, Y = (¢, w) with

t
¢ =¢Co+ / f n(y — (Gs x> ) )a(ws - x)7(dx, dy)ds,
o Jaxy

t
w, = wy + f f n(y — (G 1, %) )cso'(ws - x)xm(dx, dy)ds,
0 XxY

Gs,x = CéO'(w; : x)b(cg),

(20.17)  (cg,wgp) ~ f(0,c, w).

We next show existence and uniqueness of a fixed point Law(c;, w;) for the
mapping H, as defined via (20.17). For x,x’ € Mt and p > 1 define the metric

1/p
Dty =int]( [ suplx, ~ 5l Adtny) v e P
C

TXCT s<T
where P(x, ") is the set of probability measures on Ct X C7 such that the mar-

ginal distributions are x and %', respectively. The space M endowed with the
metric Dt is a complete metric space.

If a solution to (20.14) exists, then it must be a fixed point of H (defined via
equation (20.17)). This is an immediate consequence of Lemma R0.16. There-
fore, if H has a unique solution, there can be at most one solution to (20.14). If
(B0.14) has at most one solution, (20.13) has at most one solution. Therefore,
if H has a unique fixed point, this proves uniqueness for (20.13).

Now, for two elements x!,x?> € Mr, let us set Law(Y?) = Law((c!, w!)) =
H(x") for t € [0, T] with i = 1,2. So, let (¢}, w}) satisfy (20.17) with x = x!, and
let (¢, w?) satisfy (20.17) with x = x2. The processes (c}, w;) and (c?, w?) have
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372 20. Optimization in the Feature Learning Regime: Mean Field Scaling

the same initial conditions. That is,

(o, wp) = (c§, wg) = (co, o),
(o, wo) ~ a(0, ¢, w).

We now prove a contraction for the mapping H for some 0 < T, < T. By
definition, (c},w}) and (¢?, w?) have marginal distributions H(x') and H(x?),
respectively, on the time interval [0, T, ]. Once this is proven, we can extend this
to the entire interval [0, T] since Ty, is not affected by the input measures x*, x2

or by which subinterval of [0, T] we are considering. The following lemma is
going into this direction.

Lemma 20.17. Let x',%x* € My and T < co. Then there exists a finite constant
C, < oo that may depend on T such that

t
Dyy(HG), HOR) < G, f Dy (61 2)du
0
forany0 <t < T.

Proof. The formula (20.17) yields

|
o\
§\a
«
=
—
<
|
S~
,MQ
s
P
[\
~—
N———
Q)
~
wsl\_,
=
p——g
N
VoY
)
Re
<Y
<
N
<Y
7]

1{Gs x, k'Y o(wi - x)7r(dx, dy)ds
= f / ny(o(wsl - x) —o(w? - x))ﬂ(dx, dy)ds
0 JIX
1(Gs x> %) (0(w? - x) — o(wy - x)) w(dx, dy)ds

0{(Gsx 1> — k') o(wy - x)7(dx, dy)ds.
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20.3. Mean Field Limit for Shallow Neural Networks 373

In order to address the mean-field term, we recall that c;o(wix)b(c}) and
o’(-) are bounded and that X, Y have compact support. Therefore, we get that

t
‘ f f (cso(wix)b(cy), KZ)(a(wS2 - X) —o(w! - x))n(dx, dy)ds’
0 Jaxy
t
<c, [ Nup-ullds
0

We next bound the term
t
} f / ( (cso(wsx)b(cy), 1> — k') o(wy - x)7m(dx, dy)ds|.
0

Since the map (¢, w) — co(w - x)b(c) is globally Lipschitz, we have that
|c2a(w? - x)b(c?) — cta(w! - x)b(cY)| < K(|c? = ¢t + |Jw? — w!|),

where the constant K < oo does not depend upon x (since X has compact
support). Then, for0 < s < T,

‘ ftf (<C§O'(w;X)b(C§), K2 — K1>)O'(wsl - x)7(dx, dy)ds’
0 JIxY

t
SKf Dy (x!, %*)ds.
0

Similar calculations also give the necessary bound for the difference
w} — w?. Hence, for 0 < s < T, we eventually have the bound

S
sup [|ck — 2l || wh — w? [|] sclf (162 = b+ 1w -l 1 Jau
0

us<s

S
+ G, f Dy 1 (', %*)du,
0
for finite constants C;, C, < oo. We then also have that

E

sup[lck — 2|+ || wk — w? ||]]
MSS

N
< [ el suplict = e w? -t ]
0

™=<u
N
+C, f Dy, 1 (1, x)du.
0
By Gronwall’s inequality, we then get for s < T,
uss

N
E| sup|[lci, — cal+ || wy — w ||]] <G, exp(Cls)f Dy 1 (', x¥)du.
0

The latter display immediately implies the statement of the lemma. O
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374 20. Optimization in the Feature Learning Regime: Mean Field Scaling

Lemma immediately proves there is a contraction on the interval
[0, To].

t
Dy 1 (HG), HOR)) < C, f D (61, 2)dlu
0

t
<G, / Dy 1 (x', x*)du
0
< CotDy 1 (1, %2).
Then, choose T such that C, T, < 1. In fact we have Lemma P0.18.

Lemma 20.18. Let T < oo. The mapping Hy = (F o F)r has a unique fixed
point.

Proof. By Lemma and the Banach fixed-point theorem we obtain that
thereis 0 < T < oo such that Hy (m) will be a contraction map. This then im-
plies that (20.17) has a unique solution on [0, T ]. We can then extend this con-
struction to the whole interval [0, T] by dividing the interval [0, T'] into subin-
tervals [0, Ty ], [To, 2Tp], - - -, [T—Tpy, T]. In each subinterval, it can be shown that
the solution is unique by proving a contraction as was done in Lemma 20.17,
which can be done as T, can be always taken to be of the same magnitude, i.e.,
it does not depend on which subinterval is being examined. This concludes the
proof of the lemma. O

20.4. Central Limit Theorem Behavior for Shallow Neural
Networks

In this subsection we show that shallow neural networks satisfy a central limit
type of theorem as the size of the network and the number of training steps
become large. The central limit theorem (CLT) quantifies the speed of conver-
gence of the finite neural network to its mean-field limit as well as how the
finite neural network fluctuates around the mean-field limit for large N. In-
stead of presenting the full details, we shall only present the main elements
that will allow us to guess what the limit would be and refer the interested
reader to [SS20a] for the proof details.

We start by defining the fluctuation process

a¥ = VNN — ).

Then o i &, where & satisfies a stochastic partial differential equation.
This result characterizes the fluctuations of the finite empirical measure u™v
around its mean-field limit /& for large N. Interestingly, the limit & has a Gauss-
ian distribution.
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20.4. Central Limit Theorem Behavior for Shallow Neural Networks 375

In order to motivate the result, let us recall the formula for (£, uf ) by (20.9)
and the formula for (f, @;) by (R0.5). Let us take the difference of the two for-

mulas, scaling the result by \/N , in order to get a formula for ( f, ocf] >:

(fra) = (frad)

)
(

f n(y — (co(w - x), &) ) (o(w - X)8,.f, o ) w(dx, dy))ds
Xy

f n{co(w - x), &) (o(w - )3, f, is) (dx, dy)>dS
xy

(f n(y — (co(w - x), i15) ) {co’(w - x)x - V,, f, al¥ ) w(dx, dy))ds
XY
( f n{co(w - x),al ) ) {co’(w - x)x - Vi, f, &) 7(dx, dy))ds

xy

(

N+ MPN) + RY,

where it can be shown that the remainder term RN goes to zero as N — oo
uniformly in ¢t € [0, T], while \/ﬁ (Mt1 Ny Mtz ’N) behaves asymptotically as
N — o0 as a Gaussian martingale.

In particular, for test functions in the appropriate space we have that the
following stochastic partial differential equation characterizes the Gaussian
evolution of the limit o,

() = (f o)
" f f 7y — (cow - ). is) )V (co(w - x)) - V f. &s) r(dx, dy)ds
0 xXxXY

(20.18)
t
[ [ teotw . (Veotw - 0)- V1. g dy)ds + (5.5,
0 Jaxy
M, is a mean-zero Gaussian process with variance-covariance structure

given explicitly as follows. For u € M(R!*%) and h € C}(R'*) define the
operator

Ry,yulh] = (v —{ca(w - x), ) (V(ca(w - x)) - Vh,u).

Then, we shall have that (VN (f,M]),\/N{g,M})) € Dg.([0,T]) con-
verges to a distribution valued mean-zero Gaussian martingale with covariance
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function

Cov[(f,Mt>,<g’Mt>]

e f t [ fx ) (Reyalf1 - /x Rl a»)

X (ﬂ%x,y’ﬂs [g] — nyﬁx,y,ﬁs [g]7(dx, dy))ﬂ(dx, dy)]ds.

Finally, the stochastic evolution equation (20.1§) has a unique solution,
which implies that & is unique.

The CLT stochastic evolution equation (20.18) is coupled with the mean-
field limit PDE. The stochastic evolution equation (0.18) is linear in & and
driven by a Gaussian process; therefore, the limit &, itself is a Gaussian process.

The convergence of the fluctuation process a indicates that for large N
the empirical distribution of the neural network’s parameters behaves as

N o =uN ap + ——a,
IN.| = M M \/ﬁ

where @ has a Gaussian distribution. Combined, the fluctuations result and
the law of large numbers results show that the relation between the number of
particles (hidden units, in the language of neural networks) and the number of
stochastic gradient steps should be of the same order to have convergence and
statistically good behavior. Under this scaling, as a measure valued process, the
empirical distribution of the parameters behaves as a Gaussian distribution.

20.5. Deep Neural Networks in Mean Field Scaling

In this section we shall briefly consider the ideas behind the mean field limits
for deep neural networks. For illustration purposes, let us consider a multi-
layer neural network with two hidden layers. The extension to even deeper
neural networks with more layers is analogous.

1 X 1 M
(20.19) mVoNa(x;0) = o 3 Clo| 5 >, Whio (W - x) ).
N 31 N, j=
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20.5. Deep Neural Networks in Mean Field Scaling 377

Notice now that (20.19) can be also written as

HY(x)=o(W¥ - x), j=1,...,Ny,
L M
2i(y) — 2,i,j pyL,J -
z l(X)—Nl j§=1W LIHY(x), i=1,...,N,,

H>(x) = o(Zz’i(x)>,

N.
1 <3 . .
(20.20) my N (x) = A > ClH(x),
i=1

where Ci, W>4J € R and x, Wb/ € RY. The neural network model has param-
eters

6= (Cl,...,CNo, Wbl wNule bl Wb,

which must be estimated from data. The number of hidden units in the first
layer is N; and the number of hidden units in the second layer is N,. The multi-

layer neural network (20.20) includes a normalization factor of — in the first

Ny

hidden layer and Ni in the second hidden layer.
2

Consider the mean square error loss again given by
NN 1
Apop *(6) = SExy (Y — mNoNa(X; 9))2

for the population loss function, where the data (X,Y) ~ m(dx, dy), and

(20.21) ANUN2(9) = 11

— — mNeN2(x; 6))2
21D (xz 67 (x:6))

,Y)ED

for the empirical loss function used in practice. The goal is to estimate a set of
parameters 6 which minimizes the objective function (20.21)).
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The stochastic gradient descent algorithm for estimating the parameters 6
is, fork € N,
Ny,N,
Char = Cf + 25— (3 = MMV 0 HE (),

nNhNZ
1j Liy Iwa .
Wi = Wk (yk — mNeN2(xy; ek))

1 2 ;. i 2.0, , 1j
X (Vz . Cho'(Zg ()W ”) o' (W - xi)xi,

Nl»NZ

nW i , 2
2 Ny 0 = m e 80)Cho (Z2 () Hy (),

21] i,j
Weri = W +
Hy'(x) = o(Wkl’i - x ),

2,1 2,1, ,
Zo (xg) = Z W2 H (30,
j 1

Hﬁ’i(xk) = O'(Zk’ (xk))’

mNN2 (x5 6)) = Z CLH (xi0),

where an’NZ, naj}fv ?,and ny/; * are the learning rates. The learning rates may

depend upon N; and N,. The parameters at step k are

Nl,NZ

_ 1 2,1,1 2,N1,N, 1,1 1,N;
6 = (Cl,...,Cr2, W2, w2 bt b,

(XK, yi) are samples of the random variables (X, Y).

Assumption 20.19. We assume the following conditions.

e o(1) € Cg, i.e., it is twice continuously differentiable and bounded.
Additionally, we shall assume that o has two bounded derivatives.

« The distribution 7(dx, dy) has compact support, i.e., the data (xj, yi)
takes values in the compact set X' X Y.

+ The random initialization of the parameters, i.e., {C};, {Woz’i’j };,j and
{Wol’J}j, are i.i.d. and take values in compact sets €, W', and W2.

« The probability distribution of initial parameters (C., wihd witd )i,j
admits continuous probability density functions.

We denote by u.(dc), ,uWZ(du) and uy1 (dw) the probability distributions
of {C};, {Wc,2 l’J}”, and {Wo J}J, respectively.
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20.5. Deep Neural Networks in Mean Field Scaling 379

Theorem 20.20. Let T > 0 be given, let Assumption hold, and choose the
learning rates to be

Ni,N; _ NZ Ni,N; _ Ni,N; _
N’ ° = N’ nwi =1 and nyh* =N,

Then, foranyt € [0,T] and x € X,

lim lim m™MNz(x;0 = m,(x),
N m (%5 O, 1)) (%)

in probability, where we have that
m () = [ CEP o)
e
with

dc¢ = f (y- mt(x))th’c(x)n(dx, dy)dt, C§=c,
Xy
dw;" = (y — m, (X)) VP (x)o’ (WY - x)xm(dx, dy)dt, Wy = w,
Xy

(y = my(x))Csa’ (Z§(x)H; ™ (X)m(dx, dy)dt, Wy " = u,
XxXY

APV (x) = a(WY - x),
Z¢(x) = f f W2 I ) (At (dw),
wt Jwz

AP (x) = o(Z¢(x)),
(20.22)

V() = f o' (Z8(x) ( f v"vf’“‘“’”uwz(du)) e(do).
(4 W2

#,2,C,W,U
dw,

The system in (20.22) has a unique solution.

Notice that we can also write that m,(x) satisfies
(20.23)

mi(x) = f c”fa( f f Wz’c’w’“am/ﬁ’w.x)uwz<du>uW1<dw>)uc(dc>.
(64 Wl JWw2

Note that the learning rates in the second layer are trained faster than the
other parameters. This choice of learning rates is necessary for convergence to
anon-trivial limit as Ny, N, — oo. If the parameters in all the layers are trained
with the same learning rate, it can be shown that the network will not train as
N, N, become large. The proof of Theorem can be found in [SS21]; see
also the papers [AOY19, Ngul9, NP23] for related results.
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20.5.1. Convergence Properties of the Limit as Time Grows. Let us now
conclude this section by discussing the convergence properties of m;(x) as
t — oo.

Let us denote ©,(c,w,u) = (C5, W', W>*"*) for the components
of the ODE in (20.27). For notational convenience, we shall often write
@ = (c,w, u). Then, we obviously have that m,(x) depends on ¢ only through
[0;] = {0:(O)}gcexwixw2+ In order to emphasize that, we shall write m,(x) =

8(x; [O]).
Analogously, we will denote

[@t(C, )] = {®t(c’ w, u)}(w,u)eW1><W2 and [Gt(" w, )] = {G)t(c’ w, l’l)}(c,u)e(fxw2 ’
which then leads to the notation
Zi(x) = Z(x;[04(c, -, )] and V(x) = V(x;[0:(-, w, )]).
For notational convenience let us also denote h(x;[0;]) = ((x) — m(x)).
Then, for (c,w) € € x W', we also define

Ri([6¢],¢) = f h(x; [0, D)a(Z(x; [©,(c, ))m(dx),
X
Ry([0], W, w) = /h(X; [0 1)V (x; [0,(:, w, )’ (W - x)x7(d),
X

Ry([0,], CE, Wi, 0) = memm@ﬂﬂmm@»mwmﬁ”mﬂwx
X
and we set
H([©,],0,(6),6) = (R,([0,], ), R,([O,], W;"*, w), Rs([©,], CE, Wi, ).

The notation used above makes it clear that the functions H(-) depend on
[©;], on ©,(0), and on 6 separately. The ODE system in (20.27) can be written
in the form

(20.24) 0,(0,) = H([0,],0,(0,), 0,), such that ©, = (c, w, u).
The limiting objective function can be written as

A(©;) = lim 11m Apop *(O1nye)

N;—oco Ny~

= lim lim —[EX[(m(X) mNeN2 (X5 6y )

N,—oc0 Nj—co 2
=5Lkmm—memﬂﬂwx

where m(x; [©;]) = m,(x) is given by (20.23) and m(x) is the target function
of x.
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20.6. In Between the Linear and the Nonlinear Regime 381

By inspection of the previous formula, we see that the function ® — A(®)
is non-negative and becomes zero only at the global minimum.

In fact, as we shall now see, under the appropriate conditionsand ast — oo,
the global minimum is achieved. Namely, we have that

tlim g(x;[©;]) = m(x) foralmostall x € X.

The limiting loss function A acts as a Lyapunov function for the dynamical
system (R0.29) (see Exercise 20.4)
d

(20.25) =

A(O;) = VoA(©y) - ©; = Vo L(©,) - H(®;) < 0.

The fact that %[\(@t) < O means that A(©,) is at least decreasing (albeit not
strictly) in the gradient direction of the paths governing the limiting behavior
of the weights.

Let us define ¢, to be the joint measure for the random initialization of the
parameters, i.e., for {C!};, {Wol’J 3 { Wi }i,j» By Assumption we have that
this is the product measure ¢, = u.Xup1 XUy 2. By analogy, let us now define ;
to be the probability measure at time ¢ of the random vector ©, = (C;, W, W;?)
as governed by the solution to the random ODE system (20.22). Then, ¢, is the
pushforward of {, under ©, given by (20.24), i.e.,

$ = (®t)g $o5
see for example Chapter 8 in [AGS08]. Then, we have the following result.

Theorem 20.21. Let us assume that support($,) = € x W x W? and that
the activation function o(-) is real analytic, bounded, and o'(-) > 0. If ¢, — ¢*
weakly, where {* is a non-degenerate measure that admits a density with finite
first moments, then we have that ¢* is a global minimum with zero loss.

The proof of Theorem can be found in [SS21].

Remark 20.22. We mention here that perhaps what is important is not so
much the exact form of the limit formula for m,(x), but rather the fact that
for the right choice of the learning rates, such a limit exists.

20.6. In Between the Linear and the Nonlinear Regime

Let us consider now the same setup as in Section but instead of mean-field
scaling, consider the model

N
(20.26) mN(x; 0) = % 21 Cro(W" - x),
n=
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382 20. Optimization in the Feature Learning Regime: Mean Field Scaling

where now y € (1/2,1) and as a before C" € R, W" € R4, x € R%, and
o) : R->R.

In Chapter [9 we studied the behavior of (20.26) under stochastic gradient
descent when y = 1/2 whereas in this chapter we studied it in the case of y = 1.
Hence, natural questions arise:

« What happens in between (i.e., for y € (1/2,1))?
« How do the different scalings behave?

« How does that behavior extend to multi-layer neural networks?

Let us first investigate the situation in the case of a shallow neural network.
We continue working with the mean square error loss function

M
N©) = 537 X (i =m0 0))'

and the model parameters 6 are trained by stochastic gradient descent:

N
7
CRer = i + 77 (e = M (i) oW xi),

N
Nk ,
W =W + 7 (Vi = My (%)) CR o’ (W 1)k,

fork €{0,1,2,...}, 771,;] is the learning rate. As usual, we set

N
1 .
my(x) = N7 > Cho(Wix),
n=1

define the empirical measure

and define the usual scaled processes
H= Vg R = Wi,
where m}) = (ml,y(xl),...,ml,f(xM)>, N = (h{v(xl),...,h?’(xM)), and we
have defined hpY (x) = m{},(x).
Under Assumption 9.2, as N — oo and for x € D,
N,y d
(20.27) my (x) = G(x),
where G € RM is the Gaussian random variable such that

G(x) ~ N(O, {Jea(w - X)I?, uo))-
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We also of course have that
P
v S vy = .
Following the procedure developed in Chapter [9 (see also Exercise
for the derivation), we get

Theorem 20.23. Let T < oo be given, and assume that Assumption holds.
Fix some y € [1/2,1) and let the learning rate be ¥ = n/N21=7) with constant
0 < 7 < oo. Then, as N — oo, the process (uN, hN) converges in probability in
the space Dg([0, T]) to (u;, h;), which fort € [0, T), satisfies (19.4) in Theorem
9.3

Essentially, Theorem says that no matter the value of y € [1/2, 1), for
y in that range, the limit of (ul¥, hN) as N — co will be the same.

Hence, one cannot really infer anything useful in terms of comparing the
different y scalings from Theorem P0.23. The idea that we explore here is to
view 1) as a stochastic process, and as such it has randomness. For any value
of y the limit of 1N as N — oo is the same. Natural questions arise:

« What about the error in the convergence?
« What about the variance of hN for large, but fixed N?
« What about the behavior as t grows?
Clearly, smaller variance would imply less error in the approximation and
perhaps also lead to better generalization properties.

That is the point of view taken in [SY21], which goes one step further from
Theorem 20.23. In [SY21], the fluctuation corrections to the limit for any y €
(1/2,1) are being derived, and in the end one obtains that in distribution an
asymptotic expansion of Y in N as N — oo holds. In particular, for a given

but fixed v € {1,2,3,...} and for any y € (% %) C (% 1), we have, in
distribution as N — oo,
(20.28)
v—1 .
AREINY D NIANQl + N=0r=12e=AlG + lower order terms in N,
Jj=1

where h; is the limit of hiv’y as N — oo per Theorem 0.23, Q/ are deterministic
quantities defined recursively, A is a positive definite matrix (same as in the
NTK case of Chapter [9) and G is a Gaussian vector of mean zero and known
variance-covariance structure (composed of the elements G(x) of (20.27)). In
addition, the quantities h;, Q}, A, and § are independent of N < oo and y > 0.

For fixed j € N, one can also show that Q] — 0 exponentially fast as t — co,
see [SY21] for proofs.
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Notice that the asymptotic expansion (R0.2§) leads to an important con-
clusion. In particular, for fixed (but large) N < oo and t < oo, the mag-
nitude of the variance of the neural network output to leading order in N is
N~=2r=12)||g=At yar(G)e~A"!||. This is monotonically decreasing as y — 1. In
addition, in the case of y = 1/2, the variance to the leading order in N, is of
order |le=A! Var(G)e=A"!||, i.e., it is independent of N.

This suggests that even though for any y € [1/2, 1) the limit of the neural
network model as N — oo is the same, the variance to the leading order in N
is not the same. In particular, the variance decays as y — 1.

The next natural question is how this variance reduction translates to per-
formance and generalization, i.e., to out-of-sample accuracy. To answer the
question, shallow neural networks of the form (R0.26) were trained via
both cross-entropy loss and via mean-square error loss for the MNIST dataset
[LBBH98]. We recall that the MNIST dataset includes 70,000 images of hand-
written integers from 0 to 9. In the MNIST dataset, each image has 784 pixels,
60,000 images are used as training images and 10,000 images are testing images.
The learning rate is taken to be ¥ = 1/N2~?, as suggested by the theoretical
results. The neural networks are trained to identify the handwritten numbers
using the image pixels as an input. As this is about a categorical problem (im-
age recognition), cross-entropy is a more appropriate loss function, but given
that the theory has been developed for mean square error loss, we present both.

We observe that test accuracy for each network increases as y € [1/2,1]
increases (see Figure R0.1)).
So in conclusion, in the case of shallow neural networks we have observed,

« The variance of the stochastic process governing the behavior of the
neural network (to leading order in N) is monotonically decreasing in
y € (1/2,1).

« Generalization properties and out-of-sample performance increases
monotonically in y € (1/2,1).

Hence, there is evidence to suggest that the mean-field scaling has certain ad-
vantages in regards to the generalization performance of shallow neural net-
works trained with stochastic gradient descent for the regression problem, even
though its mathematical analysis is more complicated.

Finally, we discuss what happens in the case of deep neural networks. In
particular, let us consider the following neural network with two hidden layers:

1 N 1 ll . .
mNN2(x;6) = —= " Clo| == D> Wiia(Whix) |,
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(b) N = 1,000 hidden units, mean square loss

Figure 20.1. Performance of scaled neural networks on MNIST test dataset;
see [SY21]. The top figure is for cross-entropy loss, and the bottom figure is
for mean-square loss. Accuracy increases monotonically in y in both figures.

where CI, W2l € R, x, W € R4, and 7,7, € [1/2,1) are fixed scaling
parameters. The neural network model has parameters

6=(C,...,CNo, WLl WAENNe bl b

which are to be estimated from data (X,Y) ~ zn(dx, dy).

This problem has been recently studied in [YS23] for deep neural networks
of arbitrary depth. Albeit more complicated analysis and notation, it is demon-
strated there that an asymptotic expansion in the spirit of (20.2§), as N, grows
to infinity, holds with the same conclusion for variance reduction. Namely,
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386 20. Optimization in the Feature Learning Regime: Mean Field Scaling

variance of mLN t] ? to leading order in N, (and N;) is smaller when y;,y, — 1,
i.e.,, when the scalings tend to the mean field scaling.

To make the discussion below simpler and more intuitive, we will set N; =
N, = N, which is what is typically done in practice. For the standard mean-
square error loss, the standard SGD yields the update equations

Cls1 = Cic + Nyz (J’k — mp (x0)) H' (xi),

1,j 1,j 77W1 20
Wit = W + 1 (0 — mi (xi0) (NV Z Cio'(Z )Wy l)

X o' (W xi)xis

N
, 2,ji . Mwp i 12 1,j
W' = Wl e (i = mi (00) Cho' (2 (e (i),
where
1,j 1,j o s , ol
HY (x) = oW x), Zo (x) = Z Wo Y (x), HE (x) = o(ZF ().

and n¥, nlp\{,,l, 7711}],,2 are the learning rates.

As demonstrated in [YS23], the asymptotic analysis goes through if the
learning rates are chosen to be of specific order with respect to the number
of hidden units per layer and the y;, y, scalings. In particular, in the usual case
in practice where N; = N, = N, one would pick

Nc N Twa N w2

N_ _Nc —___wl - 7
(2029) Nc = N2-27, ’ 77W,l N4_2(y1 +72)’ 7')W,Z N3—2(y1 +73)’

where the coefficients 7¢, 9y 1, 9w 2 € (0, ) are chosen to be of order 1 with
respect to N.

The numerical studies of [[YS23] for deep neural networks also demonstrate
improved out-of-sample performance when y; = ¥, = 1 in a monotonic way
iny1,7, € (1/2,1). In addition, the same conclusions hold for deep neural net-
works of arbitrary (but fixed) depth with the appropriate choice for the learning
rates.

The results presented here were derived for feed forward neural networks
trained with standard stochastic gradient descent. The papers [SY21, YS23]
also contain numerical studies for the CIFAR10 dataset [KH09], another image
recognition dataset, which contains 60,000 color images in 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck). For that dataset,
convolutional neural networks (see Chapter [[4) were applied (as opposed to
feed forward neural networks) and the conclusions in regards to the effect of
the y-scalings were the same.
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Also, we note that no attempt was made in these numerical studies to fur-
ther optimize the out-of-sample accuracy. This is an apples-to-apples com-
parison of the effect of scaling, which was the only parameter varied in these
studies. This means that mean-field scaling gives a good initial architecture
and then out-of-sample accuracy could be further optimized by tweaking the
learning rate (e.g., the constant coefficients ¢, ny 1, 7w 2 € (0, ) in (20.29))
for instance.

Therefore, the conclusion is that in deep neural networks of arbitrary (but
fixed) depth trained with stochastic gradient descent for the regression prob-
lem, there is both mathematical (variance reduction) and numerical (improved
out-of-sample accuracy, generalization performance) evidence that the mean-
field scaling y; = 1 has certain advantages compared to the scalings with y; < 1.
However, the mathematical analysis for mean field scaling is certainly more in-
volved.

We highlight that one important practical conclusion of the mathematical
analysis is that it suggests a closed form formula for the choice of the learning
rates hyperparameters; see in this section for neural networks of depth 1 and 2
and Section 4 of [YS23] for neural networks of arbitrary depth.

20.7. Elements of Generalization Performance

Based on the discussion of the previous section, the specific chosen neural net-
work architecture can have a profound effect on how the model behaves on
unseen data, stated otherwise on its generalization performance properties. In
fact characterizing the generalization performance of models is a very active
area of research in deep learning. Below we comment on some of its main
elements.

For the purposes of this section, it is instructive to view the loss function
A as a function of the model m = m(x; 6) instead of its parameters 6. So, we
shall write A(m) and Ap,p(m) for the empirical and population loss functions,
respectively. We are minimizing A(m) within a class of models, say for m € M.
Of course, we would like to be able to solve the problem

x .
Mpop = argmin, - Apop(m).

It is important to mention the set M may not contain the unconstrained
minimizer of the population loss function.

For comparison purposes, let us also denote
* _ .
m* = argmin,_ . A(m).

In a generalization bound, the question we ask is: given a model m* that
has been chosen because it performs well on training data, is it also true that
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Apop(m*) is small? A positive answer to this question would then indicate that
the performance of the model m* is good on the entire distribution.
A partial answer to this question can be given by the Chernoff type bounds,

see Lemma [A.30. Consider the dataset D = {(x,,, ym)}%zl. Since the data is
assumed to be independent and identically distributed, the Chernoff bound
gives for allm € M and all § > 0

P (JA(mM) — Apop(m)] > 8) < 2e72M,

Recall now that for any countable set {A;,A,,As,...} one has the union
bound

P(UAJ) <2 P(4).

jz1 =

Assume that the class of available models M is finite. Applying first the
union bound and then the Chernoff bound yields

P (There exists m € M such that [A(m) — Apep(m)| > &)
< 25 P(IA(M) = Apop(m)] > &)

meM
< |M| [2e—2M52] ,

where | M| is the size of the set of allowable models. This bound shows that if
we want the upper bound for this probability to be bounded by some ¢ > 0, i.e.,
if we want | M| [Ze‘ZM 52] < ¢, then we would need to have
1 2|M
M > 552 log |€ | ,
as the size of the training dataset. The Chenroff bound then yields that with
probability at least 1 — ¢,

Apop(m*) —A(m*) <
and that

A(mgop) - Apop(mgop) <é.

Combining these two facts with the estimate A(m™) < A(mp,p) (true by
definition) yields the estimate

Apop(m™) — Apop(Mmpep) < 26.

Combining this further with the estimate

> _—Jog 21
M_25210g €

1 2|M|] => lé < Llog 2|M|l,
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yields that with probability 1 — ¢ the bound holds

(20.30) Apop(M*) = Apop(miy) < 21/ 71 log 220

Despite the attractiveness of this conclusion, this bound is not that useful
for deep learning. This is because the set of neural networks has infinite size,
i.e., M| = oo (thus the union bound is not meaningful). Hence, this line of
approach does not yield a useful result in the context of infinite possible models
to choose from, as it suggests that we would need an infinite amount of data. So
the question is whether we can still get good bounds with a finite set of training
data in the case where | M| = oo.

The celebrated VC theory introduced in [VC71, Vap99] was developed to
answer the latter question. The VC dimension of a given class M is a measure
of the expressive power of the set M. In order to define what VC dimension
is, we first need to introduce the notion of shattering. We say that the class of
models M shatters a set of points {x1, ..., Xy} if for every possible training set
D = {(x» y,,,)}]r\;f:1 there exists a model m € M that results in zero training
error. The VC dimension of M is then the maximum amount of data samples
M such that M shatters the set {x,, ..., x)s}. If no such maximal values exist,
then the VC dimension is defined to be infinity.

The VC dimension can be used to give a probabilistic upper bound on the
test error of a classification model. In particular, for VC <« M, as it is shown
in [Vap99]

VC(l + log %) - logi
(20-31) Apop(m*) - Apop(mgop) <2 M s

with probability at least 1 —e. It is clear that (20.31) is a considerable improve-
ment over (20.30), especially when it comes to deep learning where | M| = co.

The next question is whether one can understand generalization of deep
neural networks via the VC theory. The first thing to do then would be to com-
pute the VC dimension of neural networks, which however turns out to not
be a trivial task. Typically, one can get lower and upper bounds for the VC di-
mension in the spirit of [BHLM19]. In [BHLM19] lower and upper bounds
for the VC dimension of deep neural networks with ReLU activation functions
are computed. In particular, it is shown in that paper that if there are W many
weights and L many layers, then the VC dimension of such a neural network
will be of the order of VC= O(W L log(W)). Unfortunately, such bounds are not
necessarily useful in the context of VC theory. For instance if L =3, W = 103,
M = 10°, and ¢ = 0.01, then one has VC = 2 % 10* and (20.31]) gives

Apop(M*) = Apop(m¥op) < 1.63,
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which is not necessarily that informative. However, as we show in Section
for example and as it is indisputably the case in the empirical literature,
deep neural networks have very good out-of-sample accuracy. Closing this gap
between theory and empirical evidence is currently an active research area.
Beyond the VC-dimension approach (that we briefly discussed in this section)
to understanding generalization, there are other methods too. One of those is
the Rademacher complexity approach (see for example [SSBD14]), which has
also been well developed. A nice review book chapter summarizing the main
methods is [JGR1Y]. A nice related literature review that goes over some of the
main strategies for obtaining bounds for the statistical risk can also be found in
[SH17]. The paper [LFK*22] describes a PAC-Bayes (Probably Approximately
Correct Bayes) framework approach for obtaining generalization bounds for
deep learning models.

20.8. Brief Concluding Remarks

The mean field scaling for shallow neural networks was studied by various au-
thors around the same time, each one using a slightly different set of tools, see
[CB18, MMN18, RVE18,5S20b]. In the exposition that we followed here, we
largely adopted the presentation of [SS20b] which is based mainly on stochas-
tic analysis and weak convergence types of arguments. Modulo Remark 0.7,
the proofs of Section are based on [SS20b]. The mean field scaling for
deep neural networks was analyzed in [AOY19, Ngul9, NP23,SS21], and the
presentation that we followed was based on [SS21]].] The investigation of the
regimes between the linear and the nonlinear regime was studied in [SY21] for
the shallow case and in [[YS23]] for the deep neural network case.

In [MMM19] bounds are established quantifying the accuracy of
mean field scaling in terms of regularity properties of the data. In addition, in
[MMM19] it is shown that the mean field scaling recovers the kernel ridge
regression as a special limit case.

In this chapter we also argued that there is theoretical and empirical evi-
dence to support the hypothesis that neural network architectures with mean
field scaling generalize better than neural network architectures with square-
root scaling for example. Affirmatively answering this question is part of the re-
search on generalization theory, which is an active area of research, see [VC71,
Vap99, BHLM19,JGR19, Yar17,SH17,SSBD14, LFK*22] for a nonexhaustive
list of earlier and more recent related works.

! Copyrighted to INFORMS and republished with permission.
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20.9. Exercises

Exercise 20.1. Consider the system
Crp =Ci + —(Yk — m () (W - xp),
W = W' + _(.Vk — m (x))Cro (W - X)X,

my¥(x) = S CRo(w ).
n=1

fork =0,1,...,|TN|,where T > 0. 771,;’ = 7)is the learning rate with 0 < 7 < o
a fixed constant. Prove that, for k < |TN| and uniformly in k,N € N, there
exists a constant C, < oo such that

E[ICH+ || W |I] £ C,.
NENS‘;};V<TNZ [lcg 1+ 1l Wi 1]

Exercise 20.2. Let MVN(t) and M?N(t) be defined by (20.8) in Section 20.3.
Prove that

i [E (0 @)+ (0 w)')] =

Exercise 20.3. Let al = \/ﬁ (ulN — f2,) be the fluctuation process. For a test
function f € CE(R'*%) derive exactly the formula for (f, o} ) as indicated in
Section characterizing the remainder term RY.

Exercise 20.4. Show that (20.23) holds, i.e., show that A(G)t) < 0 holds.

Exercise 20.5. Consider the multilayer feed forward neural network in the
mean field scaling

L M L N L M
NLN.N. i 3,i,j 2, 1y
mNN2N3 (0 0) = Clo > Wikia > W2ivg (Wl x) ||,
N3z 1 (]'ijl Ny =

where Ci, W)Y W3bj € R, and x, W” € R?. For the quadratic cost

AN1N2, N3(9) 2 |1)| Z (y — mNuN2, N3(x e))z
(x,y)eD

derive the SGD updating equations.
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Chapter 21

Reinforcement
Learning

21.1. Introduction

Reinforcement learning is a subfield of artificial intelligence that has enjoyed
a lot of success in recent years, ranging from mastering the game of Go, to
robotics, to video games and self-driving cars; see [SSS*17, KP12, MKS™'15,
MKS™*13] for a non-comprehensive list of application examples.

Our goal in this chapter is not to exhaust this very rich and deep topic but
rather to lay down the main framework and discuss convergence properties of
deep reinforcement learning where a neural network is trained to learn the op-
timal action given the current state. We start with a motivating example in Sec-
tion where we build from scratch and step by step the basic Q-learning for-
mulation. Deep reinforcement learning is studied in Section P1.3, Q-learning
in Section P1.4, and the convergence analysis of Q-learning is presented in Sec-

tion R1.3.
21.2. Motivating Reinforcement Learning Through an Example
Suppose we are driving on a hill with profile

U(q) = 0.45sin(3q) + 0.55, q € R,

in a car with mass m. Our goal is to drive the car from a given location, say
q = —0.5, to another location, say q, = 0.45; see Figure P1.1.

Our car has three control settings:

« moving forward; a unit force to the right (control is set to +1).

393
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394 21. Reinforcement Learning

= Height (potential energy)
=+ minimum; x= —n/6= —0.52
= goal; x=0.5

-1.0 -0.5 0.0
position

Figure 21.1. Profile of the hill and target

« moving backward; a unit force to the left (control is set to —1).
« neutral; zero force (control is set to 0).
How can we learn to drive the car in order to best reach the goal? To answer

the question, let us first mathematically formalize the previous word descrip-
tion.

Let us set the acceleration at time ¢ to be a(t) € A = {—1,0,1}. By the
second law of Newton, the position and velocity of the car will be given by the
system of equations

q(t) = v(t) (horizontal position and velocity),

mv(t) = horizontal component of acceleration and gravity.

Let us now compute the horizontal component of acceleration and gravity
in this case. First we observe that the component of gravitational force that is
tangent to the curve y = U'(q) is

—_ U’
(Fr(@) = oD
VU (@) +1
— m=U'(x")
EE Vm?+1
H H rise=m
B Ff=-g
- = -
| |
U(x™)4 n
X‘*

Figure 21.2. Gravitational force tangent to the curve y = U’(q)
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21.2. Motivating Reinforcement Learning Through an Example 395

U(x™) A

"
X

Figure 21.3. Tangential to horizontal force

where g = 9.81m/ sec? or g = 32ft/sec? is the gravitational constant (see Figure
R1.2).
The force tangential to U at time ¢ takes the form
Fr(t) = a(t) + (Fg)r(q(t))
gU'(q(®)

VU @O +1

By projection, the horizontal force to U becomes, Figure P1.3,

Fr(t)

VO @) + 1
«n  Uq)

VU@ +1 NO@OP 1

Note now that if sup, |U’'(q)| < 1, then we can approximate

= a(t) -

Fu(q(t) =

Fr(q(®)) ~ a(t) — gU’(q(1)).
So, we have arrived at the following set of equations

a(t) = v(o),
), UG
VO@O? +1 VU EQOPR +1

the former being the horizontal position and velocity and the latter being the
horizontal component of acceleration and gravity.

If the condition |U’| <« 1 is valid in the region of interest, then we can
simplify the previous equations by

(21.1)
q(t) = v(t) (horizontal position and velocity),

mo(t) = a(t)—gU’'(q(t)) (horizontal component of acceleration and gravity).

mo(t) =
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396 21. Reinforcement Learning

Introducing a timestep parameter § > 0, we can discretize the previous
system of equations as

t
q(t +6) = q(t) + v(t)é + ?52,
(21.2) 5 m
vt +06) =v(t) + — (alt) — gU'(q(®))).
(we have included the second-order 6% term in the discretization of (R1.1) to
ensure that the control acts tranversally the boundary of B).

In our specific example U(q) = 0.45sin(3q) + 0.55, which gives U'(q) =
1.35cos(3q). As we discussed g = 9.81m/sec’ or g= 32ft/sec” is the gravita-
tional constant, m is the mass of the object, and § is the descritization step.

How do we choose a(t) to best achieve our goal? Let us define the state
vector x = (q,v) € X = R? and an action a € A. We set

_ ) LI
(Da(x)—(q+vc5+2m5,v+m(cx gU(q))),

which describes the one-step dynamics if we use action a € A.

Having this description in mind as motivation and a concrete example, let
us start now building towards a more abstract setup.

A control policy A : R? = Aamounts to taking a certain action based on the
state we are currently in. Let us denote by 2 the collection of all policies. For
A € 2 and initial state x = (q,v) € R?, let us denote by R,,(x; 1) the dynamics
of the vehicle when we use policy 4 at the current state x during time-iteration
n € N. In particular, we have

Rp1(62) = Dyz, (1)) Ru(x: 1),
Ru(x; ) = x.

The best policy is the one achieving the quickest time to reach the target

set B = (q,, ) X R. Hence, for x € X and 1 € ? we define the map
Ti(x) = min{nd > 0,R,(x;A) € B} (min@ = o0)
(recall that & is our timestep), which gives rise to the value function

V(x) = inf {T .
(x) = inf {T;(x)}
Hence, the goal is to find * € 2 so that V(x) = T.(x). In order to demon-

strate that there are different ways to reach the goal, let us consider the follow-
ing three scenarios.
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21.2. Motivating Reinforcement Learning Through an Example 397

Strategy 1. Applying positive force when the velocity is already positive and to
the left of the minimum, see Figure R1.4.

"“::.... .
0.050 .l. .." .'..o.. o,

‘.
0.025 [l'
0.000

—0.025 \

velocity

e P L

—0.050 p TP
-1.0 -0.5 0.0 5
position
=== Goal Force=1

Figure 21.4. Strategy 1: Force is positive when the velocity is already positive
and to the left of the minimum. Goal is reached in 374 steps.

Strategy 2. Applying positive force when the velocity is already positive, see

Figure P1.5.

0.06- ...........'...ltli.

o* 1

0.04 .u. 1

X ; |

Z 0.02- i

L= 1

L4 1

¢ 0.00- :

1

—0.02 :

1

—-0.04- LTy Ly !
—1.00-0.75-0.50—0.25 0.00 0.25 0.50

position
--- Gpal Force=1

Figure 21.5. Strategy 2: Force is positive when the velocity is already posi-
tive. Goal is reached in 161 steps.

Strategy 3. Applying a force which agrees with the sign of the velocity, see Fig-

ure R1.6.
0.06 ...........'..‘Ol..i.
K i
0.04 . i
= ) !
= '. :
B 002 i
o » 1
> 1
0.00 U :
1
1
—-{.02 :

—1.00-0.75-0.50-0.25 0.00 0.25 0.5
position

-—= Goal Force=1 Force=-1

Figure 21.6. Strategy 3: Force agrees with the sign of the velocity. Goal is
reached in81 steps.
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398 21. Reinforcement Learning

In this demonstration, the conclusion is that Strategy 3 (see Figure R1.6)
reaches the goal in fewer steps compared to the other two strategies.

Now treating R as a dynamical system, we can do things in an iterative
manner by restarting the system. In particular, if we fix momentarily A € P

and x € X, we have
R1(x52) = By (%) = Ro (Paxy (%)54).
Proceeding now iteratively, if for some n € N, we have
Rp(x;4) = Ry (q)l(x) (x);/l) = Rp—1 (R1(x4);4) .
Hence, we subsequently have the following restart dynamics
Rpr1(64) = Dyez, (1)) (Rn(x34))
= Q@1 (@300051) (Rno1 (Pae) ()3 2))
=Ry (Pa(x) (%) 2).
Thus in general, for n € N, we can write
Ru(X; ) = Ry (@) (x)52).

Let us next derive an iterative equation for T;(x). Fix 1 €  and x ¢ B. We
certainly have that J(x; 4) > 1. In addition, we also have

Ty(x)=min{nd : n>0,R,(x;1)€B} (by definition of T;(x))
=min{né : n>1,R,_1(Py)(x);A)EB} (because x & B)
=§+min{(n—1)§ : n—1>0,R,,_1(Py)(x);)EB} (n=1+n-1)
=0 + T3(P,(x)) (by definition of T;(P;(x))).
Hence, collecting the calculations above we have for 1 € P

Ty(x) = O+ Ty(®,(x)) ifx & B (restart dynamics)
2 o if x € B (boundary condition).

Now, we are ready to derive the Bellman equation for this setting. Notice
that we can write

T (x) _ o+ TA(QDA(Z)(x)) ifx¢&B
A 0 ifxeB
> o+ V(q)/l(x)(X)) ifx¢B
—|o ifxeB
 [mingeals + V@,(0)} ifx ¢ B
— |0 if x € B.
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21.2. Motivating Reinforcement Learning Through an Example 399

Minimizing over A € 2 on the left-hand side, we obtain

(21.3) V(x) > mingep {5 + V(Cl)a(x))} ifx¢B
| (O if x € B.

This finally suggests the Bellman equation for the value function

(21.4) Vix) = mingca {6 + V(P,(x))} ifx¢B
' 0 if x € B.
The best policy then is

(21.5) A*(x) = argmin {6 + V(D4 (x))}.

aeA

21.2.1. Basic formulation of Q-learning. Now that we have formulated the
Bellman equation (R1.4) and the associated optimal policy (21.5), we can turn
this into a learning problem.

Let us define the so-called Q function
(21.6) Q(x,a) = & + V(Pu(x))
for x ¢ B. If the Bellman equation is satisfied, then
V(x) = min Q(x, @)
aeA
for x ¢ B. Using this fact in the right-hand side of (21.6), we have that
V(@y(x)) = inf Q(Pe(x),a’)
a’eA

if ®,(x) € B. On the other hand, V(®,(x)) = 0 if d,(x) € B, so if (and only if)
V satisfies the Bellman equation,

Q(r.) = |8+ MiNaren A0, ) if @) & B
(21.7) é if®d,(x) e B
=06+ Lo, (x)¢8) min Q(Py(x), a').
If we have solved (21.7), the equation (21.5) for our best policy will then be
(21.8) A*(x) = argmin Q(x, o).

aeA

Let’s convert (21.7) to a deep learning problem; let’s try to find a function
Q : XX A+~ R which minimizes
2

(21.9) Q.0 = {8 + L, coee) Inf Q000

over (in some appropriate sense) all (x, &) € X X A.
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400 21. Reinforcement Learning

Let’s think through a computational framework. Let’s assume that we have

« Ahistory J of state-action-next state triples. Namely, J is a (multi)set
of points in X X A X X. Each (x, &, x") in J is of the form ®,(x) = x'.
We want to understand how to get to B, so none of the x’s themselves
are in B. We may have to initially observe the system to build #.

« A parametrized map Q : X X A X P — R, where P is some Euclidean
parameter space.

We would like to find a 6 € 2 such that Q(-, -, 6*) satisfies (21.7) (as much as
possible).

Let’s make some definitions based on (. Define
(21.10) 7 £ {(x, @) 1 (x,a,X') € 7}
as the (multi)set of state-action points. In our deterministic case, the state-
action-next state triples also implies that
(21.11) Y (x) = x'
is well defined for (x, @) € I17 (and we know ®”¢ only for (x, a) € I1F().

Let’s next assume that we have some current value 6, at iteration n (per-
haps 6, is random). Let’s construct the cost function

A(®) & ﬁ{ S QG a,6)
(21.12) (xa)ellx

2
- {5 + Loz (x)g8) é,nefA QP (x), o', 6n)}| }

(reflecting the minimization problem (21.9)). We can then compute VA, (6,)
and, given some learning rate 7, define

def
(21.13) On+1 = B — NV AL(By).

After N steps (e.g., when we want to stop our iteration), our approximation
of the optimal policy will be

An(x) &« argmin(x, o', Oy ).
aeA

Several broad comments are in order.

« The size of # and the complexity of Q are related; a more complex
collection Q of parametrized maps will in general require more data-
points to optimize (R1.9).

« We may of course increase or modify J as our iteration proceeds. At
each step, we might randomly choose an action (i.e., explore) to build
a more comprehensive history. Conversely, at some point we may fix
our history and focus more on minimizing (21.9) (i.e., exploiting).
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21.2. Motivating Reinforcement Learning Through an Example 401

« We are ultimately interested in (R1.§). Assuming at A is finite, we can
divide X up into regions where we would use the different elements of
A. Informally, we would like # to give us information about changes
in the optimal action, i.e., in the boundaries of the different regions.

21.2.2. Introducing Randomness in the Basic Framework. Letus goback
to our basic car driving example earlier in Section and introduce random-
ness. In particular, let {,,, n € N be a sequence of i.i.d. random variables taking
values in some countable subset Z of R and with probability mass function p.
Let us consider the following modification to the dynamics (R1.2):

q(n+8) = q(n) + v(n)é + %52,

o+ 8) = () + 2 (aln) ~ BU' (@) + S

This leads to the mapping

@, (x,8) = <q+ Vo + %52,v+ %(oc—gU’(q)) + §'>,

which describes the one-step dynamics with action « € A. The random recur-
sion reads as follows

Rn+1(634) = o, (1)) (Rn(X52), $ng1)
Ru(x; ) = x.
The time to reach B is now random (due to the randomness via {{;, },,en):
Ty(x) = min{né > 0,R,(x;1) € B} (minff = o0)

and, thus, it makes sense to define the cost function as the expected time to
reach the target set B:

Wi (x) = E[Ti(x)].
Let us now follow the procedure of Section to derive the Bellman equa-
tion in this case. Fix 4 €  and x € X. For a given vector (xy, ..., x,) € X",
P{R.1(x;A) = X1, R(x;4) = X, ..., Rp(x; 1) = x,}
= P{cb/l(x) (x, 1) = X1, Djx)) (x1,$2) = X3, s Paxn)) (Xn-1,$n) = xn}

= Z P{q)/l(x) (x,$) = X1, o)) (x1,$1) = x5+,
¢ez

cI)/l(x,,_l) (xn—l’ gn—l) = xn} p(g)

= Z P{q)/l(x) (%, 8) = x1, Ry(xX1; ) = X5, Ryp_1 (X135 4) = xn} p($)s
¢ez

where we used the fact that {; has probability mass function p and the vectors
(155 8n—1) and (&5, - .., §,) have the same distribution.
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Let’s now generalize the previously derived equation. If x ¢ B, we can
write

P{R1(x; 1) € A, {Rp (5 D}y, _, € Al
(21.14) =) P {q)/l(x) (x,$) € Ap{ Ry (Pac) (%,0) /1)}:_:11 € A} p($),

¢ez

for some A; € Xand A € X"~ 1,
If x ¢ B, then T3(x) > &, and for any n > 1, we get

P{Ty(x) > nd} = P{ [ iR (x:2) & B}}

n'=1

_Zum

ﬂ (R (@100 (%, O A)e:fa}l

¢ezZ

= > P{T3(@10)(x, ) > (n — 1)8} p(¢)
¢ezZ

= Z P{Tﬂ(q)ﬂ,(x)(xﬁ g)) +6 > 1’15} p(g)
¢ez

Thus, we will generally have

P{Ty(x) € A} = D) P{Ta(®y0)(x.{)) + 6 € A} p({).
¢ez

The latter relation implies

E[Ty()] = D) E[Ty(®a)(%:$)) + 8] p(&).

¢ez
Therefore, we may now define
Wi(x) = E[Ty(X)]

— Z§€Z {5 + I’V/I(CI)/l(x)(x’ g))} p(g) if x ¢ B
0 if x € B.

For the value function G(x) = inf;c» W3(x) and for x € X, we shall have

W(x) > mingea dez {6+ G(@u(x, )} p(¢) ifx¢B
=10 if x € B.

This gives the corresponding Bellman equation for the value function

Vix) = {mil’laeA dez {6+ V(D,(x, {))} p(é‘) %fx ¢B
0 if x € B.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



21.2. Motivating Reinforcement Learning Through an Example 403

The best policy then is

A(z) = argmin { > {8 + V(e (x, )} p() -

aeA ¢ez

Mimicking now the discussion in Section P1.2.1], the basic Q-learning
framework is as follows. For x & B, define the so-called Q function

Q@) = 3 {8 + V(@a(x, O} P()-

¢eZ

Then, we get
(21.15) Qr.e)=6+ ), inf Q(Py(x, ), a")p($),
¢eZ: Dg(xg)g *
with the last equality following from the observation that

V (@e(x,)) = min Q (@4(x, ), @)

if ®,(x,¢) ¢ B. We can then try to solve (R1.15) via a sequence of loss functions
analogous to (R1.12).

Given the history 7, we again project the history to [T as in (21.10). Here,
however, the next state is random, and we would like to construct its distribu-
tion, as a function of the state-action pair (x, @); i.e.,

def 1 ,
(21.16) LEROES D SN H
’ H o ex: o
x'eX: (x,a,x')eFH

for all measurable subsets S of X and all (x, r) € TIF. If H is rich enough,
(21.17) W () & S 15(@p(x, O)P(Q)

¢eZ
for all measurable subsets S of X and all (x,a) € I . In fact, (R1.17) is only
approximate, as variations in (x, &) will change the statistics of ®,(x, {).

Namely, if we have a current 6,, € P such that Q(-, -, 6,,) is our best current
estimate of the solution of (R1.13), then let’s consider the cost function

ef 1

An(e>“=f?{ S 1Qx,a,6,)
| | (x,x)ellH

(21.18)

2

- {5 + f inf Q(x",a’, Gn)u(’fc,a)(dX’)}’ }
x’'eX\B a’eh

and carry out a gradient descent step as in (21.13) to improve 6,,. Of course, we

are here assuming that 7 is rich enough that

inf Q(®a(x.¢), a)p()

¢: 0o ()es

is approximated by the empirical average over .
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21.2.3. Generalizing the Cost Functional. In the preceding discussion of
this section we introduced T;(x) as the time to the target set B, and we were
interested in choosing the policy 4 that would minimize either T;(x) or its ex-
pected value (depending on whether the time T was deterministic or random).
Let us now modify our objective, and let us replace this goal with something
more complex. In particular, let us define

o r(x,x",)d > 0 to be the cost for using action a € A if the current
state is x € X and the state transitions to x’ € X. To emphasize simi-
larity with our previous two cases (Sections P1.2.1 and P1.2.2), we have
scaled the cost function by the time step §.

« B > 0is a discount factor (future cost may have different value than
present cost).

Our goal now is to minimize

Wi)=E[ D> BT (Ra(x:2), Rpp1 (6 2), AR (x52)) 5]

n:nd<Ty(x)

=E l Z B (Rp(X;2), Rpp 1 (35 4), AR (x5 1)) 1{Tl(x)>n5}l 8.

n=0

We notice that if we set r = 1 and 8 = 1, we recover E[T;(x)], which is
what we studied in Section P1.2.2.

Of course, we shall have that if x € B, then W;(x) = 0. Therefore, let us
now suppose that x # 0 and notice that we can write

Wi(x) = E[r (x, R1(x; 1), A(x))] §

+E Z ﬁnr (gen(x; /1)’5311+1(X; A):A(Rn(X; /1))) 1{T;‘(x)>n(5} s

n=1

= E[r(x, R1(x;4), A(x))] &

QL19)  + 3 BE[r (Ru(xA), Ryp1 (% 2), AR (65 D)) Xy, (95| 8-

n=1
Note that we can further write

E[r (x, Ry (65 2, 4] = D 7 (%, P, $, A(x)) (S

¢eZ
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Recalling relation (21.14) we next see that for x ¢ B and n > 1, we have
E[r (Rn(6: ) Ry (6 1) AR (35 1)) Ly, (1))

=E lr (R (265 2), R 135 2), AR (3 1)) { I l{aen,(x;/l)eB}H

n'=1

= 2 | P (R (Pace) (6 O3 A), Ry (@2 (2, £ 1)y AR 1 (R (x, O3 A)))
¢ez

n
X { H I{Rn'-1(‘1’/1(x)(X,§);/1)§éB}} ]p({)
n'=1

= 20 [r(Rpo1 (@00 (% 3 D R (@) (%, ) 1) AR o1 (@) (%, $)3 1))
¢eZ

X {1T1(¢A(x)(x,§))>(n—l)5}] p(%).

Going back to (21.19), we have

3 BE [1 (Rn(x:2), Ryp1 (365 1), AR (63 ) Ly, )55 | 6
n=1
= Z B Z
n=1 ¢eZ
X [ (Ry1(P@age) (%5 §)s ), Rp( @30 (X, O3 1) AR 1 (R0 (%5 §); 1))
X {1T1(¢A(x)(x,§))>(n—1)6}] 5p($)

=B, iﬁ"

¢ezZ n=0
X [ (Rn(@100)(2, O ) Ry 1 (@) (X, $); A), AR 1 (D0 (x, €5 1))
X {lTa(%(x)(x,c))ma}] sp($)

=8 2 g

$€Z n:nd<Ty(Pyx)(x,$))
X [ (Rn(@acx)(2> O A)s Rp1(P ) (%, )5 ), AR (@) (x, §); 2))) | 8 p(£)
=B Y Wa(®am (% O))p).

¢ez
For A € P we thus have

r(%, @100 (X, ) ()8 + W3 (Pa00(x, )} () if x & B

Yzt
W- > gEZ
2(x) 2 0 if x € B.
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Proceeding now in parallel with Section R1.2.7, we have the corresponding
Bellman equation for the value function

(21.20)
Voo = {minaeA Zgez 06 Pal 0003 + BV (@00, O} p(S) i x ¢ B
0 ifx € B.
The best policy then is

A*(x) = argmin { D (e, @a(x,$); )8 + BV (D (x, )} p(& ){ :
aeA gez

Mimicking now the discussion in Section P1.2.1], the basic Q-learning

framework is as follows. Let us define the so-called Q function

QU @) = D {r(x, (%, $); )8 + BV (X, $)} P(S)

¢ez

= {V (%, @ (x, §); )8 + Bliay, (x, )¢y INf QP (x; ), oc’)} p(%),

¢eZ

for x ¢ B, the last equality following from the observation V(x) =
mingea Q(x, ) if x ¢ B. Here the analogue of (R1.18) is

def 1 ’ ’
An(e):m{ D }Q(x,a,e,,)—{a -[dexr(x,x,oc)y(“fc,a)(dx)

(x,x)ellH

2
o[ mecaanta@ol}
X

rex\ &

21.3. Deep Reinforcement Learning

In Section we introduced the basic reinforcement learning framework
through the example of driving a car on a hill. We formulated the basic opti-
mization problem where the function Q(x, a), that approximates the solution to
the Bellman equation, minimizes an appropriate loss function. As mentioned
there, in typical applications, the Q-function is modeled as a neural network
and the optimization problem is usually being solved with some variant of the
stochastic gradient algorithm. The subfield of reinforcement learning that is
using neural networks to learn the optimal control given the current state of
the system is called deep reinforcement learning (DRL). The goal of this section
is to lay down the generic formulation in its general case. In addition, for pre-
sentation purposes, we ignore the effect of the timestep parameter § that was
introduced in the concrete example of Section PI1.2. In Section we will
discuss convergence properties of this algorithm in a mathematically rigorous
way.
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21.3. Deep Reinforcement Learning 407

Consider a Markov decision problem defined on a finite state space X C
R, For every x € X, there is a finite set A ¢ R% of actions that can be taken
such that:

« p(zlx,a) = P(Xj41 = z|X; = x,a; = a) is the transition probability
function.

« given a state x and an action a, a reward/cost r(x, a) is collected.

« Ais a control policy that depends on the history up to the present.

« 8 € (0,1] denotes a discount factor.

Then, typically, two types of problems are being considered:
Infinite time horizon reward, which is defined to be

(21.21) Wi(x) = E, [i BIr(x;, ajIXy = x
j=0

Letting V(x, a) be the reward, given that we start at position x € X, action
a € Aistaken and the optimal value is then being used. Optimal control theory
(see for example [KY03]),

max V(x, a) = sup Wy (x)
aeA i

and the dynamic programming principle gives the Bellman equation
V(x,a) =r(x,a)+p Z max V(z,a")p(z|x, a),
Zzex a’'eA
and the optimal policy is a*(x) = argmax,,_, V(x, a).
Finite time horizon reward, which is defined to be

J
(21.22) Wi(J,x) =E, Z 5j”j|X0 = x] )
j=0

where r = r(j,xj,aj) forj = 0,1,...,J —land r; = r(J,x;). Here Jisa
deterministic time horizon.

The optimal control a*(J, x) is given by the solution to the Bellman equa-
tion

V(j,x,a)=r(j,x,a)+ ,6’2 max V(j + 1|z, a’)p(z|x, a),
Z a’'eA
V({J,x,a)=r(J,x).

Optimal policy is a*(j, x) = argmax
mality dictates that

V(j, x, a) and the principle of opti-

aeA

max V (0, x, a) = sup Wi (J, x).
aeA A
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408 21. Reinforcement Learning

In principle, we may be able to solve the Bellman equation, but
+ p(z|x, a) may not be known.
» state space may be too high dimensional.

In this case, V(x, a) would need to be approximated. To do so, one can indeed
use neural networks. Exploring this idea is the content of Sections and

21.3

21.4. Q-learning

Reinforcement learning approximates the solution to the Bellman equation
using a function approximator. Typically, a neural network is being used,
Q(x, a, 0), where 0 is the parameter to be learned in training. We will focus
the discussion on the infinite time horizon reward (R1.21]). The case of the fi-
nite time horizon reward problem (R1.22) is similar.

The goal of the Q-learning algorithm is to minimize the objective function
@2 A®=3 ¥ (Yo -Qwxa8) a0,
(x,a)EXXA

where 7(x, a) is a probability function to be specified and the target function
(for example in the infinite horizon setting) becomes

Y(x,a) =r(x,a)+f Z n}zeii\( Q(x',ad’,0)p(x'|x, a).

x'eX

Notice that if A(6) = 0, then Q(x, a, 0) is a solution to the Bellman equa-
tion. So, it makes sense to try to find values for 8 so that A(9) is as close to zero
as possible. To do so, one may use stochastic gradient descent, which, in this
case, becomes

Ok+1 = Ok + Mi&k»

where 7, is the learning rate and gy is

gk = (”(xk, ay) + B max Q(Xk41,a, 6k) — Qxi, Ak, ek)) VoQ(xk, ak, 6k)

with (xi, ai) being an ergodic Markov chain with 7(x, a) as its stationary dis-
tribution.
In its simplest form, one may define

N
(21.24) Q(x,a,0) = % > Cro(Wn - (x, @) + b"),
n=1
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21.4. Q-learning 409

where y € [1/2,1],8 = (CL,...,CN, W', ..., WN,b;,...,bN) € RZ+DN g =
dy + d,. In the infinite horizon setting, the SGD algorithm reads as follows

N
NV (r(xk, ak) + 5 maX Q(xk+1, a’ Gk) Q(xk, ag, ek)>
X a(W - (xg, ag) + bk),

77N

2 (i @) + B max Qe 00 = Qe k. 60))

Cra' (Wt - (xi, ax) + b)) (x, ag),

(21.25) C,, = C} +
Wkri-l = Wkn

N
s
ot = B+ 2 (ke @) + B max Qi . 66) = Qe k. 60)

(2126) kal(% . (xks ak) + bk)’

where the learning rate 77’,;] may depend on both k and N. A few remarks are in
order.

Remark 21.1 (On the choice of the next action). One of the most common
choices for the distribution 7 is that of pure exploration, which, at the very
beginning of training without prior knowledge, typically amounts to sampling
uniformly at random from all possible (x,a;) € X X A. Even though many
typical applications use pure exploration as the default choice for choosing the
action taken at time k, other choices do exist. In particular, some of the most
used ones (besides pure exploration) are

« Greedy action: @, = argmax,_, Q(x, a,0).

« ¢-greedy algorithm, where

Uniform{a : a € A},  with probability €

argmax,_, Q(xy,a,0), with probability 1 —e.

We note that the e-greedy algorithm typically has € | 0 as the number of
training epochs m increases. As the model Q(xy, a, 6) becomes more accurate,
we would like to more frequently take the greedy action.

For the purposes of the presentation in this chapter, it is sufficient to have
in mind the choice of pure exploration.
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410 21. Reinforcement Learning

Remark 21.2 (Actor-critic setting). A more advanced setup is the actor-critic
setting (especially useful when the action space is continuous), where both the
action and the value function are modeled as neural networks. We will not an-
alyze the actor-critic setting in this chapter, but let us briefly discuss the setting
for completeness. In the action-critic setting both the value function and the
optimal policy are being learned. In particular,

« Actor model: a neural network based model p((x, a); 64) : XxA — RK
that gives an approximation to the optimal policy. It can be
thought of as the probability of selecting action a € A at state x € X.
The parameter 64 is to be estimated during the learning process.

« Critic model: a neural network Q(x, a; 69) that gives the state-action
value function for a pair (x, a) € R% x A.

« The critic minimizes the objective function

AE9) = (% — QWX P((ris 104 69))
Y = r(X, @) + BQXper 1> P(Xpes1, Arer1); 64);69),
where Y is treated as constant.
« The actor maximizes the objective function

[So]

max E, [Z Bir(x;, a;)] = 3, Wix)po(),
j=0 xeX

where W;(x) is defined in (R1.21]) and p,(x) is the initial distribution of

states. In practice, when doing stochastic gradient descent, the state-

action value function is being replaced by its estimate, leading to max-

imizing the objective function

G(6) = Q(xg, p((xk, ax); 64); 69).

Here p((x,a);84) is the actor model, which could for example
be Ssoftmax(P((x,a);64)) (i.e., a probability distribution) with
P((x, a); 6,4) being the neural network

N
P((x,),64) = 1 3 B'o(U" - (x, @) + d")
n=1

where {B", U™, d"}IY_, are parameters to be estimated via the learning
process.

We do not analyze further the action-critic setting in the chapter. The
analysis in the subsequent sections of this chapter focuses on the case of pure-
exploration for the actor or more generally on the case of any (general) fixed
policy for which the Markov chain (xy, ay) is ergodic bounded away from zero
ergodic distribution.
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21.5. Convergence Properties of the Q-learning Algorithm 411

Remark 21.3. The Q-learning algorithm calculates its updates by taking the
derivative of A(8) while treating the function Y as constant. But Y is not con-
stant and does depend on 6, so there is bias in the sense that

1
Elgx16k: X ax] # 5 Ve (Y (i, ai0) = Gk ase )"

This fact yields certain difficulties in the proofs and it also forces the proofs
to require 3 to be small in order for global convergence to be realized, see Theo-
rem P1.7. Essentially, the Q-learning algorithm calculates the update by treat-
ing the target Y as a constant. Consequently, this implies that the asymptotic
dynamics of the corresponding neural network as N and k increase may not
move in the descent direction of the limiting objective function for an arbitrary
value of 8. As we prove in Section however, taking 8 to be small does
guarantee that the algorithm is moving in the descent direction of the objec-
tive function and thus in that case convergence can be realized. At this point,
we mention that a related phenomenon has also been observed in [CYLW19].

21.5. Convergence Properties of the Q-learning Algorithm

Let us now investigate how the Q-learning algorithm behaves when the num-
ber of hidden units N and number of stochastic gradient descent iterates k grow
to infinity. We shall study the behavior of single layer Q-networks in the case of
the infinite time horizon reward problem (R1.21]). We prove that the Q-network
(which models the value function for the related optimal control problem) con-
verges to the solution of a random ordinary differential equation. We charac-
terize the limiting random ODE. We also study the behavior of the solution to
the limiting random ODE as time ¢ — 0.

We start with an assumption that will be assumed throughout this section.
Without loss of generality we may and will assume that the bias terms b” = 0
forallm=1,...,N.

Assumption 21.4. We are assuming the following:

1) (C}, WgHN_, areindependent and identically distributed random vari-
ables with mean zero and joint distribution denoted by uy(dc, dw).
(2) C{ are bounded and [ ||wl|uo(dedw) < oo.

(3) The cost r is uniformly bounded.

. 1 «N
(4) limy_, 5 Yin—1 Ix,=xx,=z = 7(x) > 0 almost surely.
(5) The spaces X and A are finite discrete spaces.

(6) We take y = 1/2 in (R1.24).

To have a concrete example in mind, we assume that the action a € A
is sampled uniformly at random from the set of all possible actions. That is,
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412 21. Reinforcement Learning

. 1 . .
we consider 7z(x,a) = Xﬂ(x). However, what we shall discuss below is more

general and the proofs go through if (x;, ay) is assumed to be ergodic with
distribution 7(x, a) > 0 for all (x,a) € X X A.

Next, let us define the quantities

Note that Assumption guarantees that u} — yu, and
hy' = N(O, {lea(w - (x, a))l o)),
i.e., h)Y converges to a Gaussian distribution.
Assumption 21.5. We assume that

(1) oisnon-polynomial and slowly increasing, i.e., o)

x|

— Oforalla > 0.

(2) puo(T) > 0if T has positive Lebesgue measure.

Let £ = (x,a) € X X A and consider the matrix A with elements
(21.27) Ag e = (o - Eo(w - &) + 2’ (w - E)a'(w - E)E - &, o).
Then, we have the following results.

Theorem 21.6. Assume that Assumption holds, and choose the learning
rate to be 17],2’ = % for 0 < 1 < oo a fixed constant. Then the process hY con-
verges, as N — oo, in distribution in the space Dy ([o,17) t0 hy, the solution of
the ordinary differential equation

t

hi(x,a) = hy(x,a) +7n Z (X', a" )Ax,a),(x' 0"
0 (x',a’)

X (r(x', a)+p Z max hy(z,a")p(z|x',a") — hy(x', a’)) ds,
a’eA

zeX
(21.28)

ho(x,a) = G(x,a) ~ N(0, <|CO’(U) - (x, a))|2’ /"0>)

As a matter of fact, if 8 is small enough, then h,(x, a) is guaranteed to con-
verge to the value function V(x,a) ast — oo. This is the content of Theorem

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



21.5. Convergence Properties of the Q-learning Algorithm 413

Theorem 21.7. Assume that § < %IM’ and let Assumption hold. Then we
have that

lim sup |hi(x,a)—V(x,a)|=0.

[=00 (x,a)eXxA

21.5.1. Proof of Theorem P1.6. The proof of Theorem will be split into
three steps.

21.5.1.1. Step 1: Characterization of the limit. Let us start by deriving an equiv-
alent representation for Q’,g (x,a) = QN(x, a,6),and let us set £ = (x, a). Con-
sider the neural network model (21.24) with the bias term b" = 0 (for simplicity
of exposition) and y = 1/2. Employing a Taylor expansion, we notice that

N
QY& = QV(E) + \/% S (CRyy o (W, - ) = CRa(W; - ©))
n=1

N
= 3 (o = CRIOH - Xy — W)

\/Nn:l
1 N N
cn IWn,*_ (WP . — WP
S PIMLACUASIRCARRS

=QY(®+

—

n 50”(%'1’* O (E- (W, - Wk”))2 )

where W, W;"" are points in the line segments that connect W;" and W/ .
Let us now recall the SGD update (21.26) and use 7§ = % for the learning rate

where 0 < 7 < oo is a fixed constant. Plugging that into the previous display,
we subsequently obtain (with £ = (x, a) and &, = (x;, ay))

Q& =R ®
N
+ 0 (50 +B max Qi @)~ QulE) T oW - £ - )
n=1

+ 2 (50 + £ max QuCrinr. @) — Q&)

N
X Z (Clycl)zo"(l,{/kn . gk)o"(u/kn . %’)gk . ;’5’ + Op (N—3/2) ,
n=1

. 3 . —3/2
where we recall Definition for the notation 0, (N~*2).
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414 21. Reinforcement Learning

Writing this in terms of the empirical measure v{c" , we then get
QR ® = R ©®
+ % (I’(gk) +8 max Qi(xks1,a") — Qk(ék)) (o(w - E)o(w - £),vY)

+ ]% (r(gk) + B max Qu(xy41, @) — Qk(gk))
(21.29)
X ((0)%0'(w - £’ (W - E)&yc - £, v ) + Op(N 32,

Recalling now the definition of h{¥ = Q[\;;, we subsequently obtain

Nt|-1
hY (&) = hi'(§) + | ZJ (QR (& — QY (®)
k=[1(:rtj—1
=R O+ X (60 + A max Qi @) - &)
x (0w - Eow - £), V)
2’5 (&0 + B max Qe @) - Qu(60))
N =6 a’'eA

X (%0’ (w - )0’ (w - )&y - &, v) + G(INT?)
t

—i @+ [ Y (M) +pmaxhi e - WYE)

0 &’exXxA,x"eX

x (o(w - Eo(w - ), u) (dx", £')ds

t

e[ X () + pmaxhN(an) - hYNE))

0 &7exxA,x”exX
X ((c)*0'(w- &)o' (w- )& - & ) m(dx", &")ds
(21.30) +RY + O,(N7Y?),

where RY is the error being made by replacing the sums by the integrals above.
By Lemma 5.9 of [SS22] (we omit the proof here due to its technical nature)

we have that

lim sup E|RN|=0.
N—cotefo,T]
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21.5. Convergence Properties of the Q-learning Algorithm 415

Similarly for a test function f € CZ(R!*9) we have

<fn“t> fMo Z_J: f’ +1 <f”’llj>)

[Nt]-1

= () i 2 (60 + B max Qe @) - Q&)
X (div f - (o(w - &) + co’(w - £)&k) , vy )
(21.31) + Op(N7h).

21.5.1.2. Step 2: Existence and identification of the limit. By Exercises and
R1.2, respectively, we have that the following two a priori bounds hold

maxmax C} + E|[|W, <C,<
max max (ICF| + E[W) %

and

max max E sup [QN(x,a)| <C, < o,
NeN k<|NT| (x,a)@(xAl k | °

for an appropriate finite constant C, < 0.

These a priori bounds lead to the following bounds in Lemmas and
R1.9, whose proof are given at the end of this subsection. Lemma is about
appropriate compact containment of the involved processes.

Lemma 21.8. Let { > 0. Then there exists a compact subset X of E such that

sup  P[(uf, hY) & K] < ¢.
NeN,0<(<T

Lemma is about regularity of the involved processes. As in Chapter [9
consider the function q(z;, z,) = min{|z; — z,|, 1} with z;, z, € R. Recall that

N is the o-algebra generated by {(Cj, Wy)}L; and {x;} JNOJ_ ,i.e., N contains

the information generated by {(CO, Wo)} V., and {xj}thJ iy

Lemma21.9. Let f € Cﬁ(R“d). Foranyéd, € (0,1), thereisa constant C, < oo
such that for0 <u <6, 0<v<5,At,t€[0,T],

E [a( ) (1o DS ) (L DIFN] < Coly + 5005
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416 21. Reinforcement Learning

and

C,
E (i h)G0Y, BY)ITN ] < oy + 2.

By Lemmas and and the convergence results of Section [A.4, we
have that {uV, hNlycy is relatively compact as a Dg([0, T])- valued random
variable where E = M(R'+9) x RM,

Subsequently, any subsequence of {u!Y, iV }yy Will have a convergent sub-
subsequence. Any such convergent subsequence can be identified via relations
(R1.30) and (R1.31)).

In particular, (BI.3T) shows that the limit as N — oo, (f,u{' ) will not be
changing in t. Therefore (f,,ultv> — (f,ugyas N - oo forall t € [0,T]. The
latter and (R1.30) would then yield the limit of h as stated in Theorem R1.8.
It remains to show that such a limit is unique. This is being taken care of by

step 3 of the proof. But before getting into step 3 of the proof let us present the
proofs of Lemmas and P1.9.

Proof of Lemma P1.§. Given the a priori bounds established in Exercises
and 1.2, the proof is completely analogous to that of Lemma [[9.11]. O

Proof of Lemma P1.9. First, we prove the first statement of the lemma, i.e.,
the regularity of {u™N}yen. By the standard Taylor expansion, we have for 0 <
s<t<T:

|(frud ) = (f i)

= [ (£ iNveg) = (F+viNvs)) |

N
1
NZlf(CNtJ’W[NtJ) F(ClNsp Wins)l

<
n=1
1 N
Z cf(CﬁVtJ’ WG\I[J)”CﬁVtJ - C[rll\lsj|
n=1
1 N
(21.32) + N Z Il VoS (Cinves Wiep) I Wine — Wik |l
n=1

for points C", W" in the segments connecting C{y with C|ly, and W} with
W|N1)» respectively.
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21.5. Convergence Properties of the Q-learning Algorithm 417

Let’s now establish a bound on |Cy, — C{j/| fors <t < Twith0 < t—s <
8, < 1. By Assumption and Exercises and we have

INt]—

fsN] - [E[| <c;z+1 —cp) %N]
k=|Ns|

eI - il

INt|-1
< E[ >0 In(re + ymax QY (xjes1, @)
:[NSJ a’eA
— QN (xp, ap))—7 %N]

INt|-1

> G,

k=|Ns|

N3/2

IA
7

3/

\§)

a

N3/2

é

(21.33) Co 26, + —= Lo

\/— N3/2°

for an appropriate constant C, < oo that may change from line to line. Simi-
larly, we have

INt|-1

el 1l Wik - A= 15 - i ||
k=[N
INt]-1
<El D (it ymax Q. @) - Qe @)
K2Ts] a’'eA
X s Cho O | [
INt|—1
1
S 3/2 CO
k=|N's|
C c,
S N(t - S) + N3/2
C,
(21.34) < S —26, + —=

\/ﬁ N3/2°

Returning to equation (21.32), the previous bounds together with Exercise
Rlilyieldfor0 < s <t < Twith0<t—s<5,<1

(17 ) = (P 5N < o, + 2
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where C, < oo is an unimportant constant. Then, the first statement of the
lemma follows.

Next, we establish the second statement of the lemma, i.e., the regularity
of {hN}yen- Recalling

QYO =0QR(®
1 Y . .
"N ) ((Cr’?ﬂ = COo (M - ) + o' (W - FTMY, — %”)Cfc>’
n=1
we obtain
[Nt|
WE-RNE = D QYO - QR (&)
k=|Ns|
|Nt| 1 N
) k-%v VN 2 ((C’?H = GOy - §) + o' (W™ - HET (W, — %”)cZ?)'

The latter together with the boundedness of o’(-) and the bound of Exercise

R1.1yield
INt]
Y (&) —hYE < D) 1Y L(©) — QR ()
k=[Ns]

[Nt] 1 N
< % = 3 (1~ ChI W = W1 )

k |Ns| N n=1

Taking expectations, we have

[E[ sup |h; };N]
3
N [Nt
= > i, -+ g - el |
N n=1k=|Ns]
Next, we use the bounds (21.33) and (21.34)),
N
1 C,
<——
: ] "N ;(r N3/2)
=Co(t—5)+ 2,

N
to conclude

e| 4

This then yields the second statement of the lemma, concluding the proof. [J

C
g ]SCo(t—s)+N°.
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21.5.1.3. Step 3: Uniqueness of the limit. Let us assume that there are two pos-

sible solutions hgl) and hgz) of (B1.28). Recall now the matrix A with elements
Ag ¢ as defined by (21.27). By Lemma we have that the matrix A is posi-
tive definite.

Next, we set

—_ (1) ”n ”n _ (2) ”n n ”
Gei=f %, [maxhi¥.a”) - max kP )| plavig)

x"eX

If we set now ¢;(x,a) = hgl)(x, a) — hgz)(x, a), we find that for some con-
stant C, < o0,

Geud <B X maxfpu(x”,a")| PLY"[¢]

x"ex

<G, Y [(d)l.

EeXxA

At the same time, by definition, we have

t
P(§) = D (Gers — U (ENAg m(E)ds,

0 &exxA

Po(§) =0.

Using the bound for the term |G ;| and the boundedness of the elements
Ag ¢ would then give,

t
PO =2 f B(E(E)
0

- / B Y Gos— B(ENALoa(E)ds
0

&rexxA

t
SCof U D 19s(©lds,
0

EexxA

for some finite constant C, < oo. The next step is to sum over all possible
§ € X x A. Doing so and using the finiteness of the state space gives

t 2
> w@rse, [ | % wel a

EexXxA EEXXA

t
<Co | 2 I$s(®)lds.

0 &exxA
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The derivation of uniqueness is concluded by applying the Gronwall lemma
(see Section B.T) which then yields that ¢,(§) = 0 for all 0 < t < T and for all
£ € X X A. Therefore, the solution A, is indeed unique.

21.5.2. Proof of Theorem P1.7. In order to prove Theorem we first need
a preliminary lemma.

Lemma 21.10. Set £ = (x,a) € X X A. Let Assumption hold. Then, the
matrix A with elements

Aggr = (ow - Eow - &) + 2o’ (w - o' (w - §)E - &', o),

is positive definite, as long as £, &' are in district directions.!

Proof of Lemma P1.10. Let us first define 2(§) = o(w - &) + co’(w - §) and set
the vector X = (Z(&;,..., &) where M = |[X X A|. Given that we have assumed
that C is mean zero and independent of W, we obtain that

Age = Ey, [o(w- Ho(w - &) + 2o’ (w- o' (w - §)E - ¢
= Ey, [Z(HZ(E].

The next step is to show that forall z € RM we have that z' Az > 0. Indeed,
notice that

z'Az=2z"E, [Z'Z]z = E, [(Z2)"(Z2)]
2

M
=E,, (Z_l (Zmo(w - §p) + co'(w - gm)§m)>

Due to the fact that &, are assumed to be in district directions, by [[t096]
we have that o(w - §,,,) are linearly independent. This means that for non-zero

. A M N .
z, there exists some  such that »7_ z,,0( - §,,) # 0. But this means that
2
. M . o
there exists € > 0 so that (Z me1 Zmo(@ - §m)) > ¢ > 0. By continuity now,

there exists a set I' = {(c,w) : |c| + |lw — W|| < n} for some 5 > 0 so that for
(ccw)eT

2

M
(mzzl Zpo(W - &,) + co'(w - §m)§m) > % > 0.

Recall Definition [[9:3. For a given vector & define the line Le={ye R4 : y =t£,t € R}. Two vectors
¢ and &’ are said to be in distinct directions if they are nonzero and the lines L &, Lgr meet only at the origin;
see [[t094].
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Therefore, we can conclude that
M 2
E,, ( Z (zZmo(w - §p) +co’(w - gm)gm))
m=1

2

M
2 IE,uo ( Z_l (ng(w : gm) + co’(w : gm)gm)) 1(c,w)eF

> -P[(c,w) €T]

\Y%
=1 ST

Hence, we indeed have that for all z € RM, zTAz > 0, which proves that
the matrix A is positive definite. O

Let us now proceed with the proof of Theorem RI1.7. We want to prove
convergence of h; to V when t — oo at least when S is small. We start by
defining

Hy,p = Z [maxht(x”,a”)—g}g}:V(x”,a” P[x"|£].

x",xeX a’eA
If we set now ¢;(x, a) = h;(x,a) — V(x, a), we find that

B A0 - B76)).

Next, let us define A; = Sy, - (m © F;). Then, we have the bound

AL < B D) ImEPUEHe

EexXxA

<B S a@mor+ L 3w, P
EexxA EeXxA

<B S a@m©r+E Y xS wiareee)
EexxA EexxA (x",a")EXXA

=B g oy +Ennp oy

= |A|2+ 1‘875 ‘P O Py
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422 21. Reinforcement Learning

By Lemma we have that the matrix A > 0 is positive definite. This
means that A~! exists and that A~! is also positive definite. Letting now Z, =

%z,bt - A~14,, we obtain

% =—, - AA (T © (P, — BIH))
= —7p; @ Y; + BY; - (T © H;))
< —mh © Py + A

|A|2+ 11677 ‘P O Py

_ (_1 + WT-l_lﬁ) Y © Py

< -7 © P +

Thus, if B < %IM’ we indeed then obtain that there is some 6* > 0 so that
dz,
dt

At the same time, we also have that there is some C, < oo such that

Zt < Co¢t O] zpt’

showing that ¢, © ¥; > % Thus we then obtain for some unimportant con-

stant 0 < C) < oo that

< =6 © Yy

dz Z
d_tt < —5*71'C—:
< _CéZzs
which yields
Z, < Zye~Cot
proving that
fimz, =

This also concludes the proof of the theorem.

21.6. Brief Concluding Remarks

Many excellent texts have been devoted to reinforcement learning itself, see
for example [SB18, GK20], and the survey by [ADBB17]. The books [BPM90,
KY03] are classical resources on stochastic approximation and recursive algo-
rithms.

Most of the known reinforcement learning algorithms are based on some
variation of the Q-learning or policy gradient methods [SMSMO00]. The idea
of Q-learning finds its origins in [Wat89]. Later on, proofs of convergence

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



21.7. Exercises 423

were developed in [WD92, Tsi94]. Neural networks, as function approxima-
tors, in reinforcement learning (i.e., using Q-networks) were introduced later
in [MKS™*15]. Since then the field has exploded, and recent developments in-
clude deep recurrent Q-networks [HS15], dueling architectures for deep re-
inforcement learning [WSH*16], double Q-learning [HGS16], bootstrapped
deep Q-networks [OBPR16], and asynchronous methods for deep reinforce-
ment learning [MBM*16] to name just a few.

The convergence proof of Q-learning that we presented in this chapter in
Section is based on the article [SS22].

21.7. Exercises

Exercise 21.1. In the context of the SGD algorithm (R1.26) (set the biasb = 0
for convenience),
77N
N7 (r(xk, ap)+ rnax Q(Xp41,a", 6k) — Q(xy, ay, Gk)>
X a(W" - (xi, ag))

N
P (e @) + B max Qs ', 61) = Qxks k. 60))

Cro' (W - (xk, ak))(xk’ ay),

n — VL
Ck+1 - Ck

n o _ n
Werr =W +

and after choosing the learning rate tobe ¥ = % for some 0 < 7 < N constant,
prove that

maxmax CH + E||W, <C, < o,
ma ma (21 + 1)

for some constant C, < oo.

Exercise 21.2. In the context of the SGD algorithm (R1.26) (set the bias b = 0
for convenience),

N
s
Cin =G+ (r(xk’ak) + B max Q(xk1,a',0k) — Q(xk,ak,ek)>

X o(W - (xk ag))

N
s
%rfl-l = W/kn Ny (r(xk’ ak) + ﬁ maX Q(xk+1’ a ek) - Q(Xk, ag, ek)>
Cra' (W - (X, ak))(xk, ag),

and after choosing the learning rate to be 771,;] = % for some 0 < 7 < N constant,
prove that

2
max max E sup [QN(x,a) <C, < o,
NeN k<|NT) (x,a)e)(XA' k | 0

for some constant C, < oo. Recall that ij (x,a) = QN(x, a; 0;) for k < |Nt|.
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424 21. Reinforcement Learning

Exercise 21.3. In the context of the finite time horizon problem (R1.22):

(1) Write down the equivalent to the infinite time horizon problem SGD
algorithm (R1.26).

(2) Write down the expansion for Qllj +1 that is the equivalent to the cor-
responding expansion for the infinite time horizon problem (21.29).

(3) Define hl¥ = Qﬁ{m. What is the prelimit expression for AN that is
equivalent to the one in the infinite time horizon problem (£1.30)?

Exercise 21.4. Consider the regression problem where the objective function

is @LZ3),
AO) =3 Y [¥(va) - Qa0 7(x,0)

(x,a)EXXA

but with y, now being independent samples from a fixed distribution. Then,
(B1.23) is simply the mean-squared error objective function for regression. In
particular, the corresponding (population) loss function is

Apop(6) = %[E [(Y — mN(X; e))z] ,

where the data (X,Y) ~ 7(dx, dy), the model Y € R,

N
mV(x;0) = L Z C"o(W" - x),
'\/— n=1
and the parameters 8 = (C,...,CN,W,...,WN) € RNx(+d)_ This is the
setup studied in the optimization in the feature learning regime; see Chapter
[[9. Show that this is a special case of the reinforcement learning setup studied
in this chapter.

Exercise 21.5. The tabular Q-learning algorithm directly estimates a value for
every state-action pair (x, a) via the learning algorithm:

Qr+1(Xp, Ap) = QX Ap) + Ut(V(Xt’At) +8 max Q(Xt41.0') — Qt(Xt’At)),

where Q,(x, a) is the estimate of the value for action a in state x at time step ¢,
r(x, a) is the reward for action a in state x, A; € A is the action at time step ¢,
and X; € Xis a sample from the Markov chain.

What are the advantages of the deep Q-learning algorithm in comparison
to the tabular Q-learning algorithm?

Exercise 21.6. Suppose we select actions A; uniformly at random. Let
7(x, x', a) be the stationary distribution of the Markov chain (X;, X;,,A4;) and
furthermore suppose we can directly generate i.i.d. samples (x;, x}, a;) from
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m(x,x',a). A tabular Q-learning algorithm could then be constructed using
these i.i.d. samples:

(21.35)
Qiv1(xi, a;) = Qi(x4,a;) + Ui(”(xi, a;) + 8 max Qi(xj,a') — Qu(x; ai))-

(1) Rewrite (21.35) as the stochastic gradient descent algorithm for an ap-
propriate objective function A(Q), where the parameters that are be-
ing optimized over are Q = {Qy 4 }x.aexxa-

(2) Suppose that A(Q) = 0 and 7(x,a) > 0V x,a € X X A. Prove that Q
is a solution to the Bellman equation and a(x) = arg max, Q(x, a) is
the optimal policy.

Exercise 21.7. Consider a linear model Q(x, a;8) = 6 - (x, a) for the value of
selecting action a in state x. What would be the linear Q-learning algorithm?

Exercise 21.8. Consider the deep Q-learning algorithm, and suppose that we
use the policy A; = argmax, Q(X;, a; 6;) to select actions. Construct a simple
example to show that the model may not train (i.e., it may not converge to a
suboptimal action). What would be a better policy for selecting actions?
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Chapter 22

Neural Differential
Equations

22.1. Introduction

A common problem in applied mathematics and more generally in science is
that we are given a target profile and we want to built a dynamical system
whose behavior matches that given profile. This chapter introduces the idea
of accomplishing this goal by using neural networks to model the underlying
dynamical system. Due to the universal approximation properties of neural
networks (see Chapter [L6) and the power of stochastic gradient descent based
methods (see Chapters [7, B, and [§) such methods have proven to be very effi-
cient in practice and are typically called neural differential equation methods.
In this chapter we focus on ordinary and stochastic differential equations but
such ideas have been applied to partial differential equations as well (see the
brief concluding remarks in Section for some related literature).

22.2. Ordinary Differential Equations with Neural Network
Dynamics

Consider the ordinary differential equation (ODE) whose dynamics is given by
a neural network m(u; 6) with parameters 6 € 0,

(22.1) % = m(u(t); 0),

with the initial condition u(0) = u,. The ODE solution is d-dimensional, i.e.,
u(t) = (uy(t), uy(t),...,uq(t)). Let h(t) be the target function that we would

427
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428 22. Neural Differential Equations

like to predict. A reasonable formulation is to define the objective function

T

A©) =3 [ IhO= u®Pds + Jh(T) — uCT)P
0

and the goal is to select O such that the solution of the neural ODE (R2.1) min-
imizes A(6). Minimizing the objective function A(8) requires optimizing over
the ODE (2.1)).

As we shall see, a direct minimization of A(6) leads to solving a system
of equations which is as big as the dimension of the parameter space 6 € ©
(which can become pretty large for deep learning models). To go around this
issue, we first demonstrate how to derive an adjoint ODE for (22.1]) which al-
lows for a computationally efficient evaluation of the gradient A(8). Once we
can evaluate V4 A(60), it is easy to optimize over A(6) via a (stochastic) gradient

descent type of method.
Define the gradient of the ODE solution with respect to the parameters 6
as
i(t) = Vou(t).
Then, 7 satisfies the ODE
dii(t
(22.2) ( ) Z (u(t) 0)ii;(t) + Vom(u(t); 6).

Similarly,

T
(22.3) VoA(D) = f a(t)T(h(t) - u(t))dt + a(T)T(h(T) — u(T)).
0

In principle, we could solve (22.2) and then evaluate V5 A(6) via the formula
(B2.3). However, the parameters 6 are very high dimensional in deep learning
(e.g., 10% or 107 parameters). The dimension of the ODE (R2.2) is the same as
the parameter dimension, which makes (2.2) computationally challenging to
solve in practice. For example, if the ODE is d-dimensional and the number of
parameters is P = dim(0®), the ODE system (22.2) has d X P ODEs. Instead, we
will derive the adjoint ODE for (R2.1) which will allow for the computationally
efficient evaluation of the gradient VyA(8).

Let @ satisfy the ODE,
(22.4) —dz(tt) = 6_m( (0);0)Ta(t) + (h(t) u(t))

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



22.2. Ordinary Differential Equations with Neural Network Dynamics 429

with final condition 4(T) = h(T) — u(T). Then, multiply (22.2) by @, which
yields

a2 _ (0 Z S0 O1(1) + () Tom(u(r):©).
Integrating over the time interval [0, T'] produces
T o T d
fo a(t)d’é—?)dt - fo (a(t) l; Z—Z(u(t); 8)ii; + () Vom(u(t); 6)>dt

Integration by parts yields

_ / dl;(t) "'([)dt + (u(T)u(T) - u(O)u(0)>
0

f u(t) Z (u(t) O)it;(t) + a(t) Vom(u(t); 6)>dt

0

Since u(0) is a constant, we have that 7i(0) = 0. Collecting terms yields

T
fo ~T(t)< di %—Z‘(u(t);e)m(t)>dt+a(T)Ta(T)
T
= f Vem(u(t); 6)Ta(t)dt.
0

Substituting (22.4) into the above equation yields

fo ' @ h® = uo )de + a(r)( hr) - u(m)) = /0 I

Therefore, using equation (2.3), we have a formula for the gradient of the
objective function

T
(22.5) VoA(B) = / Vom(u(t); 6) Ta(t)dt.
0

A key feature is that the dimension of the adjoint ODE (22.4) is d no matter
how large the dimension P = dim(®) of the parameters 6 € © is. This stands
in contrast to the forward ODE (P2.2), whose dimension is proportional to the
dimension of the parameters. Therefore, the adjoint method provides a highly
computationally efficient method for optimizing over neural ODEs with high-
dimensional parameters.
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430 22. Neural Differential Equations

The gradient descent algorithm for optimizing the neural ODE model
therefore is as follows:

« Fork=0,1,2,...,
- Solve the forward ODE on [0, T,

0 = ey 6,

with the initial condition u(0) = u,.
- Solve the adjoint ODE on [0, T'],

_dZ(tt) _ aa_f;l(u(t); Qk)Tﬁ(t) + (h(t) — U(t)>,

with final condition 6(T) = h(T) — u(T).

- Calculate the gradient,

T
Vo(@) = [ VomCu(i 8 Tadr
0
- Update the parameters with a gradient descent step,

Ok+1 = Ok — Nk Vo A(By),

where 7, is the learning rate.

22.3. Backpropagation Formula from the Euler Discretization

There is an alternative derivation of the adjoint ODE:s for training neural ODEs
which directly connects to the backpropagation algorithm for neural networks
that we visited in Chapters f§ and []. First, we discretize the neural ODE using
an Euler discretization, which yields the discrete equations

(22.6) Ui = u; + m(u;; 0)A,

where u; is an approximation for the solution u(iA) to the ODE (R2.1)), A is the
time step size, and u, = u(0). As A — 0, the Euler approximation (R2.6) will
converge to the solution of the ODE (22.1)).

The objective function becomes the sum

N
1
NOEDIES 5Ih(NA) — uyl?,
i=1

where NA = T and J; = %|h(iA) — u;|?A. The (discretized) neural ODE model
can be trained with gradient descent

Ok+1 = Ok — Nk Vo A(Oy).
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22.3. Backpropagation Formula from the Euler Discretization 431

We will now derive the gradient of the objective function using the chain
rule (i.e., the backpropagation algorithm!). Define

TN
l_aui'

Then, for the final time N,

iy = (h(NA) — un)A + (A(NA) — uy).

Using the chain rule, we can derive fori < N,

_Oui A3
L aui 6ui+1 au,-
T

~

oujyq . .
= a‘l:'l- ui+1 + (h(lA) — ul)A
. om TA .
(22.7) =0 + M (u;0) ;1A + (h(iA) — wy)A.

The gradients of the loss with respect to the discretized ODE solution u;
can therefore be solved—similarly to the backward step of the backpropagation
algorithm—by calculating the update formula (22.7) backwards in time from
i = N - 0. Equation (2.7) can therefore be viewed as a backpropagation
algorithm for the discrete ODE (R2.6).

We can also derive a formula for the gradient of the objective function with
respect to the model parameters,

N-1
(22.8) VoAB) = ) Vem(us; 0) ;A
i=0

Equations (22.7) and (22.§) are often referred to as discrete adjoint equa-
tions. These equations can be used to optimize over the discretized neural ODE
(B2.6). However, it is interesting to investigate the connection between the dis-
crete adjoint equations and the continuous adjoint equations derived in the
previous section.

Rearranging (22.7) yields
Uip1—U;  oOm . .
_% = %(ui; 0) 041 + (h(iA) — ),
with the final condition &y = (h(NA)—un)A + (h(NA)—uy). Recall that N =
% and let A — 0. Then, we can clearly see that the discrete adjoint equations
converge to the continuous adjoint equations in the previous section.
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432 22. Neural Differential Equations

22.4. Training Neural ODEs with Minibatch Datasets

The neural ODE framework can be easily extended to training on multiple data
samples. For example, consider again the ODE model with neural network
dynamics

(22.9) dz(tt) = m(u(t), x; 6)

with initial condition u(t = 0) = uy(x), where x € R% is a data feature. The
(unknown) target solution is a function y(t). However, a dataset (x(, y("))li\il
of observations for the input data features x and target solution y is available.
This dataset can be used to train the neural network parameters 6 using a gen-
eralization of the adjoint formula described previously.

Define u(t; 6, x) as the solution of (22.9) with parameters 6 and data feature
x. The objective function becomes
T

N
2@ =5 (3 [ OO utexOpde+ HyOD) - uri, xOP),
i=1 0

Define the adjoint ODEs for the data samplesi =1,2,...,N as
da®)  dm, . . .

- = D) 0)Tad Oty = yu®

i = 0@ + (YO0 - 1)
with final condition 4®(T) = yO(T) — ud(T) and where u® is the solution to
(B2.1)) with data feature x = x®.

In a completely analogous way to how we derived (22.5), we obtain that the
gradient of the objective function can be evaluated via

N LT

VoA(6) = %Z Vom(u®(1); 0)TaD(t)dt.
i=1Y0

(22.10)

Each gradient descent step therefore requires the solution of N adjoint
PDEs (R2.10), where N is the number of data samples. This can be compu-
tationally expensive for large datasets. Training can be accelerated using sto-
chastic gradient descent where at each iteration a minibatch of data samples
is randomly selected and the corresponding adjoint PDEs are calculated. The
stochastic gradient descent algorithm is outlined below.

e« Fork=0,1,2,...:
- Select uniformly at random (x(),yU)M = from the dataset
(x(i),y(i))fil where M < N.
- Solve the forward ODEson [0, T] for j = 1,..., M,
du(j)(t)
dt
with the initial conditions u(0) = ug(xM).

= mu(t); 6, x(),
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- Solve the adjoint ODEs on [0, T'] for j = 1,..., M,

_dal@) _ om
dt =~ du

WD (t); 6, xIN T (1) + (y(j)(t) — u(f)(t)),

with final conditions a()(T) = y(T) — ul)(T).

- Calculate an unbiased estimate for the gradient Vo A(6y),

M T
1 B ) T A
Gy = M}Zﬂ | Vem(u(t); 6y, x0T ()dt,

where [E[leek] = V@A(ek)
- Update the parameters with a minibatch stochastic gradient de-
scent step,

Ok+1 = Ok — NG
where 7, > 0 is the learning rate.

It is important to recognize that the j for loop in the above algorithm can
be easily vectorized. If computed sequentially, the for loop j = 1,...,M hasa
computational cost of O(M) for both the forward solution of the neural ODE
and the evaluation its adjoint equations. However, using parallelization (on
either GPUs or CPUs), the minibatch can be perfectly parallelized with a com-
putational cost of O(1) no matter how large the minibatch is.

22.5. Neural Stochastic Differential Equations

Neural networks can also be used to model the dynamics of SDEs. Neural SDEs
can use a neural network to model to the drift and diffusion (sometimes also
referred to as volatility) coefficient in the SDE,

(22.11) dx® = u(x?;6)dt + o(X%; 6)dw;,

where W, is a standard Brownian motion (see Appendix [A for an introductory
discussion to Brownian motion and SDEs). The drift and diffusion functions
u(x; 0) and o(x; ) are neural networks with parameters 6. The stochastic pro-
cess X2 depends upon the parameters 6, which is indicated with the corre-
sponding superscript.

The objective function for training the parameters 6 will depend upon the
specific application. Typically, optimization will require discretizing equation

(B2.17) on a time grid ¢; = iA,

(22.12) X8y = X + u(xf:0)A + o(X%; )V AW,
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where W, are standard normal random variables and Xie is an approximation
to XfA. Under appropriate technical conditions, as A — 0, the Euler approxi-
mation (22.12) will converge to the solution of the SDE (22.11)), see for example
[KP92].

Suppose we are trying to calibrate 6 such that the process X; © matches a tar-
get process Y; as closely as possible. Furthermore, the path of Y; is completely
observed at all points in time for the time interval [0, T]. Then, we can calibrate
0 by maximizing the log-likelihood objective function for (22.17). The objective
function is

N
(2213) A(6) = % D log [gb(Yi - X9, X9 |+ uXx? ;0)A,0(x ;; G)VZ)],
i=1

where Y; = Y5 and ¢(z, ug, o) is the probability of z for a Gaussian distribu-
tion with mean u, and standard deviation g,. The number of datapoints N is
selected to be N = [%J. Equation (R2.13) can be directly maximized using the
backpropagation algorithm and gradient descent.

Alternatively, in other applications we may wish to select the parameters
such that the expectation of a function of X?, say for example g(x), matches the
target data. Specifically, the objective function might be

L X . \2
(22.14) A®) = 5 > (rE[g@(X?)] - Y<l>> .
i=1

We wish to select the neural network parameters 6 such that [E[g(i)(X?)]
is as close as possible to the target data Y® fori = 1,2,...,N. This objective
function would for example be used in option pricing in finance where the
functions g are different payoff functions (e.g., depending upon the strike
price) and Y are the observed option prices in the market.

Since an expectation appears in (22.14), minimizing the objective function

(B2.14) requires calculating the gradient of the distribution of the process X?
with respect to 8. The gradient of A(6) with respect to the parameters 6 is

N
Vo A(B) = 1% > ([E[g(D(X?)] - Y(i>>V9E[g<i>(X$)].

i=1

Calculating VE[gV(X%)] is typically not computationally tractable. Standard
automatic differentiation cannot be directly applied to (22.14) to calculate the
gradient due to the expectation being inside the squared error. A naive imple-
mentation of stochastic gradient descent would be

« Simulate a Monte Carlo path Xte o of Xte K,

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



22.5. Neural Stochastic Differential Equations 435

« Calculate VQX?Wk,g via the backpropagation algorithm (or automatic
differentiation).

« Update the parameters via

Or+1 = Ok — NG,
N
G, = 1 (i) X9k7€ Y(l) Xeké’ Ox,€
k=5 2 (8P = YO )= (X ) VX7
i=1

The above algorithm can be implemented very easily by applying automatic
differentiation to (22.12). In particular, one could simply apply automatic dif-
ferentiation to

N 2

ABy) = Z (g(’)(Xe" ) Y(l')) )

l=

Although A(6)) is an unbiased estimate of the objective function A(6y), the
gradient of A(6) is not an unbiased estimate of the gradient of A(6y). Specif-
ically, Gy is not an unbiased estimate of the gradient of the objective function

(22.19):
E|Gilex| # vencer.
The reason that G is not an unbiased estimate of VyaA(6y) is due to the

term (g(l)(Xe" “y = YD) not being independent of the term Veg(’)(Xe" =

6g()(X6k, ek e

)VeX". Due to this lack of independence,

E| (967 - YO )eg@0xi o |
# £ (g0 - YO o [e| wogcxi e |
However, an unbiased stochastic estimate can be computed via an alterna-

tive method which simulates two independent paths of the SDE X?:

« Simulate independent Monte Carlo paths Xte “ and Xte “ for x?.

« Calculate Vg g(")(X?’e) via the backpropagation algorithm (or automa-
tic differentiation).

« Update the parameters via a stochastic gradient descent step,

6k+1 = Gk — Vi where

N
(22.15) V, = ;Z( (gt Y(l)) 9g® 989 youtyy xout
i=1
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Due to the independence of the paths Xt6 “ and Xte ‘ V is an unbiased es-
timate of the gradient of the objective function A(6):

| vife] = & 5 (e[ e | - v®) x E| vag@xi e

i=1
o]

This algorithm, using two independent Monte Carlo paths, therefore pro-
vides a computationally efficient method for implementing stochastic gradient
descent to optimize neural SDE models. At each optimization iteration, two
Monte Carlo paths of the SDE are simulated and automatic differentiation is
applied to the second path. This can be easily implemented in a deep learning
library such as PyTorch.

Qk] _ Y<i>) X [E[veg@(xik)

= 3 3 (elsoe

= VeA(@k)

22.6. Examples in PyTorch

22.6.1. Example 1: ODE. As our first example, we will train a neural ODE
using automatic differentiation in PyTorch to match a target ODE,

du 2
E =-u-u-,
with initial condition u(t = 0) = 1. We will present the code in several blocks

below.

First, we import the relevant Python and PyTorch modules and simulate
the target ODE, which we will train the neural ODE to match. The ODE is
numerically simulated using the Euler scheme.
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F

import torch.optim as optim
from torch.autograd import Variable

#Simulate the target ODE which we will train the neural ODE to match.

#Time step size
dt = 0.01

#Number of time steps
L = 100

u = torch.cuda.FloatTensor( np.ones(L+1) )
for i in range(L):

uli+1] = u[i] + dt*( -u[i] - u[i]*2)
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Then, we initialize a neural network for the ODE dynamics and specify
several relevant hyperparameters. The neural network has two hidden layers
with RelLU activation functions. The RMSProp optimization algorithm will be
used to train the neural network parameters.

#lnitial Learning rate
LR = 0.01

#Number of hidden units
H = 200

num_inputs = 1
num_outputs = 1

class NeuralNetworkModel (nn.Module) :
def init__(self):

super(NeuralNetworkModel, self).__init__ ()

self.fcl nn.Linear (num_inputs, H).type(torch.FloatTensor)
self.fc2 = nn.Linear(H, H).type(torch.FloatTensor)
self.fc3 = nn.Linear(H, num_outputs).type(torch.FloatTensor)

def forward(self, x):

L1 = self.fcl( x )
H1 = torch.relu( L1 )
L2 = self.fc2( H1 )
H2 = torch.relu(L2)
f_out = self.fc3(H2)
return f_out

model = NeuralNetworkModel ()

model.cuda ()
optimizer = optim.RMSprop(model.parameters(), lr= LR, momentum=0.0)

Using automatic differentiation, we train the neural ODE model to match
the target ODE. A piecewise constant learning rate schedule is used for the
training. The loss function that will be minimized is

1

A(6) = % fo (u(t)—v(t))zdt,

where u(t) is the target data and v(t) = v(¢; 6) is the neural ODE model.

Licensed to Univ of Michigan. Prepared on Mon Dec 22 08:45:32 EST 2025for download from IP 141.211.243.44.



438 22. Neural Differential Equations

#Number of optimization iterations
K = 20000

v_np = np.ones(L+1)
for k in range(K)

if (k < 1000):
LR_k = 0.01

elif ( (k== 1000)
LR_k = 0.005

elif ( (k== 2000) & (k < 3000) ):
LR_k = 0.0025

elif ( (k>= 3000) & (k < 4000) ):
LR_k = 0.001

elif ( (k>= 4000) & (k < 5000) ):
LR_k = 0.0005

else:
LR_k = 0.0001

'
=
A

2000) ):

for param_group in optimizer.param_groups:
param_group[ 'lr '] = LR_k

v = torch.cuda.FloatTensor( np.ones(1l) )
Loss = torch.cuda.FloatTensor( np.zeros(1l) )

optimizer.zero_grad ()
for i in range(L)
v = v + dt*model(v)
Loss = Loss + dt*0.5"(v - uli])*2
v_np[i+l] = v.detach().cpu().numpy()
Loss = Loss/float (L)
Loss.backward ()
optimizer.step ()

if (k print(k, 'Current Loss', Loss.detach().cpu().numpy() )

In the end of training, the reported loss in one of our experiments was
2.93e — 05.

22.6.2. Example 2: SDE. In our second example, we train a neural SDE mo-
del to minimize the objective function (22.14). As a simple demonstration of
the methods from Section 2.5, we will use N = 1. The target datapoint will
be produced using the price of a call option from the Black-Scholes model. In
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particular, we have the SDE

where W is a standard Wiener process and r is the interest rate. In the classical
Black-Scholes model m(S) = S, the price of the call option with time horizon
T and strike price K takes the form

C = e "Tmax{S — K, 0}.

In the application below, data are assumed to be from the classical Black-
Scholes model, i.e., when m(S) = S. Then, the goal is to train a model with
m(S) being a neural network m(S; ) to match such data.

More specifically, the neural SDE will be trained such that it generates the
same price for this call option. Although the method is demonstrated for a
single datapoint, the code can be easily generalized to the case with N > 1
(e.g., market prices are observed for multiple options and the neural SDE is
trained to match these market prices).

First, the training datapoint is generated from the Black-Scholes model.

#Generate training data

L = 10000000

S = torch.cuda.FloatTensor(np.ones( (L,1) ) )

dt = 0.01
N = 100
r = 0.05
K =1.05
sigma = 0.5
for i in range(N):
VA torch.randn( (L,1), dtype = torch.float32 ).cuda(device="cuda:0" )

S =S + r*S*dt + sigma*S*Z*np.sqrt(dt)

Payoff = S - K

Payoff[ Payoff <= 0.0] = 0.0

Price = torch.mean( np.exp(-r*1)*Payoff )
print(Price)

The returned price from the algorithm here is C = 0.1981. Let’s now see
how well the neural SDE is doing in recovering this price. We train the neural
SDE using the method from Section P2.5.

LR 0.001

model = NeuralNetworkModel ()

model. cuda ()

optimizer = optim.RMSprop(model.parameters(), lr= LR, momentum=0.0)
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L = 10000
dt = 0.01
N = 100
r = 0.05
K = 1.05

Number_of_iterations = 100
Price_eval_list = []
for j in range(Number_of_iterations):

optimizer.zero_grad ()

S1 = torch.cuda.FloatTensor(np.ones( (L,1) ) )
S2 = torch.cuda.FloatTensor(np.ones( (L,1) ) )

for i in range(N):

Z1 = torch.randn( (L,1), dtype = torch.float32 ).cuda()
Z2 = torch.randn( (L,1), dtype = torch.float32 ).cuda()

voll = model(S1)
vol2 = model(S2)

S1 = S1 + r*S1*dt + voll*Zl*np.sqrt(dt)
S2 = S2 + r*S2*dt + vol2*Z2*np.sqrt(dt)

Payoffl = Sil.detach() - K
Payoffl[ Payoffl <= 0.0] = 0.0
Model_Pricel = torch.mean( np.exp(-r*1l)*Payoffl )
Payoff2 = S2 - K
Payoff2[ Payoff2 <= 0.0] = 0.0
Model_Price2 = torch.mean( np.exp(-r*1l)*Payoff2 )
G = (Model_Pricel - Price.detach())*Model_Price2
G.backward ()
optimizer.step ()
#Evaluate trained neural network
L_eval = 100000
with torch.no_grad():
S = torch.cuda.FloatTensor(np.ones( (L_eval,l) ) )
for i in range(N):
Z = torch.randn( (L_eval,l), dtype = torch.float32 ).cuda()

vol = model(S)

S =S + r*S*dt + vol*Z*np.sqrt(dt)
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Payoff = S.detach() - K
Payoff[ Payoff <= 0.0] = 0.0
Model_Price = torch.mean( np.exp(-r*1)*Payoff )

Price_eval_list.append( Model_Price.cpu().numpy())
Model_Price_Ave = np.mean(Price_eval_list[-10:])
print(j, Model_Price_Ave )

At the end, the algorithm based on the neural SDE returned the estimated
price ¢ = 0.19809113, which is indeed very close to the target value of C =
0.1981.

The key line of the above computational method is the line which calcu-
lates the variable G. When automatic differentiation is applied to the variable
G, it will produce the gradient V), from equation (22.15). The detach command
truncates the chain rule at the variable where it is applied (i.e., it treats the
variable as a constant when automatic differentiation is applied).

22.7. Brief Concluding Remarks

In this chapter we studied neural ODE and SDE and the goal was to demon-
strate that one can learn the dynamics of an ODE or an SDE to match given
data. This idea has been explored in [SS17]-[SS20c¢] to develop the stochastic
gradient descent algorithm in continuous time (SGDCT), providing a computa-
tionally efficient method for statistical learning of complex models potentially
over long time periods.

Even though we did not present any here, the same kinds of questions can
be asked and answered for PDEs, see for example [SMS23] for the case of linear
PDEs. Deep learning has proven to be very successful in approximating the
solution to oftentimes high-dimensional partial differential equations. Some
of the early works in this field include [LLF98, LLP00, SS18, BEJ19, RPK19],
but many papers followed thereafter. An exposition to using machine learning
for dynamical systems can be found in [E17].
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Chapter 23

Distributed Training

23.1. Introduction

In practice, both datasets (millions or even billions of data samples) and mod-
els (millions to hundreds of millions of parameters) are large. Each data sam-
ple itself could be memory-intensive (e.g., a high-resolution image or a video).
Due to the large model size and large amount of memory-per-data-samples, it
may be challenging to evaluate and calculate the backpropagation step for a
large minibatch on a GPU. This forces the training to use a small minibatch
size (perhaps even an SGD with only a single data sample), which will slow
training. When the minibatch size is small, the noise in each training update
will increase. The increased noise will typically slow convergence and require
a smaller learning rate. The smaller learning rate will further slow the conver-
gence. Therefore, it is typically optimal to have a larger minibatch size, which
reduces the noise in the updates and allows for a larger learning rate magni-
tude.

If the model parameters are stored as floats (4 bytes per float), the memory
cost for a single fully connected layer with H hidden units connected to another
layer with H hidden units is

Number of parameters = H X H,
Memory to store parameters = 4 X H X H,

Number of hidden units in minibatch = M x H,
Memory to store hidden units in minibatch =4 X M X H,

where M is the size of the minibatch. Similarly, the computational cost of both

the forward and backward step can quickly increase for larger model sizes (e.g.,
large H) or large minibatch sizes (large M). The number of arithmetic and

443
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algebraic operations for the forward step to evaluate a single hidden layer is
Number of operations =M X H X H+ M X H,

where the second term is due to evaluating the activation function after the
linear operation. Similarly, the number of arithmetic and algebraic operations
for the backward step for the single hidden layer is

Number of operations =M X H X H+ M X H.

The memory cost and computational cost quickly grows with the depth of
the neural network. For example, for a neural network with L fully connected
layers, the costs become

Memory to store hidden units in minibatch =4 X M X H X L,
Number of operations in forward step = L X (M X H X H + M X H),
Number of operations in backward step = L X (M X H X H+ M X H).

Computational problems can quickly be encountered for large (M, H, L).
For example, GPUs have a limited memory (often less than the CPUs on the
machine). Therefore, the GPU may produce an out-of-memory error for large
models and/or large minibatch sizes. Beyond a certain limit, the computational
operations may also not be fully parallelized on the GPU, leading to slower
computational times and, eventually, out-of-memory errors. Out-of-memory
errors can be addressed by reducing the size of the model and/or the minibatch
size. However, reducing the minibatch size may reduce the convergence speed
(the gradient estimates will be more noisy, which may also require a smaller
learning rate). Reducing the model size, although it would address an out-of-
memory error, may also reduce the accuracy/performance of the model.

Distributing the training over multiple GPUs is therefore advantageous.
The training can be parallelized by dividing the total minibatch M into smaller
minibatches of size M, where NM, = M on GPUs i = 1,...,N. The GPUs can
be on the same machine or on different machines. The minibatch objective
function for the model then becomes

M
A©) = % > €y(i)<m(x(i); e))
i=1

2M,

M,
1 : 1 ;
= izz 1 €y(i><m(x(l); 9)) +37 > €y(i><m(x(l); 9))

i=My+1

GPU 1 GPU 2
NM,

1 .
44 i Z €y(i)(m(x(l); 6)>,
i=(N—1)Mg+1

GPUN
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where €,(z) is the loss function, y@ is the target data, m(x; 6) is the model, and
O are the model parameters. The computations (both the forward and back-
propagation steps) for the data samples D; = {iM, + 1,..., (i + 1)M,} are per-
formed in parallel on GPUs i = 1,...,N. Therefore, in principle, the compu-
tational time to calculate the gradient VoA(6) for the total minibatch of size
M should be the same computational time as calculating the gradient for an
objective function with M, data samples. An important consideration is the
communication cost of sharing the gradients between the different machines,
which may reduce the computational time savings of parallelization. This com-
munication cost will become apparent in the algorithms presented below.

23.2. Synchronous Gradient Descent

We first present the distributed gradient descent algorithm with synchronous
parameter updates. In synchronous gradient descent, each GPU calculates a
gradient, the gradients are averaged across all GPUs, and then the average gra-
dient is used to update the model. At all update steps, the model copy on each
GPU is therefore identical.

« Each GPU holds a copy of the neural network model parameters 6.

« The neural network model parameters on all GPUsi = 1,...,N are
initialized to the same initial parameters 6.

« For optimization iterations k = 1, 2,...,K:
- A minibatch of size M, is randomly selected for each GPU i =

1,...,N.
- On each GPU i, the following objective function is evaluated (for-
ward step):
' 1 (i+1)M, .
NO =3 > 4o (me:0)).
J=iM,

— Then, the gradient of A/(9) is calculated (backpropagation step).
- The gradients from each GPU are averaged:

N
1 )
VeAA(®) = & D, Vo (6),
i=1

which requires communication between the GPUs.
- The parameters 9 are updated using the gradient VoA(6).

The forward and backward steps in the backpropagation algorithm are
completed independently on each GPU and do not require communication.
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This is referred to as a perfectly parallel calculation in parallel computing. How-
ever, the parameter update does require communication between the GPUs to
average the gradients from all of the GPUs. The communication time depends
upon the size of the network, network architecture/connection speeds, and the
size of the data that must be transferred. For example, if a large cluster of many
machines is used, the communication times will be much larger than a single
machine with multiple GPUs. Of course, multiple machines allows for a much
larger minibatch size. Communication times will increase as the size of the
data is increased. In distributed gradient descent, each machine must commu-
nicate the model gradients VoA!(6). The number of model gradients is equal
to the number of model parameters. In deep learning, the standard is to use
floats for the model parameters (and their gradients). Therefore, if there are d
parameters, the model parameter gradients are d X 4 bytes. For large models,
the communication times can potentially be significant, reducing the compu-
tational speed of distributed gradient descent.

The synchronous distributed gradient descent algorithm (presented above)
has a potential computational disadvantage in that machine i must wait for all
other machines j # i to complete their calculation of their respective model
gradients before updating the model. Therefore, the slowest machine’s compu-
tational time will be a bottleneck for the parameter update. The computational
time for each parameter update is restricted by the slowest machine (even if all
other machines are significantly faster). This inspires the next distributed gra-
dient descent algorithm that we will discuss: asynchronous gradient descent.

23.3. Asynchronous Gradient Descent

Asynchronous gradient descent updates the model parameters on each ma-
chine asynchronously without waiting for the other machines to complete their
gradient calculations. The typical framework includes a machine as the param-
eter server which holds the master copy of the model parameters 6. The worker
machinesi =1,...,N will calculate the gradients of the model. Once a worker
has completed its calculation, it will send the model gradients to the parameter
server which, immediately upon receiving the parameters and without waiting
for the other machines to complete their work, will update the master copy of
the model parameters 8. The updated master copy of the model parameters
will then be transmitted back to the worker machine i.

The current model parameters on machine i are denoted 6;. Due to the
asynchronous updates, at any single point in time, the parameters 6;,6,, ..., 0y
may differ. The asynchronous gradient descent algorithm is summarized be-
low.

« Initialize model parameters 6 on the parameter server (machine i =

1.
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« Fori=2,...,N (independently in parallel):
- Fork=1,2,...,K:
* Copy the model parameters 6 to machine i. Set 6; = 6.

* Randomly select a minibatch of data and evaluate the ob-
jective function,

_ 1 (i+1)M, 0
i - ) J)-
KO = 3 b0 (m(x:0)).
- 0

+ Then, the gradient of A/(9;) is calculated (backpropagation
step).

* Communicate the gradient V,A(8;) to machine 1.

* Update 6 on machine 1 with stochastic gradient descent.

Asynchronous gradient descent has the advantage that machine i does not
have to wait for work to complete on the other machines j # i. Instead, it is
able to complete rapid (noisy) updates to the model. This is particularly advan-
tageous when the cluster consists of multiple machines with different compu-
tational capabilities/speeds. A disadvantage is that there is an inconsistency
between the model gradients calculated on the different machines. Since up-
dates are performed asynchronously, the model parameters on machine i may
not necessarily equal the current model parameters on machines j # i. Sim-
ilarly, the model parameters 6; on machine i may not equal the most recent
master copy of the model parameters 6 on the parameter server.

Therefore, since the gradients are calculated based upon different param-
eters than the current master copy of the parameters, the parameter update is
not guaranteed to decrease the objective function. That is, the gradient calculated
on machine i is not necessarily a descent direction for the objective function.
This can become more problematic in larger clusters where communication
times from worker machines to the parameter server machine may be large.
The larger the communication times are, the greater the potential difference
between the model parameters 6; on machine i and the parameter server pa-
rameters 6. This increases the error for the gradient calculated on machine i
with respect to the objective function A(6).
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23.4. Parallel Efficiency

The goal of distributing training across multiple machines is to reduce the
computational time required to train a model. The parallel algorithm’s perfor-
mance can be measured via its parallel efficiency. Let T be the time required to
complete the task using one machine. Let Ty be the time required to complete
the same task using N machines. The parallel efficiency is

(23.1) En X 100%.

T NxIy

IfTy = % the efficiency is Exy = 100%. If Ty = % the efficiency is
En = 50%. Typically, parallel algorithms do not achieve 100% efficiency since
large amounts of data must be communicated between machines. The com-
munication time reduces the performance of the parallel algorithm. Commu-
nication costs typically increase as the number of machines N increases and
therefore the parallel efficiency will be a function of N. Perfectly parallel tasks
requiring no communication have 100% efficiency. An example is Monte Carlo
simulation. Monte Carlo simulation can be performed completely indepen-
dently on each machine with a single communication at the end to average the
Monte Carlo samples across all machines. Tasks requiring heavy communica-
tion may have significantly less than 100% efficiency.

Formula (23.1)) for parallel efficiency is referred to as strong scaling. The
strong scaling of an algorithm measures how quickly a task can be completed
as a function of the number of machines. For example, strong scaling in deep
learning would measure how quickly (in computational time) the model train-
ing achieves a certain fixed accuracy (e.g., 99% accuracy on the MNIST dataset).
Weak scaling is given by the formula

(23.2) Ex = L« 100%,

I
where T is the computational time to complete X amount of work on a single
machine and Ty is the computational time to complete X amount of work on
each of N total machines (N X X total work). For example, here X could be
calculating the model parameter gradients on M data samples (i.e., N X M total
data samples).

Distributed gradient descent can typically achieve excellent weak scaling.
However, strong scaling may not necessarily perform as well as weak scaling.
As the number of total data samples N X M — oo, each minibatch stochas-
tic gradient descent update will converge to a deterministic gradient descent
update with an I?-convergence rate ~ (N X M)~2. This may improve the con-
vergence speed to a local minimizer in the total number of parameter update
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steps (since the gradient estimates will be less noisy and, in addition, the learn-
ing rate can be potentially increased since the noise has been reduced). How-
ever, the convergence speed will certainly not improve at a rate proportional
to N1, In particular, since it will converge to deterministic gradient descent,
the convergence rate will be limited by the convergence rate for deterministic
gradient descent. Therefore, the marginal benefits of increasing the number of
machines (and the minibatch size) will start to vanish after a certain point.

23.5. MPI Communication

Message passing interface (MPI) is the standard method for communicating
data between multiple processes in parallel computing. The multiple processes
may be on the same machine or multiple machines. For example, a cluster
could have eight machines with 16 processes per machine. In total, there would
be 128 processes. Each process performs a task (i.e., calculations) and also com-
municates with other processes. The completion of a task on process i may
require data from the calculations on the other processes j # i.

Each processi = 0,1,..., N—1(in the example above, N = 128) is assigned
a rank. Process i’s rank is the integer i. Complex calculations—where each
process may perform a different task with dependencies on communications
between the processes—can be concisely coded as a single program by writing
the calculation as a function of the rank i. However, in many deep learning ap-
plications, the communication is relatively simple. The synchronous gradient
descent algorithm (presented in the previous section) assigns an identical cal-
culation to each process with the communication operation being an average
of all of the processes’ gradients.

PyTorch has MPI capabilities, which can be used via the “torch.distributed”
library.

import torch.distributed as dist

The rank of each process and the total number of processes can be obtained
via

num_processes = dist.get_world_size ()
rank = dist.get_rank()

The distributed class is initialized the group of processes via

dist.init_process_group( mpi', rank=rank, world_size=num_nodes)

The key MPI operation for synchronous gradient descent is a communica-
tion operation to average tensors on all the processes. In particular, if there are
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tensors X, X, ...,Xx_; on the processesi = 0,1,...,N — 1, we need a com-
munication operation that calculates

N-1
X = Z Xi’
i=0

and returns X to all processesi = 0, 1,..., N — 1. In the context of synchronous
gradient descent, the tensors X; are the minibatch gradients calculated on each
process. In MPI, this communication operation is the All Reduce operation
and it is implemented in PyTorch as

dist.all_reduce (X, op=dist.reduce_op.SUM)

X is the tensor on each process. The above command averages the tensors from
all of the processes and replaces X with the average. As a concrete example,
consider the following command run on N processes.

X = torch.FloatTensor( np.ones(1l)*rank )

dist.all_reduce (X, op=dist.reduce_op.SUM)
print(rank, X)

The printed result will be a scalar value N — 1 on all processes (ranks)
0,1,...,N—1.

Typical clusters will not have GPU-to-GPU communication available be-
tween machines. That is, if a rank 1 tensor is on the GPU of machine 1, it
cannot be directly communicated to rank 2 on the GPU of machine 2. Instead,
the rank 1 tensor must first be moved to the CPU of machine 1, then sent to
the CPU of machine 2, and then finally moved to the GPU of machine 2. This
is illustrated by the following example.

X = torch.cuda.FloatTensor( np.ones(1l)*rank )
dist.all_reduce(X.cpu(), op=dist.reduce_op.SUM)

X.cuda ()
print(rank, X)

In some more recent advanced high-performance computing (HPC) archi-
tectures, GPU-to-GPU communication between machines is available.

We will now use PyTorch’s MPI All Reduce operation to implement syn-
chronous distributed gradient descent to train a neural network. As in Chap-
ter [j we work with the MNIST dataset [LBBH98], available from https://yann.
lecun.com/exdb/mnist/. We recall that the original dataset was downloaded
and stored in an hdf5 file, with the input data normalized by the maximum
value of a pixel (255).
import numpy as np
import torch
import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim
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from torch.autograd import Variable
import torch.distributed as dist

import h5py
import time

import os

import subprocess
from mpid4py import MPI

num_nodes = dist.get_world_size ()
rank = dist.get_rank ()

backend = 'mpi'
dist.init_process_group (backend, rank=rank, world_size=num_nodes)

dtype = torch.FloatTensor

#Load MNIST dataset
MNIST_data = h5py. File ('MNISTdata.hdf5', 'r')

x_train = np.float32 (MNIST_data['x_train'][:] )
y_train = np.int32(np.array (MNIST_data['y_train'][:,0]))
x_test = np.float32( MNIST_data['x_test'][:] )

y_test = np.int32( np.array( MNIST_data['y_test'][:,0] ) )
MNIST_data.close ()

#Number of hidden units
H = 100

class MnistModel(nn.Module):

def __init__(self):
super(MnistModel, self).__init__()
# input is 28x28
# padding=2 for same padding
self.fcl = nn.Linear (2828, H)
self.fc2 = nn.Linear(H, H)
self.fc3 = nn.Linear(H, 10)

def forward(self, x):

X = F.relu(self.fcl( x ))

X = F.dropout(x, p = 0.6, training=self.training)
Xx = F.relu(self.fc2( x ))

X = F.dropout(x, p = 0.6, training=self.training)
x = self.fc3( x )

return F.log_softmax(x, dim=1)
model = MnistModel ()

#All machines should have a copy of the same model
for param in model.parameters():
tensor0 = param.data
dist.all_reduce (tensor0, op=dist.reduce_op.SUM)
param.data = tensor0*np.sqrt(np.float(num_nodes))

model.cuda ()
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LR = 0.001
optimizer = optim.Adam(model.parameters(), lr=LR)

batch_size = 1000
L_Y_train = len(y_train)

model. train ()

train_loss []
train_accu = []

for epoch in range(10):
timel = time.time ()

I_permutation = np.random.permutation(L_Y_train)
X_train = x_train[I_permutation,:]
y_train = y_train[l_permutation]

for i in range(0, L_Y_train, batch_size):
#apply .cuda() to move to GPU
x_train_batch = torch.FloatTensor( x_train[i:i+batch_size,:] )
y_train_batch = torch.LongTensor( y_train[i:i+batch_size] )
data, target = Variable(x_train_batch).cuda(), Variable(
y_train_batch).cuda()
optimizer.zero_grad ()
output = model(data)
loss = F.nll_loss (output, target)
loss.backward () # Calculate gradients
train_loss.append(loss.data[0])
#All -Reduce Communication
for param in model.parameters () :
tensor0 = param.grad.data.cpu()
dist.all_reduce(tensor0, op=dist.reduce_op.SUM)
tensor0 /= float (num_nodes)
param.grad.data = tensor0.cuda()

optimizer.step () # Update parameters

prediction = output.data.max(1)[1]

accuracy = ( float(prediction.eq(target.data).sum()) / float(
batch_size) )*100

train_accu.append(accuracy)

time2 = time.time ()
time_elapsed = time2 - timel
if (rank == 0):
print (epoch, accuracy, time_elapsed)

A few elements of the above code deserve to be highlighted. First, all pro-
cesses are initialized with the same model parameters. Second, the parameter
gradients are summed across all processes using the MPI All Reduce operation.
Then, the gradients are normalized by dividing by the number of processes to
obtain the average gradient from all of the processes’ minibatch gradients. The
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above code is for the case of N processes (ranks) on N machines each with one
GPU (i.e., one process per GPU). MPI-based synchronous gradient descent can
also be implemented for the case of a cluster of machines with multiple GPUs
per machine.

23.6. Point-to-point MPI Communication

The All Reduce communication operation in the previous section is a form of
collective communication where all machines (or processes) communicate with
each other. This simple communication operation is sufficient for distributed
synchronous gradient descent and can be used for distributed training of nearly
all deep learning models in practice. More complex communication is also
possible via point-to-point MPI communication operations. These operations
can send data from a specific process i to a specific process j.

The following code uses point-to-point communication to move a tensor
between a process i and the other processes

num_nodes = dist.get_world_size ()
rank = dist.get_rank ()

i =0

N = num_nodes

for j in range(N):
tensor = torch.FloatTensor(k*np.ones(1))
if (i !=7j):
if rank == i
dist.send(tensor=tensor, dst=j)
if (rank == j)

dist.recv(tensor=tensor, src=i)

The above code sends a tensor from process i to all of the other ranks. The
communication is blocking since operations on processes i and j halt until the
communication between i and j is completed. The number of communications
N can be changed as long as it less than the total number of nodes. That is, it
is permissible to use point-to-point communications between a subset of the
total number of processes. For example, if N = 2, the tensor will be sent from
process i = 0 to process j = 1 only. Point-to-point communication allows for
complex distributed computing tasks which, in general, can be a function of
all work/operations/outputs across the entire cluster of machines. It should
be noted though that constant point-to-point communication of large tensors
between large numbers of machines can significantly increase communication
costs, slowing down the progress of the overall code.

23.7. Python MPI Communication

MPI communication can also be directly run in Python scripts, which can be
used for Python-only (e.g., numpy) operations as well as PyTorch code. The
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commands are similar to the distributed PyTorch MPI commands described
above. Some example scripts are provided below. These examples solve the
simple problem of minimizing the objective function,

A®) = 3| -op|

with stochastic gradient descent. The minibatch stochastic gradient descent
algorithm is

M
1 .
Ok+1 = Ok = Mkyy D ED 6y,
=1

where y(&J) are i.i.d. samples from the random variable Y. The distributed
(synchronous) stochastic gradient algorithm with N processes becomes
(i+1)M,

. 1 .
Gk = — Z (y(k,J) — 64,
Mo 15,
1S
Ok+1 = Ok — Miiy >, GlD,
i=1

where G is the gradient calculated for an independent minibatch of size M,
on process i. The gradient estimate from process i is therefore G*D and these
gradient estimates are averaged together to provide a more accurate gradient
estimate to update the parameter 6. The total minibatch size is N X M,. The
distributed training can be implemented via the following code.

import numpy as np
from mpi4py import MPI

name MPI.Get_processor_name ()
comm MPI.COMM_WORLD

rank = comm. Get_rank ()

num_nodes = int(comm. Get_size ())

N = 100000
Initial _LR = 0.1
MO = 10000000
theta = np.ones(1)
for k in range(N):
LR = Initial_LR/(1.0 + k/1000.0)
Y = np.random.randn (MO)
G = -1.0"(Y - theta)
G = np.mean(G)*np.ones(1)

#if (k # print('rank ', rank,'G on each individual process', G)

G = comm. allreduce (G, op=MPI.SUM)
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G = G/float (num_nodes)

#if (k # print(‘'rank ', rank, 'G after averaging across all processes
', G)

theta = theta - LR*G

if (k print('k', k, 'rank', rank, 'theta',6 theta)

As before, a rank is assigned to each process and the All Reduce command
sums the gradients across all of the different processes. The (commented-out)
print statements can be included to confirm that the All Reduce command is
summing the gradients from the different processes.

As an example of point-to-point communication, we reimplement the
above synchronous distributed gradient descent algorithm using point-to-point
communications:

import numpy as np
from mpi4py import MPI

name = MPI.Get_processor_name ()
comm = MPI|.COMM_WORLD
rank = comm. Get_rank ()

num_nodes = int (comm. Get_size ())
N = 100000

Initial _LR = 0.1

MO = 1000

theta = np.ones(1)
for k in range(N):
LR = Initial_LR/(1.0 + k/1000.0)
if rank > 0:
Y = np.random.randn (MO)
G = -1.0"(Y - theta)
G = np.mean(G)*np.ones(1)
comm. Send (G, dest=0, tag=13)
if rank == 0:
G = np.zeros(1)
for j in range(l, num_nodes):
G_temporary = np.ones(1)
comm. Recv (G_temporary, source = j, tag=13)
G = G + G_temporary
G = G/float (num_nodes-1)

theta = theta - LR*G
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if rank == 0:
for j in range(l, num_nodes):
comm. Send (theta, dest=j, tag =13)
if rank > 0:

comm. Recv (theta, source = 0, tag = 13)

if (k print('k', k, 'rank', rank, 'theta', theta)

In the above code, process 0 contains the trained parameter. Processes
1,...,N — 1 calculate gradient estimates and send them to process 0. Using
these gradient estimates, process 0 updates the model parameter. Then, the
new updated model parameter is communicated back to the other processes
1,...,N—1. The above point-to-point communications will not be as efficient as
the MPI All Reduce command. However, it serves as a simple example demon-
strating how to use point-to-point communications.

MPI communication can also be used for model-parallelized training. That
is, different parts of the model will be evaluated on different processes/ma-
chines. Communication will occur to calculate the overall model output and
the model parameter gradients. Model parallelization is useful when the size
of the model is so large it may not fit on a single machine. We will demonstrate
model parallelization via simple example (which could be extended to more
complex models). Consider the model and objective function,

A® = 3| I - exP |

where Y is an q X 1 vector, 6 is a g X d matrix, and X is a d X 1 vector. If
q X d is very large, the computational cost of the matrix multiplication 6X will
be large. If the matrix is very large, the matrix 6 may not even be able to be
stored in memory. The matrix multiplication can be distributed across multiple
processes via

60X = Q(O)X(O) 4+ @(N—l)X(N—l)
N-1
= 3 0x0),

i=0

where 8 is the matrix 6. ;7. (i41yp> X is the matrix Xjpr. ;4 1)mr,: and M = 4
(assuming for simplicity that d is an integer multiple of N). We will perform
the calculation 6DX® on process i and then communicate the result to the
other processes. Example code is provided below (for simplicity, we let ¢ = 1,

Y = 9, X, and X, ~ N(0,1)).
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import numpy as np
from mpi4py import MPI

name = MPI.Get_processor_name ()
comm = MPI|.COMM_WORLD

rank = comm. Get_rank ()

num_nodes = int(comm. Get_size ())

N = 100000

Initial _LR = 0.1

d_per_process = 2

d = d_per_process”*num_nodes
theta = np.zeros(d_per_process)

for k in range(N):
LR = Initial_LR/(1.0 + k/1000.0)

= np.random.randn(d_per_process)
= np.sum(X)

Y*np.ones(1)

= np.dot(theta, X)

= f*np.ones(1)

- -n < < X
I

-
1

comm. allreduce (f, op=MPI.SUM)
Y = comm. allreduce (Y, op=MPIl.SUM)

G -1.0"(Y[0] - f[0])*X

theta = theta - LR*G
Error = np.mean(np.abs(theta - 1.0 ))

if (k print('k', k, 'rank', rank, 'Error', Error)

In the above code, 80X is calculated separately on each process. Then,
using an allreduce operation, the 6MWx® are communicated and summed to

produce Z?:)l 6Wx ™, Finally, the parameter gradients for 6 are calculated
separately on each process and updated with stochastic gradient descent.

We now extend this approach for model-parallelized training of a neural
network. Recall that we have previously used data-parallelization to paral-
lelize the calculation of gradients across the data samples in a dataset. In data-
parallelization, each machine calculates the model parameter gradients on a
subset of the overall dataset (or minibatch). Each machine will have a copy
of the model, and communication only occurs to sum the gradient estimates
from all of the machines. In model-parallelization, each machine only stores
part of the model. Communication between machines must therefore occur to
evaluate the model output itself even on a single data sample. Furthermore,
communication must also necessarily occur to calculate the gradient (i.e., the
backpropagation step) for a single data sample.
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Consider a single-layer neural network

H
m(x; 0) = Z Clo(WJx + b)),
j=1
where the parameters are 6 = {C, W, b} and H is the number of hidden units. If
the number of hidden units H is very large, then m(x; 6) will be computation-
ally expensive to evaluate. The evaluation of the neural network can be easily
distributed across multiple machines:

N-1
m(x;0) = Y. mi(x;0),
i=0
(i+1)H,
mi(x;0) = Y, Chlo(Wliix+Db)),
iH,

where N x Hy, = H. The model m!(x; 8) is evaluated on machine i and and
then the neural network output m(x; 0) is calculated by an All Reduce com-
munication which sums the m!(x; ) from all of the machines. Example code
is provided below:

import numpy as np
from mpi4py import MPI

name = MPI.Get_processor_name ()
comm = MPI|.COMM_WORLD
rank = comm. Get_rank ()

num_nodes = int(comm. Get_size ())
HO = 1000

H = num_nodes*H0

d = 100

#Parameter matrices

W = np.random.randn( HO, d )
b = np.random.randn( HO, 1 )
C = np.random.randn( 1, HO )

def sigmoid(x):
sigma = np.exp(x)/(1.0 + np.exp(x))
return sigma

def Neural_Network(x):
Hidden_Layer = sigmoid( np.dot(W,x) + b )
f = np.dot(C, Hidden_Layer)
f = comm. allreduce (f, op=MPI.SUM)
return f[0], Hidden_Layer

#Example
X = np.random.randn(d,1)
f, Hidden_Layer = Neural_Network(x)
if rank == 0:
print (f)
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The above code evaluates H, hidden units on each process, where the neu-
ral network has in total H = N X H, with N total processes. Similarly, the
backpropagation step can also be distributed across the different machines. In
the case of a single-layer network, the only communication required is to cal-
culate the output of the neural network. The model parameter derivatives can
then be calculated separately on each process.

def Backward(x, y, f, Hidden_Layer):

e = -(y - f)

C_deriv = e*Hidden_Layer

delta = e*C[0, :]

z_deriv = Hidden_Layer[:,0]*(1.0 - Hidden_Layer[:,0])*delta
B_deriv = z_deriv

W_deriv = np.dot(z_deriv[:,None], np.transpose(x) )

return C_deriv, B_deriv, W_deriv

For multi-layer neural networks, the values of the hidden units must also
be communicated between the different processes. The implementation of this
slightly more complex distributed algorithm is left as an exercise (see Exercise

R3.6).

23.8. Brief Concluding Remarks

Training deep learning models can be computationally expensive due to the
size of the model (i.e., the large number of parameters) as well as the size of
the dataset. In many real-world machine learning training tasks, the compu-
tational cost can become a significant obstacle to training models with a single
machine. Data-parallelization can address this challenge by distributing sub-
sets of the minibatch data samples across multiple machines in order to calcu-
late their gradients. For large models, the model itself can be distributed across
multiple machines, which typically will also require implementation of a dis-
tributed version of the backpropagation algorithm. For more examples and ad-
ditional discussion of parallel computing in deep learning, it is recommended
to read PyTorch’s documentatation on distributed training of deep learning and
the article [DCM*12].

23.9. Exercises

Exercise 23.1. Using the code provided for the MNIST dataset, measure its
strong scaling and weak scaling as a function of the number of machines.

Exercise 23.2. Prove that the distributed minibatch stochastic gradient de-
scent update converges to gradient descent as the number of machines N — oo.
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Exercise 23.3. Implement asynchronous stochastic gradient descent using
MPI point-to-point communication operations.

Exercise 23.4. Modify the distributed training code to train a convolution net-
work on the MNIST dataset.

Exercise 23.5. Use the distributed training code to train a convolution network
on the CIFAR10 dataset. Measure strong scaling and weak scaling as a function
of the number of machines.

Exercise 23.6. Develop a distributed algorithm for training a model-paralle-
lized two-layer neural network and implement it in Python.
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Chapter 24

Automatic
Differentiation

24.1. Introduction

Deep learning involves large, complex, nonlinear models with large numbers
of parameters which must be trained. Examples include multi-layer fully con-
nected networks, deep convolution networks, residual networks, and recurrent
networks. There is a highly flexible choice of model architectures within each
of these model classes. Developing deep learning models typically involves
evaluating a series of different architectures. Each time the model architecture
changes, the backpropagation algorithm also changes. Rederiving the back-
propagation algorithm via the chain rule for each new model architecture is
time-consuming and would substantially limit developing new models.

Automatic differentiation (AD) is a numerical algorithm to evaluate the
backpropagation rule (i.e., the gradients with respect to model parameters) for
a very general class of functions, including deep learning model architectures.
The user only has to define the model architecture (i.e., the function) and then,
given the model definition, AD will then evaluate the gradient for the model.
This allows for the user to rapidly develop, train, and evaluate a series of deep
learning models without having to rederive the backpropagation rule via the
chain rule for each new model variation.

Automatic differentiation is especially useful for large-scale models with
large numbers of intermediate functions and parameters (e.g., large language
models or residual networks with hundreds of layers).

461
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24.2. Reverse-mode versus Forward-mode Differentiation

We will first review reverse-mode and forward-mode differentiation. As an
example, consider the sequence of functions

zp = My(Zo-1,%;0),
(24.1) z; = = my(x; 0),

where x is the input data and 6 is the parameter to be trained. Let x, 6, and z,
be vectors of length d,, dg, and d,, respectively. For ¢ > 1, the function m, is
therefore a map m, : RZ-1*dxdo _, Rde For ¢ = 1, m; : R%*de — Rde, The
final model output is

m(x; 0) = z;,

and we are interested in gradients of the following function with respect to the
parameters 6,

A(B) = p(m(x; 6),y),

where y is a vector of length d; and the function p : R%*d — Rdo. In ma-
chine learning, A(0) is typically the loss function—which is scalar-valued—
and therefore dy = 1.

24.2.1. Reverse-mode Differentiation. We will first review reverse-mode
differentiation, which is equivalent to the backpropagation algorithm. Define

. oA Co . .
Zp= -, which is a dp X d, matrix. By the chain rule,
Zp

n n 5m€
Zp = Z“l_az (2o-1,%;0).

Reverse-mode differentiation sequentially calculates z; — Zz;_; — - —
2,. The parameter gradient is a dg X dg matrix which can be evaluated via

L
oA amg
(24.2) =5 = 2L 2037 (201, %;0).
% = 2%

The computational cost of reverse-mode differentiation depends upon the
functional form of m,(z, x; 8). Typical deep learning models involve linear ma-
trix multiplications followed by elementwise nonlinearities. Let’s consider an
example and evaluate its computational cost. Let m,(z, x;0) = o(W{z + W¢x)
where o(+) is an elementwise nonlinear activation function, Wy is a parameter
matrix with dimensions d, x d,_;, and WY is a parameter matrix with dimen-

sions d, X d,. %(zé,_l,x; 0) = o' (Wiz + Wix) © WY, whichisad, x d,_,
matrix. Note that the elementwise multiplication v = o’/ (Wfz + Wfx) © WY
is defined as v;; = (o' (Wf z + W X)) (W)
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The equation 2“1%(25_1, x; 0) = Z,,,0 therefore involves a dp X d, ma-
trix multiplied by a d, X d,_; matrix, which requires O(dp X d, X d,_;) arith-
metic operations. Note that Wz + W¢x) has been calculated in the forward
evaluation of the function and is therefore not included in the computational
cost of the backpropagation algorithm. The evaluation of the elementwise non-
linear activation function will be assumed to be small compared to the matrix
multiplications. Consequently, the backpropagation algorithm will approxi-
mately require the following number of arithmetic operations to calculate the
derivatives (2,)52}:

L
Ddoxdy xdy_y,
=2

where we have assumed that the computational cost of calculating 2; is rela-

tively small when L is large. If d, = d, then the total number of arithmetic
operations becomes

(L—1) % (do X d?).

In addition, we have to account for the computational cost of the formula

[24.2). aan;” (zo_1,x; 0) involves the calculation of the derivatives

om,
oWy
om,
aw¢
which require O(d, X d,) and O(d, X d,_;) arithmetic operations, respectively.

(2p_1,%:0) = ' Wiz + WEx)xT,

(24.3) (2o-1,%:0) = ' (Wiz + WiX)zT,

Therefore, 25%(267_1, x; 0) requires approximately O(dp X d, X (dy + d,_1))
arithmetic operations. If d, = d, the total number of arithmetic operations is
approximately

(24.4) (L—1)X (dp x2d?) + L x (dp X d X dy).

24.2.2. Forward-mode Differentiation. In forward-mode differentiation,
we move from the beginning of the sequence of functions (¢ = 1) to the end
(¢ = L and A(6)) when calculating the derivatives. Forward-mode differenti-
ation tracks the derivative z, with respect to the parameters 6, in contrast to
reverse-mode differentiation which tracks the derivative of A(8) with respect

. _9d .
to z,. Define Z, = %. By the chain rule,

om om ~
Z, = 6_6€(Z€_1’x; o) + a—;(zg_l,X; 0)z,-1,

el . . 0 . .
where —a": (zp_1,x;0)is ad, X dg matrix, —;"" (zp_1,x;0)isad, x d,_, matrix,
z

and Z,_; isad,_, X1 matrix. Forward-mode differentiation sequentially tracks
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Z, > Z, — --- = Z;. The parameter gradient is

A Odp
@ = 3z, —(z1,y)ZL.

Let us now analyze the computational cost of forward-mode differentiation
for the specific function m,(z, x;0) = o(W/z + W¢x). Since %(25_1, x;0) is
ad, X d,_; matrix and Z,_; is a d,_; X dg matrix, the numbe? of arithmetic
operations for %(zg_l, x;0)Z,_1is O(d, X d,_q X dg). %(zg_l, x; 0) requires
O(d, x d, +d, x d,_;) operations; see equation (24.3). Combining these esti-
mates (and assuming that the elementwise nonlinear activation function has a
small cost compared with the matrix multiplications), the total computational
cost is approximately

L
(24.5) Di(dpxdy+dy X dpoy +dp Xdyp_y X dp),
=1

where we have assumed that the computational cost of —(zL, y)Zp isrelatively

small compared to equation (R4.5) when L is large. If d€ = d, then the total
number of arithmetic operations becomes

(24.6) Lx(dxd,+d?+d?xdy)

24.2.3. Comparison of Forward and Reverse Differentiation. Let’s now
compare the computational costs of reverse-mode and forward-mode differen-
tiation in equations (R4.4) and (R4.6), respectively. If d is large and dg is small,
then forward-mode differentiation will have a much lower cost than reverse-
mode differentiation. However, in deep learning we typically consider models
where dp = 1 (a scalar objective function or loss) and dg (the number of pa-
rameters) is very large. Then, it is clear that reverse-mode differentiation has
a much lower computational cost since (24.6) grows linearly in dg.

24.3. Introduction to PyTorch Automatic Differentiation

Both forward-mode and reverse-mode differentiation can be implemented in
computer algorithms for general classes of functions. This is referred to as au-
tomatic differentiation.

We will focus on using PyTorch for reverse-mode automatic differentiation.
PyTorch is a define-by-run framework where the function (which will be differ-
entiated) is determined/defined at runtime and then can be subsequently dif-
ferentiated. This provides a high degree of flexibility, since the function to be
differentiated can dynamically be defined (and change) at runtime. Examples
include conditionals (e.g., if-else statements) and for-loops of variable length.
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In contrast, define-and-run automatic differentiation software would first
define a static function that cannot be changed during runtime and would then
be differentiated. PyTorch is also widely used since its syntax is Pythonic (i.e.,
very similar to standard Python code) and is seamlessly integrated into Python.
Function evaluation and differentiation can be easily run on GPUs, which sig-
nificantly accelerates training of models involving large numbers of parameters
and large datasets.

PyTorch provides highly general automatic differentiation for calculating
the gradients of scalar functions. Consider the following example:

import torch

x = torch.ones(2)
Xx.requires_grad=True

f = torch.sum( x**3 + x**2 )
f.backward ()

The first line initializes the tensor which is the input to the function. The
second line uses “x.requires _grad=True” to indicate that we would like to take
the derivative of the function output with respect to the input variable x. In
the fourth line, the “.backward()” operation implements PyTorch’s automatic
differentiation to differentiate the function output f with respect to the input
variable x. The gradients which are calculated by automatic differentiation
are stored in the tensor “x.grad.data”. Note that PyTorch’s standard automatic
differentiation with the backward() operation requires that the output of the
function to be differentiated be a scalar (and not a vector or tensor). In ma-
chine learning we will typically be evaluating the gradient of the loss, which is
a scalar, and therefore this covers the vast majority of machine learning appli-
cations.

If the tensors are located on the GPU, the automatic differentiation will
also be performed on the GPU. For large tensor operations, this typically sig-
nificantly accelerates the calculation of gradients:

import torch

x = torch.ones(2).cuda()
X.requires_grad=True

f = torch.sum( x**3 + x**2 )
f.backward ()

print (x.grad.data)
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If the machine has multiple GPUs, we can place the tensor on the jth GPU
using the command “x = torch.ones(2).cuda(device = j)”. Then, the gradients
would also be calculated on the jth GPU.

The computational graph showing the sequence of operations which
PyTorch keeps track of to calculate the chain rule can be displayed. Consider
the following sequence of functions:

x = torch.ones(2).cuda()
X.requires_grad=True

f = torch.sum( x**3 + x**2 )
f =2%f

f = torch.sigmoid(f)

f =5*f

f.backward ()

PyTorch keeps track of the sequence of operations (and intermediate func-
tion outputs) in order to calculate the chain rule. The computational graph
(and order in which the chain rule is applied) can be displayed via the follow-
ing command:

g f.grad_fn

print (g)

g = f.grad_fn.next_functions[0][0]
print (g)

while ( bool( g.next_functions ) ):
g = g.next_functions[0][0]
print(g)

For the specific example of above, the code above displays the following
computational graph:

<MulBackward0 object at 0x7811a52425f0>
<SigmoidBackward0 object at 0x7811a5242740>
<MulBackward0 object at 0x7811a52425f0>
<SumBackward0 object at 0x7810e4la53f0>
<AddBackward0 object at 0x7810e4la52a0>
<PowBackward0 object at 0x7811a5242650>
<AccumulateGrad object at 0x7810e41a4f40>

PyTorch is able to differentiate a wide class of functions. We next provide a
slightly more complex example of a single-layer neural network:
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#Dimension of input data

d =2
#Number of hidden units
H=5

#lnput data
X = torch.randn((d,1))

#Weight parameter matrices
W = torch.randn ((H,d) )
B = torch.randn((H,1))
C = torch.randn((1,H))

W.requires_grad = True
B.requires_grad = True

C.requires_grad = True

HiddenLayer = torch.sigmoid( torch.matmul(W, x) + B )
f = torch.matmul(C, HiddenLayer)

f.backward ()

print (W.grad.data, B.grad.data, C.grad.data)

The above example can also be conveniently implemented by creating a

neural network module:

import torch
import torch.nn as nn
import torch.optim as optim

#Dimension of input data

d =1
#Number of hidden units
H = 100

class SingleLayerNeuralNetwork (nn.Module) :
def __init__(self):
super(SingleLayerNeuralNetwork , self).__init__ ()

self.fcl = nn.Linear(d, H).type(torch.FloatTensor)
self.fc2 = nn.Linear(H, 1, bias=False).type(torch.FloatTensor)

def forward(self, x ):

HiddenLayer = torch.sigmoid( self.fcl( x ) )
f = self.fc2(HiddenlLayer)

return f
model = SingleLayerNeuralNetwork ()

#Move model to GPU
model.cuda ()
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LR = 0.001
optimizer = optim.RMSprop(model.parameters(), lr= LR, momentum=0.0)

#Minibatch size
M = 10000

#Number of optimization steps
T = 100000

for i in range(T):
optimizer.zero_grad ()

X

torch.randn (M, 1) .cuda()
X2

f = model(x)

Loss = torch.mean( (y - f)*2 )
Loss.backward ()
optimizer.step ()

print (i, Loss.detach().cpu().numpy() )

The above example trains a neural network to represent a parabola on a
randomly sampled datapoints. The optimizer object implements the updates of
the parameters. In this case, the RMSProp optimizer is chosen, although other
choices exist (e.g., standard gradient descent or ADAM). “Loss.backward()” cal-
culates the gradients via automatic differentiation.

The gradients of the parameters are available in the fields “model.fcl.
weight.grad.data”, “model.fcl.bias.grad.data”, and “model.fc2.weight.grad.
data”. The parameters are updated with the RMSProp algorithm when “opti-
mizer.step()” is called.

PyTorch, by default, accumulates gradients. This means that every time
“optimizer.step()” is called, the calculated gradients are added to the current
tensors “model.fcl.weight.grad.data”, “model.fc1.bias.grad.data”, and “model.
fc2.weight.grad.data”. That is—by default—these “grad” fields in the neural
network model will actually be the sum of all calculated gradients over all time
steps. The sum of the gradients would then be used to update the parameters,
which is not the correct gradient descent algorithm. Instead, we would like
to only use the gradients calculated at the current training iteration i. This
can be implemented by including “optimizer.zero _grad()” at the beginning of
each training iteration. The command “optimizer.zero _grad()” sets all of the
gradient fields in the neural network model to zero.
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PyTorch can also differentiate over piecewise continuously differentiable
functions which are defined with condition (if-else) statements:

x = torch.randn(2)
X.requires_grad=True
if (x[0] < 0):

f = torch.sum( x**3 + x**2 )
else:

f = torch.sum(x)
f.backward ()

print (x[0], x.grad.data)

If we would like to exclude certain parts of the function from being included
in the chain rule, we can use the “.detach()” operation:

x = torch.ones(2).cuda()
x.requires_grad=True

f = torch.sum( x**3 + (x**2).detach() )
f.backward ()

print(x.grad.data)

In the example above, the output of x? is treated as a constant and is not
differentiated. Only the first term x> is differentiated. From the perspective
of PyTorch’s automatic differentiation, the output of x? is frozen as a constant
whose derivative is zero.

In some cases we may not wish to calculate the gradients of a series of
PyTorch operations or functions. An example is when an already trained Py-
Torch model is being purely used for predictions (inference). Keeping track of
the computational graph—including storing data from intermediate function
evaluations—in order to calculate the chain rule can have significant mem-
ory costs. If the model is only being evaluated for predictions (and it is not
necessary to keep track of the computational graph), we can use the following
command:

with torch.no_grad():
X = torch.ones(2).cuda()
X.requires_grad=True
f = torch.sum( x**3 + (x**2).detach() )

The computational graph for the function evaluations within the “with
torch.no _grad():” block will not be stored. Automatic differentiation of the
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function f is, therefore, not possible. In general, (already trained) PyTorch
models which are being used for predictions (sometimes referred to as
inference) should be evaluated using “with torch.no _grad():” or “with
torch.inference _mode():” to reduce memory costs.

Automatic differentiation of large models for large minibatches can have
both high memory and computational costs. Large numbers of arithmetic op-
erations are required to calculate the chain rule. In the forward evaluation of
the model, the intermediate function outputs must be stored to be later used
to evaluate the chain rule, which can require large amounts of memory. If an
out-of-memory error occurs, the minibatch size can be reduced. The standard
choice for data types in deep learning is 32-bit floating point (float32), which
has lower memory cost than the default choice in scientific computing of 64-bit
floating point (float64). An alternative approach with even lower memory cost
is 16-bit floating point (float16). Finally, as discussed in the chapter on dis-
tributed model training, Chapter R3, the calculation of the gradient of a mini-
batch can be parallelized across multiple GPUs/machines.

24.4. Brief Concluding Remarks

A fundamental element of deep learning is the design and evaluation of dif-
ferent model architectures, which include a large number of hyperparameters.
Typically, a series of different models will be designed and evaluated on data.
The chain rule for the backpropagation algorithm will change each time a new
model is designed. If the backpropagation algorithm had to be rederived from
scratch for each new model, this would be a significant obstacle to the develop-
ment of deep learning models. Automatic differentiation addresses this chal-
lenge by automatically calculating the chain rule (and gradients with respect
to the model parameters). Automatic differentiation therefore facilitates model
development and evaluation. For a more detailed discussion of automatic dif-
ferentiation, we recommend reading [eal9], [Gil08], and [GWO08].
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Appendix A

Background Material
in Probability

A.1. Basic Notions in Probability

In this section we review basic things about probability theory and we visit
notions that are frequently seen in the book. There are many excellent classical
texts for probability theory and convergence topics, see for example [Bil99].

Definition A.1. Consider a probability space (Q, F, P) where

« Q is the sample space.

« ¥ is the so-called o-algebra (i.e., a collection of subsets of Q which
is closed under complements and countable unions and which also
contains Q.)

« [P is the probability measure.

Definition A.2. Let (Q, %) and (Q,, %) be two measurable spaces. A func-
tion X : Q; — Q, is called a random variable if the event {w € Q; : X(w) €
A} € F forevery A € &,.

Definition A.3. The expectation of X is defined as
E(X) = f X(w)dP(w).
Q

More generally, if X : Q; — Q, is a random variable per the previous
definition and f : Q, — R is an %, measurable function, then

E(F(X)) = f FX(@)dP().
Q

473
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Note that P(X € A) = [, dP(w). Hence, E(1xc4) = P(X € A).
Definition A.4. If we can write dP(x) = f(x)dx, then f is called the proba-
bility density of X, or pdf for short.

1/p

Definition A.5. Let p > 0. We say that X € LP(P) if | X]|;» = (E|X|P) " < o0.

Definition A.6. Let X € I*(P). We define the variance of the random variable
X as

Var(X) = E[(X — E(X))?].

If X is a multidimensional random variable, then we are talking about the
variance-covariance matrix which is defined as

Var(X) = E[(X —E(X)) - (X —EX))"].
Let us see some examples now.

Example A.7. If X is distributed as an Exp(4) random variable with 1 > 0,
then P[X > x] = e~**. In this case the probability density function takes
the form f(x) = Ae~** for x > 0 and f(x) = 0 for x < 0. In regards to its
expectation and variance we have, respectively,

EX = f xle Mdx = l
b A
® 1\ 1
— ) _
VarX = fo <x— /—1) Ae ™ Fdx = =
Example A.8. If X is distributed as a Uniform(6,, 6,) random variable with
0, < 6,, then for x € (6;,6,), P[X > x] = :2—_;. In this case the probability
V1

2
L for x € (6,,6,), and f(x) = 0
otherwise. In regards to its expectation and variance we have, respectively,

density function takes the form f(x) = P
27 V1

_0,+6

EX = —
_(6,-6y)?
VarX = —

Example A.9. If X is distributed as a Normal(u, o?) (or equivalently X ~
N(u, 0?)) random variable, then the probability density function takes the form

1 1 (x_ﬂ)z

fx) = Fe_i o2 for x € R. In regard to its expectation and variance we
To
have, respectively,
EX = pu,
VarX = g2
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Definition A.10. The conditional probability of an event B given another event

. P(BNnA
Ais P(B|A) = ;(—m)

If A, B are independent events, then P(B|A) = P(B) since in that case we
have that P(B N A) = P(B)P(A).
If fx,y(x,y) is the joint distribution of (X, Y, then for a nice function g :
R% ~ R,
T, gx, @) fy oy (x, @)dx
Soo fx v (%, @)dx

Theorem A.11 (Bayes theorem). Let A, B be two events with P(A) # 0 and
P(B) # 0. Then, we have that

E[gX, V)Y = a]

PBIA)PA)

PAIB) = =

In general, if {Z;} is a countable partition of Q (i.e., Uj Zj=QwithZ,nZ; =
@ fori # j), then
P(B|Z;)P(Z;)
2 P(B|Z)P(Z))’

P(Z;|B) =
and P(B) = ¥ P(B|Z))P(Z)).

A.2. Basics on Stochastic Processes

Definition A.12. A stochastic process X; for t € J is a collection of random
variables from (Q4, #;) (the sample space) to (Q,, %) (the state space).

We write without distinction X;, X(¢, ), X;(w) for a stochastic process with
the understanding that all of these notations mean the same thing. In many
typical situations Q, = RY, and in that case 7 is the o-algebra of the subsets
of R4,

Definition A.13. For k € N and (t,,...,t;) € T, the collection of random
variables (X; ,...,X;, ) is called the finite dimensional distribution of X.

Definition A.14. A filtration on (Q, ¥) is a non-decreasing family {#;};c, of
sub-g-algebras of F such that % C F;, C F fors < t. Weset 7, = o (U, ., F1)-

The filtration generated by X; is denoted by 7% = o (X,;s < t). We say that X,
is adapted to F; if X; is F;-measurable.

Definition A.15. Let X, be defined on (Q, ¥, P) and let X = o(X,,s < t). We
say that {X;} is a Markov process if

P(Xs4¢ € AlFY) = P(Xs4, € AIX)),
for all s,¢t € J and for all A in the state space.
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If #; is a filtration such that X C F; foreveryt € 7 and P(X,,, € A|%X) =
P(X,,: € AlXs), then we say that X, is a Markov process with respect to 7;.

Markov property means that the pastisirrelevant and only the present mat-
ters when it comes to future behaviour!

Definition A.16. We write P(Xy,; € A|%X) = p(s,t,X;,A), and we call the
function p the transition function.

The transition function satisfies the Chapman-Kolmogorov equation,

fp(s, t,x,dy)p(t,u,y,A) = p(s,u, x,A),
E

forevery s < t <uand A € B(E).

Definition A.17. Let #; be a filtration on (Q, F, P) and let X; be adapted to %;.
We say that X; is an F;-martingale if

(1) E|X,| < co forall t € 7.
(2) E[X;,4|%] = X, forall s,t € 7.

One of the main examples of a Markov stochastic process is the so-called
Brownian motion, otherwise called the Wiener process.

Definition A.18. A one-dimensional Brownian motion W; : Q X Rt — R is
a real-valued stochastic process with the following properties:

(1) W, = 0 almost surely.

(2) t » W is continuous.

(3) W, has independent increments. This means thatift; <t, < --- < ty,
then W;  — W, isindependentof W;  —W; foranyn+1<m.

(4) W, — W, is distributed as N(0, t — s).
A d-dimensional Brownian motion is a collection of one-dimensional

Brownian motions, i.e., W, = (Wl,...,W;d), where Wti,i =1,...,d is a col-
lection of one-dimensional independent Brownian motions.

Some important properties of Brownian motion follow:
1) EW, = 0.
(2) EW,; W, = min(t, s).
(3) E[W,|%Y] = EW, (martingale property).
(4) W is a Markov process.

5) W,; = \/EWt where c is a real-valued positive constant.
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(6) t = W} is continuous but nowhere-differentiable. In this regard, ob-

serve that

Var[WMAtz_ Wt] - (Alt)z[E [Wirar = Wi = E[Wipae — W11
_ ﬁ(t +AL—1)
:Ait_)oo’ as At — 0.

While this calculation is not a proof that ¢t = W, is not differentiable,
it is strongly suggestive of this fact.

The next result is one of the most used results when it comes to martingales.

Theorem A.19 (Doob, see [KS98]). Let {X;,t € T} be a martingale with respect
to the filtration ¥; that is also right-continuous. Then, for every A > 0, p > 1,
a > 1 we have

1
1P (supOSSst | X > /1) < A—pElthpfor t such that E|X;|P < oo.

a

a
(2) E(sup,, IXs1) < (;) E|X,| for t such that E|X;|® < .

(3) If sup, EIX;| < oo, then the limit Y(w) = lim,_,, X,(w) exists almost
surely and E|Y| < oo.

A.3. Notions of Convergence and Tightness

There are many different ways in which a sequence of random variables {X"}
can converge to a random variable X as n — co. Below we review the main
notions of convergence, discuss their relations and present some of the related
key results.

Definition A.20. We say that we have the following.
(1) Convergence in probability (X" Lx ): for alle > 0,

lim P(JX" — X| > €) = 0.
n—oo

(2) Convergence with probability 1 or almost surely (X" Dx ):

P(lim X" = X) = 1.

n—oo

Lp
(3) Convergence in £P (X" — X):

lim E|X" — X|P = 0.

n—oo
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(4) Weak Convergence (X" it X): for every continuous and bounded
function f(x) we have that

lim Ef(X") = Ef(X).
n—oo
Remark A.21 (Relations between different convergence notions). We have
that
o« X" CiinmpliesX” 2 x.
L p
¢« X" — X implies X" — X.
o« X" iXimpliesX” Zx
A very useful tool in proving convergence in probability is using Cheby-
chev’s inequality: for every § > 0,

E(X" — X)?
52 '
The books [Bil99] and [EK86] are standard resources on the topic of con-

vergence of probability measures. In particular, very useful tools in proving
and characterizing weak convergence are the following theorems.

P(X"—X| > 6) <

Theorem A.22. Let {X/'} be a sequence of continuous stochastic processes de-
fined on (Q, F, P) satisfying the following conditions

(1) There exists p > 0 such that sup, _ E|Xy|P < co.
(2) Thereexist a,b > 0 and c = ¢(T) > 0 such that

sup E|X* — XP|® < c|t — s|1+P
nen

forevery T and forevery t,s € [0, T].
Then, if P" is the law of X™, {P"} is a tight sequence of probability measures.

Theorem [A.22(2) shows that X/* will have convergent subsequence. In or-
der to uniquely characterize the limit, we need convergence of the finite di-
mensional distributions. In particular, we have

Theorem A.23. Let {X"}, X be continuous stochastic processes defined on
(Q, F,P) satisfying the conditions:

(1) {X"}%, is a tight sequence.

(2) The finite dimensional distributions of {X"} converge to those of X in
[0, c0).

Then, we have that X" hed X. in C(]0, 00)).
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A.4. Convergence in the Skorokhod Space D.([0, T'])

Let0 < T < o0, and let E be a given set that will be more precisely character-
ized below. In this section we briefly review the basics for the Skorokhod space
Dg([0, T]) (definition follows below) and for some of its convergence proper-
ties. This space is very well suited for proving convergence of families of sto-
chastic processes and is heavily used in Chapters[I9and 0. An excellent source
on characterization and convergence of stochastic process is the book [EK86]
to which we refer the interested reader for further details.

In practice, for many stochastic processes we can assume that sample paths
are right continuous and have left limits at each time point (the so-called cadlag
processes). This means that for a stochastic process X; : [0, T] — E, we shall
have that for each t € [0, T], the limits lim,_,,, X; = X, and lim,_,,_ Xy = X,_
exist. Such stochastic processes compose the space Dg([0, T]).

Our interest in this book is primarily in convergence for measure-valued
stochastic processes in which cases we are mainly interested in complete (i.e.,
every Cauchy sequence in a given space converges in that space) and separa-
ble metric spaces (i.e., a topological space containing a countable everywhere-
dense set). Under the appropriate metric, d (defined below), the space
Dg([0, T]) is a separable metric space if E is separable, and (Dg([0, T]), d) com-
plete if (E,r) is a complete metric space (this is a theorem). In particular, let-
ting Z be the collection of Lipschitz continuous, strictly increasing functions
¢ : [0,00) — [0, ) such that

log >Z——7"—=

7(Q) = sup [log =2

0<t<s

0 -40) _,,
—t >

and g = r A1 = min{r, 1}, set, for x,y € Dg([0, T])
T
d(x,y) = inf ly(s’ )V f e (Sup q Xeauws ¥ A u))) dul :
(ez 0 120

An important result in this direction is that if X",X € Dg([0, T]), then
lim,,_,, d(X",X) = 0if and only if there exists a sequence {{"} in Z such that
limy,_, y(¢") = 0 and lim,,_, o, sup,, . "(X{", X¢n) = 0.

We say that the sequence {X"} is relatively compact if the sequence of the
corresponding probability measures P" is compact. The following two results
are very useful in practice and are used routinely in Chapters [9 and RQ.

Theorem A.24 (Theorem 7.2, Chapter 3 of [EK86]). Assume that (E,r) is a
complete and separable metric space and consider the family of stochastic pro-
cesses {X"} with sample paths in Dg([0, T]). Then {X"} is relatively compact if
and only if the following hold.
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« For every rational numbert € [0, T] and € > 0, there exists a compact
set K(t,€) C E such that

(A1) liminfP [X]' € K(t,€)] > 1 —e.

n—oo

« Forevery0 < T’ < T and € > 0, there exists a § > 0 so that
limsup P [w(X",8,T") > €] <e,

n—-oo
where w(x, 8, T") is the modulus of continuity of x in the interval [0, T' |
defined as

w(x,8,T") = f max sup r(xg, X;).

in
partition{t;}c[0,T’],min(t;—t;_,)>8 i S,teltioti)

Remark A.25 (Remark 7.3 in Chapter 3 of [EK86]). Let {X"} be a relatively
compact sequence. Then for every T < oo and € > 0, there exists a compact set
K(T,¢) C E such that

(A2) liminfP [X* € K(T,e)for0 <t <T]>1-—¢.

n—oo
Theorem A.26 (Theorem 8.6, Chapter 3 of [EK86]). Assume that (E,r) is a
complete and separable metric space and consider the family of stochastic pro-

cesses {X"} with sample paths in Dg([0, T]). Assume that condition (A1) holds.
Then the following are equivalent.

(1) {X™}is relatively compact.

(2) Foreach 0 < T" < T, there exists § > 0 and a family ¥"(5) with 0 <
d < 1 of non-negative random variables such that the inequality holds

E[qP (X4, XIIF P (XP, X)) < E [x"(O)IF"],

foro<t<T,0<u<d,0<v<6AtL Fisthe o-algebra generated
by X™ up to time t, and in addition

?II(I) limsupE [x"*(6)] =0

n—oo

and
gin(l) limsup E [¢f (X2, X)] = o.
- n—oo

(3) Foreach 0 < T' < T, there exists 8 > 0 such that

limlimsup[ sup  sup [E( sup q#( ?Jru,X?)qB(X?,X?_U))]:O,

810 pooo | 7eSm(T)0<u<s  \0<v<OAT

where S"(T") is the collection of all discrete {F/*}-stopping times bounded
by T', and in addition

}Sin(l) limsup E [qP(X%,X8)] = o.
~Y hn-ooo

holds.
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Theorem A.27 (Theorem 9.1 in Chapter 3 of [EK86]). Assume that (E,r)isa
complete and separable metric space, and consider the family of stochastic pro-
cesses {X"} with sample paths in Dg([0, T]). Assume that condition (A.2) holds.
In the topology of uniform convergence on compacts, consider a dense subset G of
Cp(E). Then {X"} is relatively compact if and only if for each g € G, {g(X™)} is
relatively compact in Dg([0, T]).

Note that in all of the above we can take T to be oo, in which case the rel-
evant space is Dg([0, o0)]). The topic of characterization and convergence of
stochastic processes is very rich and very well developed in probability theory.
An excellent classic manuscript covering many of the basic and more advanced
related results is [[EK86]], to which the interested reader is referred to for further
details and proofs.

A.5. Some Limiting Results and Concentration Bounds

Two of the most classical results in probability and statistics are the law of large
numbers and central limit theorem. We present them below.

Theorem A.28 (Law of large numbers). Let {X"} be a sequence of independent
and identically distributed random variables with EX" = u < co. Define YN =

% Z]:=1 X™. Then, we have that

1) YN S
b
(2) IfEIX"|P < oo, then YN — u.
Theorem A.29 (Central limit theorem). Let {X™} be a sequence of independent
and identically distributed random variables with E|X"|?> < oo such that EX" =

N on_
uandVar X" = o2 Define SN = W Then, we have that SN i N(0,1).
o

Another useful result is that of Chernoff-type concentration bounds. We
present a special case of interest to us below. Bounds of this type are often
called Chernoff-Hoeffding bounds.

Lemma A.30 (Chernoff bound for Bernoulli random variables). Let {X"} be a
sequence of independent and identically Bernoulli distributed random variables

: 1 «N
with P(X" = 1) = pand P(X" = 0) = 1 — p. Define YN = < Y1 X" Then
forany & > 0, we have the estimate

N&2

P(|YN — p| > §) < 2¢ »6-».
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Note that the Chernoff bound we just saw says something useful. It says
that if we want the average YV to be within a ball of radius § from its expecta-
tion p with probability at least 1 — ¢, then we would need to have

2p(1—p)

N> ==

log %

samples in our disposal.

If we do not have information about p, then using the property that
p(1 — p) < 1/4 (true since p € (0, 1)), we obtain the cruder (but perhaps more
useful) bounds

P(|YN — p| > 8) < 2e72N¢

and

2

N > -.
€

> 557108

To state the next convergence result, we need to introduce the notion of
quadratic variation.

Definition A.31. Let X; be a square integrable martingale with respect to #;,
i.e,EX? < coforallt € 7. Let {t)} be a partition of [0, t]. Then, we define the
quadratic variation of X; to be

N
a0, = Jim 3 (X, ~Xy) , in £t

Theorem A.32 (Martingale central limit theorem). Let {M,} be a sequence of
right continuous, square integrable martingales on a probability space (Q, F,P)
with respect to a filtration F;. Let (M), be its quadratic variation. Assume that

« M, = 0 almost surely.

« M, has stationary increments.

 There is a constant o > 0 such that

M

lim [E[|< ) —cr|] = 0.

t—>c0 t

Then, we have that
1 w
(1) ﬁMt — N(0,0)ast — oo.

w
(2) eMy)e2 = \/EW, as € | 0 where W, is a Brownian motion.
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A.6. Ito Stochastic Integral

In this section we shall introduce the Itd stochastic integral and go over some
of its main properties. We refer the interested reader to excellent textbooks
such as [KS98, Pro05, RW00a, RW00b] for a complete and rigorous treatment
of this subject.

Definition A.33. Let f(¢) : [a,b] = R and {t,})_, be a partition of [a, b], i.e.,
a=ty <t <--<ty_; <ty =>b.Then,
+ The variation of f(t) on [a, b] is defined to be

N-1

Variation (f(£)) = sup 7 |f(tns1) = F(t)l-

{tn}lr\lr:() n=0

« f(t)is of bounded variation if Variation(f(t)) < 0.

At this point we mention that the standard Riemann-Stieltjes integral of the

form f ab g(t)df(t)is well-defined only in the classical sense if f(¢) is of bounded
variation.

Then the question arises. Given that the Wiener process W, is not of
bounded variation, how then does one make sense of the integral j;lb g(t)ydw; ?
For this purpose, we first state the following definition.
Definition A.34. For real numbers a < b, we will say that g : [a,b] X Q —» R
belongs in the class £[a, b] if the following hold.
« gis B([a, b]) X F-measurable.
« g(t,-) is F;-measurable for every ¢.

o [PE[(, )]dt < .

Then, if g € £[0,t], the It6 integral is defined to be the £? limit of the
Riemann sum
2 N-1
1) = lim 37 g(ty-)(W, = W;, ),
N—-oo =1
where {t,}_; is a partition of [0, t]. We shall write I(t) = fot g(s)dW,, and I(t)
is called stochastic integral.

In contrast to the Riemann-Stieljes integral, where the point at which we
evaluate the function g in the approximation above does not matter, the situa-
tion is different when it comes to stochastic integrals. In particular, if we write
I(t) = fot g(s)dW, = Z]:__ll b,(W;, — W;,_,), then the following hold:

« Ifb, = g(t,_1), then we get the It0 stochastic integral that we defined
above.
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« Ifh, = % [g(t,—1) + g(t,,)], then we get the so-called Stratonovich inte-
gral which is not the same as the It6 stochastic integral defined above.

Let us now close this section by collecting here some of the properties of
the stochastic integral I(t) = fot g(s)dWw;.

1) E[, g(s)dw;] =o.

2) [E( fot g(s)dWs)2 =E fot g2(s)ds (Ito isometry).

(3) Jo (af(s) + bg(s)) dW; = a fy f(s)AW; + b fy g(s)dW;.
@) J; ()W, = 3 f(&)AW + [ f(S)dW.

(5) fab f(s)dW, is F;-measurable.

(6) If limy oo E S (fult) — F(Odt = 0, then lim,._ [} f()dW, =
fab f()dW; in the £2 sense.

(7) E[fy g&)dW|7, | = S g(s)dW; for every p < t.
(8) E[/, g®)dW|%] = 0.

©) E| (/s 8w 15| = E[ /] g*dsiz ]|

A.7. Very Basics of Ito Stochastic Calculus

We refer the interested reader to excellent textbooks such as [KS98, Pro035,
RWO004, RW00b] for a comprehensive treatment of stochastic calculus. Here
we review the immediate concepts of interest used in this book.

Let (Q, F,P) be a probability space equipped with a filtration {#;},5,. Let
W, be an F; Wiener process defined on (Q, #,P) on d-dimensions.

Definition A.35. An Itd stochastic process on [0, T] with values in RY is a
continuous stochastic process {X;, t > 0} such that for every ¢t > 0,

t t
X, =Xy + f b(s)ds + f o(s)dW,, [P almost everywhere,
0 0

with X, being #;-measurable, b(s), a(s) being F-measurable such that

d t d m t
P [Z bi(s)lds+ > > | lo™(s)Pds < oo] =1

i=1Y0 i=1j=1v0

and for all t € [0, T].

Sometimes, we often write the differential form X; = b(t) + o(t)W,, but we
always mean the integral form stated above.
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The celebrated It6 formula is nothing else but chain rule involving stochas-
tic integrals. In particular, let X, be an It6 stochastic process as defined above,
f € C%([0, ) x R]). Then, we have that

&, X)) = f(0,Xo)

t

of

(sX)+Zb(s) (SX)

0
2

1 d m 5 f
+§Z é Ui,j(s)ok,j(s)m(S,Xs) ds

j=1i 1

td m
+f ZZO'”(S) (sX)de
0

j=1li=1

Notice that if we define

o= x)+2b(s> L+ LS S o5 s,

] 1i,k=1
then we can write
t t d m
f(t.X,) = £(0,X,) + f Lf(X)ds+ | D Za”(s) (s X)dWy .
0 0 j=1li=

In particular, with f € C?(R?) the operator £5f(x) is called the infinitesi-
mal generator of the process X; and is defined to be

m EX) /0.9

t—0

= LOf(x).

To see this is indeed true, let f € Cﬁ(Rd), apply the It6 formula, and take
expectation (the mean of the stochastic integral will be zero) to obtain

t
HEFLX) — f0.0)] = [% fo LSf(Xs)ds] .

Due to the fact now that X; is continuous, which implies that s — £° f(Xj)
is continuous and £ f(-) is bounded, we indeed obtain that

m B Xt) f(0,x)

t—)O

= LO0f(x).
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A useful corollary of the general Itd formula is the so-called product for-
mula. In particular, consider two It6 stochastic processes,

t t
X; =X0+f bl(S)ds+f o1(s)dW,
0 0

t t
Y=Y+ f b,(s)ds + f 0,(s)dW.
0 0
Then, by applying the It6 formula to f(x,y) = xy, we have that

&z=%n+/fm®n+m®&+q®%®ws
0

t
+/ﬁm®n+@®&wm.
0

We conclude this section, by presenting the notion of strong solution to a
stochastic differential equation.

Definition A.36. Let b,o be Borel-measurable functions, and let £ =

(&1,...,&4) be Fy-measurable. X; is called a strong solution to
t t
(A.3) X, =&+ f b(s, X;)ds + / o(s, X, )dW,,
0 0
if the following hold:

(1) t — X; is continuous.
(2) X, is F;-measurable.

(3) PXp=§) =1

d . d -
@) P[X, fy Ibi(s)lds + T, e fy loM(s)Pds < oo =1, for all ¢ €
[0, T].
(5) X; satisfies the differential equation ([A.3) P almost surely.

Then, we have the following theorem.
Theorem A.37. Let b, o be such that
* |b(t, x) = b(t, )| + |o(t, x) — a(t, y)| < K|x —yl,
o b(t, x)]> +lo(t, 01> < L(1 + [x]?),

where0 < K, L < co. Let E£? < 0. Then, the equation (A.3) has a unique strong
solution such that

E(1X[*) < C(1 + E[¢]*)e*
with0 < C < ooandt € [0,T].
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|
Appendix B

Background Material
in Analysis

B.1. Basic Inequalities Used in the Book
We present here some classical inequalities that are used in this book.

« Cauchy-Schwarz inequality: for any ay, b,y € R

(Eoe) =(E2)(2)

In particular if by, = 1 for all k, then we obtain the special case

(&) =r(E)

« Holder inequality: for any ay, by € Rand p, q > 1such that Tyls 1,
P q

n n l/p n l/q
D laghil < (Z |ak|p> (Z |bk|q)
k=1 k=1 k=1
« Young’s inequality with € > 0,

€ 1
b| < =a% + —b2.
|a|_2a +2€

487
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488 B. Background Material in Analysis

« Jensen inequality: for any convex function ¢ and the sequence {a;}
such that ZZ>1 a, = 1, we have

@ (Z akxk) < D) ap(xp).
k=1 =1

« Basic Gronwall inequality: for a non-negative function y(t), if the in-
equality
t

f@) <g)+ f y(s)f(s)ds forallt € [a,T]

holds, then we have

t
ft) < g+ f a(s)y(s)eh YD ds  fort e [a, T).
o4
If, in addition g is a non-decreasing function, then we have

£(b) < g(t)ela¥dr fort € [a, T].

B.2. Basic Background in Analysis

We review some minimal background in analysis that will be useful for proofs
of mainly the universal approximation theorem results of Chapter 1. For
a more expanded discussion on real and functional analysis, the interested
reader is referred to classical manuscripts such as [Brell, Lax02, RF10].

Theorem B.1 (Riesz representation theorem). Let ¢ : H — R be a bounded
linear functional on a Hilbert space H endowed with the inner product (-, -). Then,
there is a unique element y, € H such that ¢(x) = (x,yy) forall x € H. In ad-

dition [|¢]| = [yl

An important example is the case where H = I*(K), the space of square
integrable functions, sayon K C R. Consider for example the case of K = [0, 1].
Then, if ¢ : I?([0,1]) ~ R is a bounded linear functional, then there is a
unique h € I?([0,1]) such that ¢(g) = f02 g(x)h(x)dx for all g € I?([0, 1]).

For p # 2, the space LP(]0,1]) is not a Hilbert space, but a similar result
still holds. In particular if ¢ € LP([0,1]) — R is a bounded linear functional,
then there exists a unique & € L9([0, 1]) such that ¢(g) = fol g(x)h(x)dx where

T4l
P q

For the next result, we denote by C(K) the space of continuous functions
on K.
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Theorem B.2. Let K be a compact set such that K C RY, and let ¢ be a bounded
linear functional on C(K). Then, there is a unique finite signed Borel measure u
on K such that

¢(g) = f g(x)u(dx) forevery g € C(K), and ||¢|l = |u|(K).
K

Theorem B.3. Let K be a compact set such that K ¢ R, and let ¢ be a positive
linear functional on C(K). Then, there is a unique finite Borel measure u on K
such that

#(g) = f g(u(dx) forevery g € C(K).
K

Definition B.4. A subspace U of X is dense in X with respect to the norm || - ||
if for all x € X, there exists a sequence {u;} € U such that u, — xask — oo.

Conversely, a subspace U of X is not dense in X if there exists x, € X such
that no elements u € U are close to x.

Lemma B.5. Let X be a normed, linear space, and let U C X be a linear, non-
dense subset of X. Then there exists a bounded, linear functional F on X, such
that F # 0 on X (i.e., there is at least one point X' € X such that F(x') # 0) and
F(u) =0 foreveryu € U.

For the next result we define I; = [0,1]¢ to be the hypercube in d dimen-
sions, and we let M (I;) be the space of finite signed measures on I;.

Lemma B.6. Consider U C C(I;) to be a linear, non-dense subset of C(I ).
Then, we have that there exists a measure u € M(I;) with the property that

Ji, 8()u(dx) = 0 forallg € U.

Proof of Lemma [B.6. Let us consider Lemma B.J with X = C(I;). Then,
there exists a bounded linear functional F : C(I;) — R with the properties
that F # 0 on C(I;) and F(u) = 0 for all u € U. By Theorem B.3, there exists a
u € M(I;) such that

F(f) = f fOOu(dx), for all f € C(Iy).
Ia

Thus, for any g € U, we get that F(g) = fId g(x)u(dx) = 0, concluding the
proof of the lemma. O

Remark B.7. Note that F # 0 in the previous lemma actually implies that
1 #0.

We conclude this section with the important Stone-Weierstrass theorem
that gives conditions on when a given set A is a dense subset of another set. This
then means that such a set A can be used for approximation purposes. Before
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490 B. Background Material in Analysis

we present the theorem, we introduce the definition of algebra that separates
points.

Definition B.8. A subset A C C(K) is called an algebra, if the following hold:
(1) Iff,ge A then f+geA.
(2)iffeAandc e R, thencf € A.
(3) If f,g € A, then fg € A.

In addition, we say that an algebra A separates points in K if for all distinct
X,y € K, there exists f € A such that f(x) # f(y).

As an example of a set being an algebra, consider the set of polynomial
functions on an interval, say [a, b]:
N
A=1f(x)=> cpx¥,x €[a,bl.c, ER,N=1,2,... ¢.
n=1
Then, one can check that A is an algebra on C([a, b]) and in addition one can
see that it separates points in [a, b].

Theorem B.9 (Stone-Weierstrass theorem). Consider K to be a compact set K C
R4, Let A be an algebra of continuous real-valued functions on K. Assume that A
contains the constant functions and that it separates points in K. Then, we have
that A is a dense subset of C(K).
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